Maass form invariants
Level: | \( 31 \) |
Weight: | \( 0 \) |
Character: | 31.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(1.34301045897290777549784873471 \pm 2 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.82635852 \pm 1.2 \cdot 10^{-7} \) | \(a_{3}= +1.17147430 \pm 1.1 \cdot 10^{-7} \) |
\(a_{4}= +2.33558545 \pm 1.3 \cdot 10^{-7} \) | \(a_{5}= +0.88276856 \pm 1.0 \cdot 10^{-7} \) | \(a_{6}= -2.13953207 \pm 1.4 \cdot 10^{-7} \) |
\(a_{7}= +0.08502050 \pm 1.0 \cdot 10^{-7} \) | \(a_{8}= -2.43925787 \pm 1.4 \cdot 10^{-7} \) | \(a_{9}= +0.37235204 \pm 1.0 \cdot 10^{-7} \) |
\(a_{10}= -1.61225188 \pm 1.2 \cdot 10^{-7} \) | \(a_{11}= +0.47974902 \pm 1.0 \cdot 10^{-7} \) | \(a_{12}= +2.73607834 \pm 1.6 \cdot 10^{-7} \) |
\(a_{13}= -0.48034161 \pm 1.0 \cdot 10^{-7} \) | \(a_{14}= -0.15527792 \pm 1.0 \cdot 10^{-7} \) | \(a_{15}= +1.03414068 \pm 1.0 \cdot 10^{-7} \) |
\(a_{16}= +2.11937395 \pm 1.2 \cdot 10^{-7} \) | \(a_{17}= -1.88973928 \pm 9.7 \cdot 10^{-8} \) | \(a_{18}= -0.68004832 \pm 1.3 \cdot 10^{-7} \) |
\(a_{19}= +0.57022534 \pm 1.0 \cdot 10^{-7} \) | \(a_{20}= +2.06178141 \pm 1.3 \cdot 10^{-7} \) | \(a_{21}= +0.09959933 \pm 1.1 \cdot 10^{-7} \) |
\(a_{22}= -0.87619372 \pm 1.1 \cdot 10^{-7} \) | \(a_{23}= -0.28272726 \pm 9.8 \cdot 10^{-8} \) | \(a_{24}= -2.85752791 \pm 1.7 \cdot 10^{-7} \) |
\(a_{25}= -0.22071967 \pm 9.9 \cdot 10^{-8} \) | \(a_{26}= +0.87727599 \pm 1.0 \cdot 10^{-7} \) | \(a_{27}= -0.73527346 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= +0.19857265 \pm 1.1 \cdot 10^{-7} \) | \(a_{29}= +1.06745270 \pm 9.7 \cdot 10^{-8} \) | \(a_{30}= -1.88871165 \pm 1.4 \cdot 10^{-7} \) |
\(a_{31}= +0.17960530 \pm 1.0 \cdot 10^{-8} \) | \(a_{32}= -1.43147881 \pm 1.3 \cdot 10^{-7} \) | \(a_{33}= +0.56201365 \pm 1.0 \cdot 10^{-7} \) |
\(a_{34}= +3.45134143 \pm 1.3 \cdot 10^{-7} \) | \(a_{35}= +0.07505343 \pm 9.5 \cdot 10^{-8} \) | \(a_{36}= +0.86966001 \pm 1.4 \cdot 10^{-7} \) |
\(a_{37}= +0.96163327 \pm 9.4 \cdot 10^{-8} \) | \(a_{38}= -1.04143591 \pm 1.3 \cdot 10^{-7} \) | \(a_{39}= -0.56270785 \pm 1.0 \cdot 10^{-7} \) |
\(a_{40}= -2.15330016 \pm 1.3 \cdot 10^{-7} \) | \(a_{41}= -0.74921074 \pm 9.3 \cdot 10^{-8} \) | \(a_{42}= -0.18190409 \pm 1.2 \cdot 10^{-7} \) |
\(a_{43}= +0.20338915 \pm 8.9 \cdot 10^{-8} \) | \(a_{44}= +1.12049484 \pm 1.0 \cdot 10^{-7} \) | \(a_{45}= +0.32870067 \pm 1.0 \cdot 10^{-7} \) |
\(a_{46}= +0.51636134 \pm 9.4 \cdot 10^{-8} \) | \(a_{47}= -0.68206036 \pm 9.1 \cdot 10^{-8} \) | \(a_{48}= +2.48279212 \pm 1.6 \cdot 10^{-7} \) |
\(a_{49}= -0.99277151 \pm 9.8 \cdot 10^{-8} \) | \(a_{50}= +0.40311325 \pm 1.2 \cdot 10^{-7} \) | \(a_{51}= -2.21378100 \pm 1.1 \cdot 10^{-7} \) |
\(a_{52}= -1.12187887 \pm 1.1 \cdot 10^{-7} \) | \(a_{53}= +0.25787741 \pm 9.7 \cdot 10^{-8} \) | \(a_{54}= +1.34287294 \pm 1.2 \cdot 10^{-7} \) |
\(a_{55}= +0.42350735 \pm 1.1 \cdot 10^{-7} \) | \(a_{56}= -0.20738693 \pm 1.0 \cdot 10^{-7} \) | \(a_{57}= +0.66800433 \pm 1.0 \cdot 10^{-7} \) |
\(a_{58}= -1.94955133 \pm 1.1 \cdot 10^{-7} \) | \(a_{59}= +1.67030159 \pm 1.1 \cdot 10^{-7} \) | \(a_{60}= +2.41532393 \pm 1.6 \cdot 10^{-7} \) |
\(a_{61}= +1.58071182 \pm 1.0 \cdot 10^{-7} \) | \(a_{62}= -0.32802367 \pm 1.3 \cdot 10^{-7} \) | \(a_{63}= +0.03165756 \pm 1.2 \cdot 10^{-7} \) |
\(a_{64}= +0.49501957 \pm 1.3 \cdot 10^{-7} \) | \(a_{65}= -0.42403047 \pm 1.0 \cdot 10^{-7} \) | \(a_{66}= -1.02643842 \pm 1.1 \cdot 10^{-7} \) |
\(a_{67}= -0.59943910 \pm 8.5 \cdot 10^{-8} \) | \(a_{68}= -4.41364756 \pm 1.6 \cdot 10^{-7} \) | \(a_{69}= -0.33120772 \pm 1.1 \cdot 10^{-7} \) |
\(a_{70}= -0.13707446 \pm 1.0 \cdot 10^{-7} \) | \(a_{71}= +0.04992001 \pm 8.2 \cdot 10^{-8} \) | \(a_{72}= -0.90826264 \pm 1.3 \cdot 10^{-7} \) |
\(a_{73}= +0.67985548 \pm 9.3 \cdot 10^{-8} \) | \(a_{74}= -1.75628712 \pm 1.1 \cdot 10^{-7} \) | \(a_{75}= -0.25856742 \pm 1.0 \cdot 10^{-7} \) |
\(a_{76}= +1.33181001 \pm 1.2 \cdot 10^{-7} \) | \(a_{77}= +0.04078850 \pm 9.0 \cdot 10^{-8} \) | \(a_{78}= +1.02770628 \pm 1.0 \cdot 10^{-7} \) |
\(a_{79}= +0.06307348 \pm 1.0 \cdot 10^{-7} \) | \(a_{80}= +1.87091669 \pm 1.1 \cdot 10^{-7} \) | \(a_{81}= -1.23370600 \pm 1.0 \cdot 10^{-7} \) |
\(a_{82}= +1.36832743 \pm 1.2 \cdot 10^{-7} \) | \(a_{83}= +1.25820915 \pm 8.6 \cdot 10^{-8} \) | \(a_{84}= +0.23262275 \pm 1.3 \cdot 10^{-7} \) |
\(a_{85}= -1.66820242 \pm 8.7 \cdot 10^{-8} \) | \(a_{86}= -0.37146150 \pm 1.0 \cdot 10^{-7} \) | \(a_{87}= +1.25049340 \pm 1.1 \cdot 10^{-7} \) |
\(a_{88}= -1.17023158 \pm 1.0 \cdot 10^{-7} \) | \(a_{89}= +0.70881347 \pm 8.9 \cdot 10^{-8} \) | \(a_{90}= -0.60032528 \pm 1.3 \cdot 10^{-7} \) |
\(a_{91}= -0.04083888 \pm 1.1 \cdot 10^{-7} \) | \(a_{92}= -0.66033368 \pm 1.0 \cdot 10^{-7} \) | \(a_{93}= +0.21040300 \pm 1.2 \cdot 10^{-7} \) |
\(a_{94}= +1.24568675 \pm 1.2 \cdot 10^{-7} \) | \(a_{95}= +0.50337700 \pm 1.1 \cdot 10^{-7} \) | \(a_{96}= -1.67694064 \pm 1.7 \cdot 10^{-7} \) |
\(a_{97}= +0.15762221 \pm 1.0 \cdot 10^{-7} \) | \(a_{98}= +1.81315672 \pm 1.0 \cdot 10^{-7} \) | \(a_{99}= +0.17863553 \pm 9.5 \cdot 10^{-8} \) |
\(a_{100}= -0.51550965 \pm 1.2 \cdot 10^{-7} \) | \(a_{101}= -1.48566307 \pm 1.1 \cdot 10^{-7} \) | \(a_{102}= +4.04315780 \pm 1.5 \cdot 10^{-7} \) |
\(a_{103}= +0.42566990 \pm 9.0 \cdot 10^{-8} \) | \(a_{104}= +1.17167705 \pm 1.1 \cdot 10^{-7} \) | \(a_{105}= +0.08792316 \pm 9.8 \cdot 10^{-8} \) |
\(a_{106}= -0.47097660 \pm 1.1 \cdot 10^{-7} \) | \(a_{107}= +0.02869717 \pm 9.1 \cdot 10^{-8} \) | \(a_{108}= -1.71729399 \pm 1.2 \cdot 10^{-7} \) |
\(a_{109}= -1.07028015 \pm 1.0 \cdot 10^{-7} \) | \(a_{110}= -0.77347626 \pm 1.0 \cdot 10^{-7} \) | \(a_{111}= +1.12652867 \pm 9.9 \cdot 10^{-8} \) |
\(a_{112}= +0.18019024 \pm 8.5 \cdot 10^{-8} \) | \(a_{113}= +0.96366171 \pm 9.3 \cdot 10^{-8} \) | \(a_{114}= -1.22001541 \pm 1.1 \cdot 10^{-7} \) |
\(a_{115}= -0.24958274 \pm 9.1 \cdot 10^{-8} \) | \(a_{116}= +2.49312699 \pm 1.2 \cdot 10^{-7} \) | \(a_{117}= -0.17885618 \pm 1.0 \cdot 10^{-7} \) |
\(a_{118}= -3.05056955 \pm 1.4 \cdot 10^{-7} \) | \(a_{119}= -0.16066658 \pm 7.8 \cdot 10^{-8} \) | \(a_{120}= -2.52253580 \pm 1.6 \cdot 10^{-7} \) |
\(a_{121}= -0.76984088 \pm 1.0 \cdot 10^{-7} \) | \(a_{122}= -2.88694651 \pm 1.4 \cdot 10^{-7} \) | \(a_{123}= -0.87768113 \pm 1.1 \cdot 10^{-7} \) |
\(a_{124}= +0.41948353 \pm 1.4 \cdot 10^{-7} \) | \(a_{125}= -1.07761294 \pm 1.0 \cdot 10^{-7} \) | \(a_{126}= -0.05781805 \pm 1.4 \cdot 10^{-7} \) |
\(a_{127}= +0.42549758 \pm 1.0 \cdot 10^{-7} \) | \(a_{128}= +0.52739560 \pm 1.2 \cdot 10^{-7} \) | \(a_{129}= +0.23826516 \pm 8.4 \cdot 10^{-8} \) |
\(a_{130}= +0.77443166 \pm 1.1 \cdot 10^{-7} \) | \(a_{131}= +0.10763223 \pm 1.0 \cdot 10^{-7} \) | \(a_{132}= +1.31263091 \pm 1.1 \cdot 10^{-7} \) |
\(a_{133}= +0.04848084 \pm 1.0 \cdot 10^{-7} \) | \(a_{134}= +1.09479071 \pm 9.4 \cdot 10^{-8} \) | \(a_{135}= -0.64907629 \pm 9.1 \cdot 10^{-8} \) |
\(a_{136}= +4.60956141 \pm 1.6 \cdot 10^{-7} \) | \(a_{137}= -0.12064581 \pm 1.0 \cdot 10^{-7} \) | \(a_{138}= +0.60490404 \pm 9.5 \cdot 10^{-8} \) |
\(a_{139}= +0.22494415 \pm 7.8 \cdot 10^{-8} \) | \(a_{140}= +0.17529369 \pm 1.0 \cdot 10^{-7} \) | \(a_{141}= -0.79901618 \pm 1.1 \cdot 10^{-7} \) |
\(a_{142}= -0.09117183 \pm 8.9 \cdot 10^{-8} \) | \(a_{143}= -0.23044342 \pm 1.0 \cdot 10^{-7} \) | \(a_{144}= +0.78915321 \pm 1.3 \cdot 10^{-7} \) |
\(a_{145}= +0.94231368 \pm 9.3 \cdot 10^{-8} \) | \(a_{146}= -1.24165986 \pm 1.1 \cdot 10^{-7} \) | \(a_{147}= -1.16300632 \pm 1.0 \cdot 10^{-7} \) |
\(a_{148}= +2.24597668 \pm 1.3 \cdot 10^{-7} \) | \(a_{149}= +0.35190622 \pm 8.9 \cdot 10^{-8} \) | \(a_{150}= +0.47223681 \pm 1.3 \cdot 10^{-7} \) |
\(a_{151}= +0.41866829 \pm 9.8 \cdot 10^{-8} \) | \(a_{152}= -1.39092665 \pm 1.1 \cdot 10^{-7} \) | \(a_{153}= -0.70364827 \pm 9.4 \cdot 10^{-8} \) |
\(a_{154}= -0.07449443 \pm 9.8 \cdot 10^{-8} \) | \(a_{155}= +0.15854991 \pm 1.1 \cdot 10^{-7} \) | \(a_{156}= -1.31425227 \pm 1.1 \cdot 10^{-7} \) |
\(a_{157}= -0.63161733 \pm 8.8 \cdot 10^{-8} \) | \(a_{158}= -0.11519479 \pm 1.3 \cdot 10^{-7} \) | \(a_{159}= +0.30209675 \pm 9.8 \cdot 10^{-8} \) |
\(a_{160}= -1.26366449 \pm 1.2 \cdot 10^{-7} \) | \(a_{161}= -0.02403761 \pm 8.8 \cdot 10^{-8} \) | \(a_{162}= +2.25318946 \pm 1.4 \cdot 10^{-7} \) |
\(a_{163}= +0.05207482 \pm 1.0 \cdot 10^{-7} \) | \(a_{164}= -1.74984571 \pm 1.5 \cdot 10^{-7} \) | \(a_{165}= +0.49612798 \pm 1.0 \cdot 10^{-7} \) |
\(a_{166}= -2.29794101 \pm 1.1 \cdot 10^{-7} \) | \(a_{167}= -1.03039597 \pm 1.0 \cdot 10^{-7} \) | \(a_{168}= -0.24294846 \pm 1.1 \cdot 10^{-7} \) |
\(a_{169}= -0.76927194 \pm 9.9 \cdot 10^{-8} \) | \(a_{170}= +3.04673571 \pm 1.1 \cdot 10^{-7} \) | \(a_{171}= +0.21232457 \pm 9.8 \cdot 10^{-8} \) |
\(a_{172}= +0.47503274 \pm 1.0 \cdot 10^{-7} \) | \(a_{173}= +1.90338278 \pm 1.0 \cdot 10^{-7} \) | \(a_{174}= -2.28384928 \pm 1.3 \cdot 10^{-7} \) |
\(a_{175}= -0.01876570 \pm 9.2 \cdot 10^{-8} \) | \(a_{176}= +1.01676758 \pm 6.7 \cdot 10^{-8} \) | \(a_{177}= +1.95671539 \pm 1.1 \cdot 10^{-7} \) |
\(a_{178}= -1.29454753 \pm 1.0 \cdot 10^{-7} \) | \(a_{179}= -1.21710042 \pm 1.1 \cdot 10^{-7} \) | \(a_{180}= +0.76770851 \pm 1.4 \cdot 10^{-7} \) |
\(a_{181}= -0.12479268 \pm 9.2 \cdot 10^{-8} \) | \(a_{182}= +0.07458644 \pm 1.0 \cdot 10^{-7} \) | \(a_{183}= +1.85176328 \pm 1.0 \cdot 10^{-7} \) |
\(a_{184}= +0.68964470 \pm 1.2 \cdot 10^{-7} \) | \(a_{185}= +0.84889962 \pm 9.0 \cdot 10^{-8} \) | \(a_{186}= -0.38427130 \pm 2.4 \cdot 10^{-7} \) |
\(a_{187}= -0.90660057 \pm 7.6 \cdot 10^{-8} \) | \(a_{188}= -1.59301025 \pm 1.4 \cdot 10^{-7} \) | \(a_{189}= -0.06251332 \pm 1.1 \cdot 10^{-7} \) |
\(a_{190}= -0.91934688 \pm 1.4 \cdot 10^{-7} \) | \(a_{191}= +1.51460206 \pm 1.0 \cdot 10^{-7} \) | \(a_{192}= +0.57990270 \pm 1.6 \cdot 10^{-7} \) |
\(a_{193}= -0.23718924 \pm 9.8 \cdot 10^{-8} \) | \(a_{194}= -0.28787466 \pm 1.2 \cdot 10^{-7} \) | \(a_{195}= -0.49674080 \pm 8.9 \cdot 10^{-8} \) |
\(a_{196}= -2.31870271 \pm 1.2 \cdot 10^{-7} \) | \(a_{197}= +0.64422958 \pm 7.7 \cdot 10^{-8} \) | \(a_{198}= -0.32625252 \pm 1.0 \cdot 10^{-7} \) |
\(a_{199}= +1.08838509 \pm 9.3 \cdot 10^{-8} \) | \(a_{200}= +0.53839219 \pm 1.0 \cdot 10^{-7} \) | \(a_{201}= -0.70222750 \pm 9.3 \cdot 10^{-8} \) |
\(a_{202}= +2.71335341 \pm 1.2 \cdot 10^{-7} \) | \(a_{203}= +0.09075536 \pm 9.7 \cdot 10^{-8} \) | \(a_{204}= -5.17047470 \pm 1.9 \cdot 10^{-7} \) |
\(a_{205}= -0.66137969 \pm 9.0 \cdot 10^{-8} \) | \(a_{206}= -0.77742585 \pm 1.0 \cdot 10^{-7} \) | \(a_{207}= -0.10527407 \pm 8.9 \cdot 10^{-8} \) |
\(a_{208}= -1.01802349 \pm 1.0 \cdot 10^{-7} \) | \(a_{209}= +0.27356505 \pm 1.1 \cdot 10^{-7} \) | \(a_{210}= -0.16057921 \pm 1.3 \cdot 10^{-7} \) |
\(a_{211}= +0.68304051 \pm 1.0 \cdot 10^{-7} \) | \(a_{212}= +0.60229472 \pm 1.2 \cdot 10^{-7} \) | \(a_{213}= +0.05848001 \pm 9.9 \cdot 10^{-8} \) |
\(a_{214}= -0.05241132 \pm 1.0 \cdot 10^{-7} \) | \(a_{215}= +0.17954555 \pm 9.7 \cdot 10^{-8} \) | \(a_{216}= +1.79352157 \pm 1.0 \cdot 10^{-7} \) |
\(a_{217}= +0.01527013 \pm 1.1 \cdot 10^{-7} \) | \(a_{218}= +1.95471527 \pm 1.2 \cdot 10^{-7} \) | \(a_{219}= +0.79643323 \pm 9.3 \cdot 10^{-8} \) |
\(a_{220}= +0.98913761 \pm 9.2 \cdot 10^{-8} \) | \(a_{221}= +0.90772040 \pm 9.5 \cdot 10^{-8} \) | \(a_{222}= -2.05744523 \pm 1.2 \cdot 10^{-7} \) |
\(a_{223}= +1.14339578 \pm 1.1 \cdot 10^{-7} \) | \(a_{224}= -0.12170505 \pm 1.0 \cdot 10^{-7} \) | \(a_{225}= -0.08218542 \pm 9.0 \cdot 10^{-8} \) |
\(a_{226}= -1.75999177 \pm 1.1 \cdot 10^{-7} \) | \(a_{227}= -1.48162773 \pm 9.7 \cdot 10^{-8} \) | \(a_{228}= +1.56018120 \pm 1.2 \cdot 10^{-7} \) |
\(a_{229}= -1.51640471 \pm 1.0 \cdot 10^{-7} \) | \(a_{230}= +0.45582756 \pm 9.7 \cdot 10^{-8} \) | \(a_{231}= +0.04778268 \pm 1.1 \cdot 10^{-7} \) |
\(a_{232}= -2.60379239 \pm 1.1 \cdot 10^{-7} \) | \(a_{233}= -1.90512170 \pm 8.0 \cdot 10^{-8} \) | \(a_{234}= +0.32665550 \pm 1.1 \cdot 10^{-7} \) |
\(a_{235}= -0.60210144 \pm 9.7 \cdot 10^{-8} \) | \(a_{236}= +3.90113210 \pm 1.6 \cdot 10^{-7} \) | \(a_{237}= +0.07388897 \pm 1.1 \cdot 10^{-7} \) |
\(a_{238}= +0.29343478 \pm 7.5 \cdot 10^{-8} \) | \(a_{239}= -1.19573046 \pm 1.0 \cdot 10^{-7} \) | \(a_{240}= +2.19173083 \pm 1.4 \cdot 10^{-7} \) |
\(a_{241}= +0.14818310 \pm 8.1 \cdot 10^{-8} \) | \(a_{242}= +1.40600544 \pm 1.2 \cdot 10^{-7} \) | \(a_{243}= -0.70998142 \pm 1.1 \cdot 10^{-7} \) |
\(a_{244}= +3.69188754 \pm 1.6 \cdot 10^{-7} \) | \(a_{245}= -0.87638748 \pm 9.3 \cdot 10^{-8} \) | \(a_{246}= +1.60296042 \pm 1.7 \cdot 10^{-7} \) |
\(a_{247}= -0.27390296 \pm 1.0 \cdot 10^{-7} \) | \(a_{248}= -0.43810365 \pm 1.5 \cdot 10^{-7} \) | \(a_{249}= +1.47395969 \pm 9.4 \cdot 10^{-8} \) |
\(a_{250}= +1.96810759 \pm 1.4 \cdot 10^{-7} \) | \(a_{251}= +1.06814815 \pm 9.7 \cdot 10^{-8} \) | \(a_{252}= +0.07393893 \pm 1.5 \cdot 10^{-7} \) |
\(a_{253}= -0.13563813 \pm 9.0 \cdot 10^{-8} \) | \(a_{254}= -0.77711114 \pm 1.2 \cdot 10^{-7} \) | \(a_{255}= -1.95425627 \pm 1.0 \cdot 10^{-7} \) |
\(a_{256}= -1.45823302 \pm 1.2 \cdot 10^{-7} \) | \(a_{257}= -0.20446348 \pm 1.0 \cdot 10^{-7} \) | \(a_{258}= -0.43515761 \pm 1.1 \cdot 10^{-7} \) |
\(a_{259}= +0.08175854 \pm 9.6 \cdot 10^{-8} \) | \(a_{260}= -0.99035940 \pm 9.9 \cdot 10^{-8} \) | \(a_{261}= +0.39746819 \pm 9.9 \cdot 10^{-8} \) |
\(a_{262}= -0.19657504 \pm 1.2 \cdot 10^{-7} \) | \(a_{263}= -1.33209156 \pm 1.0 \cdot 10^{-7} \) | \(a_{264}= -1.37089622 \pm 1.0 \cdot 10^{-7} \) |
\(a_{265}= +0.22764607 \pm 8.8 \cdot 10^{-8} \) | \(a_{266}= -0.08854340 \pm 1.1 \cdot 10^{-7} \) | \(a_{267}= +0.83035677 \pm 8.7 \cdot 10^{-8} \) |
\(a_{268}= -1.40004124 \pm 9.5 \cdot 10^{-8} \) | \(a_{269}= -1.11732188 \pm 9.3 \cdot 10^{-8} \) | \(a_{270}= +1.18544601 \pm 1.1 \cdot 10^{-7} \) |
\(a_{271}= +0.60877883 \pm 1.2 \cdot 10^{-7} \) | \(a_{272}= -4.00506420 \pm 1.5 \cdot 10^{-7} \) | \(a_{273}= -0.04784170 \pm 1.0 \cdot 10^{-7} \) |
\(a_{274}= +0.22034251 \pm 1.2 \cdot 10^{-7} \) | \(a_{275}= -0.10589005 \pm 1.1 \cdot 10^{-7} \) | \(a_{276}= -0.77356393 \pm 1.1 \cdot 10^{-7} \) |
\(a_{277}= +0.25518089 \pm 9.8 \cdot 10^{-8} \) | \(a_{278}= -0.41082867 \pm 9.8 \cdot 10^{-8} \) | \(a_{279}= +0.06687640 \pm 1.1 \cdot 10^{-7} \) |
\(a_{280}= -0.18307466 \pm 9.9 \cdot 10^{-8} \) | \(a_{281}= -0.88345608 \pm 1.0 \cdot 10^{-7} \) | \(a_{282}= +1.45929001 \pm 1.5 \cdot 10^{-7} \) |
\(a_{283}= -1.59094694 \pm 9.8 \cdot 10^{-8} \) | \(a_{284}= +0.11659245 \pm 8.5 \cdot 10^{-8} \) | \(a_{285}= +0.58969322 \pm 1.1 \cdot 10^{-7} \) |
\(a_{286}= +0.42087230 \pm 1.1 \cdot 10^{-7} \) | \(a_{287}= -0.06369827 \pm 8.6 \cdot 10^{-8} \) | \(a_{288}= -0.53301405 \pm 1.4 \cdot 10^{-7} \) |
\(a_{289}= +2.57111454 \pm 1.0 \cdot 10^{-7} \) | \(a_{290}= -1.72100262 \pm 1.1 \cdot 10^{-7} \) | \(a_{291}= +0.18465036 \pm 1.2 \cdot 10^{-7} \) |
\(a_{292}= +1.58786058 \pm 1.1 \cdot 10^{-7} \) | \(a_{293}= +0.04108067 \pm 8.8 \cdot 10^{-8} \) | \(a_{294}= +2.12406650 \pm 1.1 \cdot 10^{-7} \) |
\(a_{295}= +1.47448973 \pm 9.5 \cdot 10^{-8} \) | \(a_{296}= -2.34567153 \pm 1.3 \cdot 10^{-7} \) | \(a_{297}= -0.35274672 \pm 8.1 \cdot 10^{-8} \) |
\(a_{298}= -0.64270692 \pm 1.1 \cdot 10^{-7} \) | \(a_{299}= +0.13580567 \pm 1.0 \cdot 10^{-7} \) | \(a_{300}= -0.60390631 \pm 1.3 \cdot 10^{-7} \) |
\(a_{301}= +0.01729225 \pm 8.7 \cdot 10^{-8} \) | \(a_{302}= -0.76463840 \pm 1.0 \cdot 10^{-7} \) | \(a_{303}= -1.74041611 \pm 1.2 \cdot 10^{-7} \) |
\(a_{304}= +1.20852074 \pm 8.2 \cdot 10^{-8} \) | \(a_{305}= +1.39540270 \pm 9.6 \cdot 10^{-8} \) | \(a_{306}= +1.28511402 \pm 1.1 \cdot 10^{-7} \) |
\(a_{307}= +1.16653428 \pm 1.0 \cdot 10^{-7} \) | \(a_{308}= +0.09526503 \pm 1.0 \cdot 10^{-7} \) | \(a_{309}= +0.49866135 \pm 1.0 \cdot 10^{-7} \) |
\(a_{310}= -0.28956899 \pm 2.4 \cdot 10^{-7} \) | \(a_{311}= -0.46914005 \pm 8.2 \cdot 10^{-8} \) | \(a_{312}= +1.37258955 \pm 1.2 \cdot 10^{-7} \) |
\(a_{313}= -0.50862646 \pm 1.0 \cdot 10^{-7} \) | \(a_{314}= +1.15355970 \pm 1.0 \cdot 10^{-7} \) | \(a_{315}= +0.02794630 \pm 1.0 \cdot 10^{-7} \) |
\(a_{316}= +0.14731351 \pm 1.5 \cdot 10^{-7} \) | \(a_{317}= +1.04426637 \pm 9.8 \cdot 10^{-8} \) | \(a_{318}= -0.55173698 \pm 1.2 \cdot 10^{-7} \) |
\(a_{319}= +0.51210939 \pm 1.0 \cdot 10^{-7} \) | \(a_{320}= +0.43698771 \pm 1.3 \cdot 10^{-7} \) | \(a_{321}= +0.03361799 \pm 8.7 \cdot 10^{-8} \) |
\(a_{322}= +0.04390130 \pm 7.9 \cdot 10^{-8} \) | \(a_{323}= -1.07757722 \pm 8.4 \cdot 10^{-8} \) | \(a_{324}= -2.88142578 \pm 1.5 \cdot 10^{-7} \) |
\(a_{325}= +0.10602084 \pm 8.9 \cdot 10^{-8} \) | \(a_{326}= -0.09510730 \pm 1.2 \cdot 10^{-7} \) | \(a_{327}= -1.25380569 \pm 9.1 \cdot 10^{-8} \) |
\(a_{328}= +1.82751821 \pm 1.6 \cdot 10^{-7} \) | \(a_{329}= -0.05798911 \pm 7.5 \cdot 10^{-8} \) | \(a_{330}= -0.90610757 \pm 1.0 \cdot 10^{-7} \) |
\(a_{331}= +1.13174754 \pm 9.2 \cdot 10^{-8} \) | \(a_{332}= +2.93865500 \pm 1.3 \cdot 10^{-7} \) | \(a_{333}= +0.35806611 \pm 9.2 \cdot 10^{-8} \) |
\(a_{334}= +1.88187246 \pm 1.1 \cdot 10^{-7} \) | \(a_{335}= -0.52916599 \pm 8.7 \cdot 10^{-8} \) | \(a_{336}= +0.21108823 \pm 9.9 \cdot 10^{-8} \) |
\(a_{337}= -1.69305529 \pm 1.0 \cdot 10^{-7} \) | \(a_{338}= +1.40496636 \pm 1.0 \cdot 10^{-7} \) | \(a_{339}= +1.12890492 \pm 9.6 \cdot 10^{-8} \) |
\(a_{340}= -3.89622931 \pm 1.3 \cdot 10^{-7} \) | \(a_{341}= +0.08616547 \pm 1.1 \cdot 10^{-7} \) | \(a_{342}= -0.38778079 \pm 1.2 \cdot 10^{-7} \) |
\(a_{343}= -0.16942643 \pm 9.8 \cdot 10^{-8} \) | \(a_{344}= -0.49611858 \pm 1.0 \cdot 10^{-7} \) | \(a_{345}= -0.29237976 \pm 9.4 \cdot 10^{-8} \) |
\(a_{346}= -3.47625937 \pm 1.4 \cdot 10^{-7} \) | \(a_{347}= +0.00242671 \pm 1.0 \cdot 10^{-7} \) | \(a_{348}= +2.92063420 \pm 1.5 \cdot 10^{-7} \) |
\(a_{349}= +1.07011394 \pm 1.0 \cdot 10^{-7} \) | \(a_{350}= +0.03427289 \pm 1.1 \cdot 10^{-7} \) | \(a_{351}= +0.35318243 \pm 8.6 \cdot 10^{-8} \) |
\(a_{352}= -0.68675056 \pm 9.8 \cdot 10^{-8} \) | \(a_{353}= +1.67360146 \pm 1.1 \cdot 10^{-7} \) | \(a_{354}= -3.57366383 \pm 1.5 \cdot 10^{-7} \) |
\(a_{355}= +0.04406781 \pm 7.0 \cdot 10^{-8} \) | \(a_{356}= +1.65549444 \pm 1.0 \cdot 10^{-7} \) | \(a_{357}= -0.18821677 \pm 7.9 \cdot 10^{-8} \) |
\(a_{358}= +2.22286173 \pm 1.3 \cdot 10^{-7} \) | \(a_{359}= -1.15249920 \pm 9.9 \cdot 10^{-8} \) | \(a_{360}= -0.80178571 \pm 1.3 \cdot 10^{-7} \) |
\(a_{361}= -0.67484306 \pm 1.0 \cdot 10^{-7} \) | \(a_{362}= +0.22791618 \pm 1.0 \cdot 10^{-7} \) | \(a_{363}= -0.90184880 \pm 1.0 \cdot 10^{-7} \) |
\(a_{364}= -0.09538270 \pm 1.0 \cdot 10^{-7} \) | \(a_{365}= +0.60015505 \pm 1.0 \cdot 10^{-7} \) | \(a_{366}= -3.38198365 \pm 1.5 \cdot 10^{-7} \) |
\(a_{367}= +1.58614018 \pm 1.1 \cdot 10^{-7} \) | \(a_{368}= -0.59920479 \pm 1.1 \cdot 10^{-7} \) | \(a_{369}= -0.27897015 \pm 1.0 \cdot 10^{-7} \) |
\(a_{370}= -1.55039506 \pm 1.0 \cdot 10^{-7} \) | \(a_{371}= +0.02192487 \pm 9.9 \cdot 10^{-8} \) | \(a_{372}= +0.49141418 \pm 2.6 \cdot 10^{-7} \) |
\(a_{373}= -0.61002049 \pm 9.2 \cdot 10^{-8} \) | \(a_{374}= +1.65577768 \pm 9.4 \cdot 10^{-8} \) | \(a_{375}= -1.26239587 \pm 1.2 \cdot 10^{-7} \) |
\(a_{376}= +1.66372110 \pm 1.6 \cdot 10^{-7} \) | \(a_{377}= -0.51274194 \pm 9.5 \cdot 10^{-8} \) | \(a_{378}= +0.11417173 \pm 1.4 \cdot 10^{-7} \) |
\(a_{379}= -0.62741197 \pm 1.0 \cdot 10^{-7} \) | \(a_{380}= +1.17568001 \pm 1.3 \cdot 10^{-7} \) | \(a_{381}= +0.49845948 \pm 1.0 \cdot 10^{-7} \) |
\(a_{382}= -2.76620638 \pm 1.3 \cdot 10^{-7} \) | \(a_{383}= +0.69344285 \pm 9.8 \cdot 10^{-8} \) | \(a_{384}= +0.61783040 \pm 1.5 \cdot 10^{-7} \) |
\(a_{385}= +0.03600681 \pm 8.3 \cdot 10^{-8} \) | \(a_{386}= +0.43319259 \pm 1.0 \cdot 10^{-7} \) | \(a_{387}= +0.07573236 \pm 9.4 \cdot 10^{-8} \) |
\(a_{388}= +0.36814013 \pm 1.4 \cdot 10^{-7} \) | \(a_{389}= -0.01486978 \pm 8.7 \cdot 10^{-8} \) | \(a_{390}= +0.90722679 \pm 8.5 \cdot 10^{-8} \) |
\(a_{391}= +0.53428081 \pm 8.0 \cdot 10^{-8} \) | \(a_{392}= +2.42162573 \pm 1.2 \cdot 10^{-7} \) | \(a_{393}= +0.12608839 \pm 1.1 \cdot 10^{-7} \) |
\(a_{394}= -1.17659419 \pm 9.4 \cdot 10^{-8} \) | \(a_{395}= +0.05567929 \pm 9.9 \cdot 10^{-8} \) | \(a_{396}= +0.41721854 \pm 1.0 \cdot 10^{-7} \) |
\(a_{397}= -0.33894500 \pm 1.0 \cdot 10^{-7} \) | \(a_{398}= -1.98778139 \pm 1.0 \cdot 10^{-7} \) | \(a_{399}= +0.05679406 \pm 9.8 \cdot 10^{-8} \) |
\(a_{400}= -0.46778752 \pm 7.4 \cdot 10^{-8} \) | \(a_{401}= -1.10178926 \pm 1.0 \cdot 10^{-7} \) | \(a_{402}= +1.28251918 \pm 1.1 \cdot 10^{-7} \) |
\(a_{403}= -0.08627190 \pm 1.1 \cdot 10^{-7} \) | \(a_{404}= -3.46989305 \pm 1.4 \cdot 10^{-7} \) | \(a_{405}= -1.08907687 \pm 1.0 \cdot 10^{-7} \) |
\(a_{406}= -0.16575183 \pm 1.0 \cdot 10^{-7} \) | \(a_{407}= +0.46134262 \pm 9.2 \cdot 10^{-8} \) | \(a_{408}= +5.39998274 \pm 2.0 \cdot 10^{-7} \) |
\(a_{409}= +1.03972675 \pm 8.5 \cdot 10^{-8} \) | \(a_{410}= +1.20791643 \pm 1.2 \cdot 10^{-7} \) | \(a_{411}= -0.14133347 \pm 1.1 \cdot 10^{-7} \) |
\(a_{412}= +0.99418842 \pm 1.1 \cdot 10^{-7} \) | \(a_{413}= +0.14200988 \pm 1.0 \cdot 10^{-7} \) | \(a_{414}= +0.19226820 \pm 9.1 \cdot 10^{-8} \) |
\(a_{415}= +1.11070748 \pm 9.0 \cdot 10^{-8} \) | \(a_{416}= +0.68759883 \pm 1.1 \cdot 10^{-7} \) | \(a_{417}= +0.26351629 \pm 9.4 \cdot 10^{-8} \) |
\(a_{418}= -0.49962786 \pm 1.3 \cdot 10^{-7} \) | \(a_{419}= -1.33207188 \pm 9.6 \cdot 10^{-8} \) | \(a_{420}= +0.20535205 \pm 1.3 \cdot 10^{-7} \) |
\(a_{421}= -0.21816449 \pm 1.1 \cdot 10^{-7} \) | \(a_{422}= -1.24747686 \pm 9.8 \cdot 10^{-8} \) | \(a_{423}= -0.25396657 \pm 1.0 \cdot 10^{-7} \) |
\(a_{424}= -0.62902949 \pm 1.1 \cdot 10^{-7} \) | \(a_{425}= +0.41710263 \pm 6.4 \cdot 10^{-8} \) | \(a_{426}= -0.10680546 \pm 1.0 \cdot 10^{-7} \) |
\(a_{427}= +0.13439291 \pm 7.7 \cdot 10^{-8} \) | \(a_{428}= +0.06702469 \pm 1.0 \cdot 10^{-7} \) | \(a_{429}= -0.26995854 \pm 1.1 \cdot 10^{-7} \) |
\(a_{430}= -0.32791454 \pm 1.1 \cdot 10^{-7} \) | \(a_{431}= -0.61406593 \pm 9.9 \cdot 10^{-8} \) | \(a_{432}= -1.55831941 \pm 9.3 \cdot 10^{-8} \) |
\(a_{433}= -0.58572998 \pm 1.1 \cdot 10^{-7} \) | \(a_{434}= -0.02788874 \pm 2.3 \cdot 10^{-7} \) | \(a_{435}= +1.10389626 \pm 1.1 \cdot 10^{-7} \) |
\(a_{436}= -2.49973074 \pm 1.3 \cdot 10^{-7} \) | \(a_{437}= -0.16121825 \pm 1.0 \cdot 10^{-7} \) | \(a_{438}= -1.45457261 \pm 1.2 \cdot 10^{-7} \) |
\(a_{439}= -0.18653071 \pm 1.0 \cdot 10^{-7} \) | \(a_{440}= -1.03304365 \pm 1.1 \cdot 10^{-7} \) | \(a_{441}= -0.36966050 \pm 1.1 \cdot 10^{-7} \) |
\(a_{442}= -1.65782289 \pm 9.4 \cdot 10^{-8} \) | \(a_{443}= +1.70227136 \pm 9.9 \cdot 10^{-8} \) | \(a_{444}= +2.63110397 \pm 1.3 \cdot 10^{-7} \) |
\(a_{445}= +0.62571825 \pm 9.5 \cdot 10^{-8} \) | \(a_{446}= -2.08825063 \pm 1.2 \cdot 10^{-7} \) | \(a_{447}= +0.41224909 \pm 9.2 \cdot 10^{-8} \) |
\(a_{448}= +0.04208681 \pm 1.0 \cdot 10^{-7} \) | \(a_{449}= -0.80982676 \pm 8.8 \cdot 10^{-8} \) | \(a_{450}= +0.15010004 \pm 1.1 \cdot 10^{-7} \) |
\(a_{451}= -0.35943312 \pm 8.6 \cdot 10^{-8} \) | \(a_{452}= +2.25071426 \pm 1.2 \cdot 10^{-7} \) | \(a_{453}= +0.49045914 \pm 9.8 \cdot 10^{-8} \) |
\(a_{454}= +2.70598343 \pm 1.2 \cdot 10^{-7} \) | \(a_{455}= -0.03605128 \pm 9.4 \cdot 10^{-8} \) | \(a_{456}= -1.62943483 \pm 1.2 \cdot 10^{-7} \) |
\(a_{457}= +0.29988403 \pm 1.1 \cdot 10^{-7} \) | \(a_{458}= +2.76949866 \pm 1.3 \cdot 10^{-7} \) | \(a_{459}= +1.38947513 \pm 8.4 \cdot 10^{-8} \) |
\(a_{460}= -0.58292181 \pm 1.0 \cdot 10^{-7} \) | \(a_{461}= -0.39895221 \pm 9.1 \cdot 10^{-8} \) | \(a_{462}= -0.08726831 \pm 1.0 \cdot 10^{-7} \) |
\(a_{463}= +0.68646846 \pm 1.0 \cdot 10^{-7} \) | \(a_{464}= +2.26233144 \pm 8.7 \cdot 10^{-8} \) | \(a_{465}= +0.18573715 \pm 2.2 \cdot 10^{-7} \) |
\(a_{466}= +3.47943526 \pm 1.1 \cdot 10^{-7} \) | \(a_{467}= +1.65616643 \pm 9.6 \cdot 10^{-8} \) | \(a_{468}= -0.41773389 \pm 1.1 \cdot 10^{-7} \) |
\(a_{469}= -0.05096461 \pm 8.5 \cdot 10^{-8} \) | \(a_{470}= +1.09965309 \pm 1.2 \cdot 10^{-7} \) | \(a_{471}= -0.73992347 \pm 1.0 \cdot 10^{-7} \) |
\(a_{472}= -4.07429631 \pm 1.5 \cdot 10^{-7} \) | \(a_{473}= +0.09757575 \pm 9.0 \cdot 10^{-8} \) | \(a_{474}= -0.13494774 \pm 1.4 \cdot 10^{-7} \) |
\(a_{475}= -0.12585995 \pm 1.1 \cdot 10^{-7} \) | \(a_{476}= -0.37525053 \pm 7.6 \cdot 10^{-8} \) | \(a_{477}= +0.09602118 \pm 1.0 \cdot 10^{-7} \) |
\(a_{478}= +2.18383252 \pm 1.1 \cdot 10^{-7} \) | \(a_{479}= +1.43551701 \pm 1.0 \cdot 10^{-7} \) | \(a_{480}= -1.48035047 \pm 1.5 \cdot 10^{-7} \) |
\(a_{481}= -0.46191247 \pm 9.1 \cdot 10^{-8} \) | \(a_{482}= -0.27063547 \pm 9.4 \cdot 10^{-8} \) | \(a_{483}= -0.02815945 \pm 9.7 \cdot 10^{-8} \) |
\(a_{484}= -1.79802915 \pm 1.2 \cdot 10^{-7} \) | \(a_{485}= +0.13914393 \pm 8.8 \cdot 10^{-8} \) | \(a_{486}= +1.29668061 \pm 1.4 \cdot 10^{-7} \) |
\(a_{487}= -1.69684518 \pm 1.0 \cdot 10^{-7} \) | \(a_{488}= -3.85576376 \pm 1.7 \cdot 10^{-7} \) | \(a_{489}= +0.06100432 \pm 1.1 \cdot 10^{-7} \) |
\(a_{490}= +1.60059774 \pm 1.0 \cdot 10^{-7} \) | \(a_{491}= -0.58623696 \pm 8.8 \cdot 10^{-8} \) | \(a_{492}= -2.04989929 \pm 2.1 \cdot 10^{-7} \) |
\(a_{493}= -2.01720729 \pm 9.5 \cdot 10^{-8} \) | \(a_{494}= +0.50024500 \pm 1.1 \cdot 10^{-7} \) | \(a_{495}= +0.15769383 \pm 8.7 \cdot 10^{-8} \) |
\(a_{496}= +0.38065080 \pm 1.3 \cdot 10^{-7} \) | \(a_{497}= +0.00424422 \pm 9.5 \cdot 10^{-8} \) | \(a_{498}= -2.69197884 \pm 1.2 \cdot 10^{-7} \) |
\(a_{499}= -0.46937242 \pm 1.0 \cdot 10^{-7} \) | \(a_{500}= -2.51685712 \pm 1.5 \cdot 10^{-7} \) | \(a_{501}= -1.20708240 \pm 1.0 \cdot 10^{-7} \) |
\(a_{502}= -1.95082148 \pm 1.1 \cdot 10^{-7} \) | \(a_{503}= -0.99086805 \pm 1.2 \cdot 10^{-7} \) | \(a_{504}= -0.07722095 \pm 1.2 \cdot 10^{-7} \) |
\(a_{505}= -1.31149665 \pm 1.2 \cdot 10^{-7} \) | \(a_{506}= +0.24772385 \pm 6.6 \cdot 10^{-8} \) | \(a_{507}= -0.90118231 \pm 9.1 \cdot 10^{-8} \) |
\(a_{508}= +0.99378596 \pm 1.2 \cdot 10^{-7} \) | \(a_{509}= +1.42124085 \pm 1.0 \cdot 10^{-7} \) | \(a_{510}= +3.56917259 \pm 1.4 \cdot 10^{-7} \) |
\(a_{511}= +0.05780165 \pm 9.3 \cdot 10^{-8} \) | \(a_{512}= +2.13586070 \pm 1.1 \cdot 10^{-7} \) | \(a_{513}= -0.41927156 \pm 8.4 \cdot 10^{-8} \) |
\(a_{514}= +0.37342362 \pm 1.2 \cdot 10^{-7} \) | \(a_{515}= +0.37576800 \pm 9.8 \cdot 10^{-8} \) | \(a_{516}= +0.55648864 \pm 1.2 \cdot 10^{-7} \) |
\(a_{517}= -0.32721779 \pm 8.3 \cdot 10^{-8} \) | \(a_{518}= -0.14932041 \pm 1.0 \cdot 10^{-7} \) | \(a_{519}= +2.22976402 \pm 1.2 \cdot 10^{-7} \) |
\(a_{520}= +1.03431966 \pm 1.2 \cdot 10^{-7} \) | \(a_{521}= -1.06322914 \pm 1.0 \cdot 10^{-7} \) | \(a_{522}= -0.72591941 \pm 1.1 \cdot 10^{-7} \) |
\(a_{523}= -0.41495313 \pm 9.1 \cdot 10^{-8} \) | \(a_{524}= +0.25138427 \pm 1.3 \cdot 10^{-7} \) | \(a_{525}= -0.02198353 \pm 1.0 \cdot 10^{-7} \) |
\(a_{526}= +2.43287677 \pm 1.2 \cdot 10^{-7} \) | \(a_{527}= -0.33940719 \pm 1.0 \cdot 10^{-7} \) | \(a_{528}= +1.19111709 \pm 7.1 \cdot 10^{-8} \) |
\(a_{529}= -0.92006530 \pm 1.0 \cdot 10^{-7} \) | \(a_{530}= -0.41576333 \pm 1.1 \cdot 10^{-7} \) | \(a_{531}= +0.62194020 \pm 1.0 \cdot 10^{-7} \) |
\(a_{532}= +0.11323116 \pm 1.1 \cdot 10^{-7} \) | \(a_{533}= +0.35987709 \pm 9.3 \cdot 10^{-8} \) | \(a_{534}= -1.51652916 \pm 1.1 \cdot 10^{-7} \) |
\(a_{535}= +0.02533296 \pm 9.9 \cdot 10^{-8} \) | \(a_{536}= +1.46218654 \pm 9.0 \cdot 10^{-8} \) | \(a_{537}= -1.42580186 \pm 1.2 \cdot 10^{-7} \) |
\(a_{538}= +2.04063034 \pm 1.1 \cdot 10^{-7} \) | \(a_{539}= -0.47628116 \pm 8.5 \cdot 10^{-8} \) | \(a_{540}= -1.51597314 \pm 1.1 \cdot 10^{-7} \) |
\(a_{541}= +0.84390432 \pm 1.0 \cdot 10^{-7} \) | \(a_{542}= -1.11184841 \pm 1.2 \cdot 10^{-7} \) | \(a_{543}= -0.14619142 \pm 1.1 \cdot 10^{-7} \) |
\(a_{544}= +2.70512173 \pm 1.4 \cdot 10^{-7} \) | \(a_{545}= -0.94480966 \pm 1.0 \cdot 10^{-7} \) | \(a_{546}= +0.08737610 \pm 1.0 \cdot 10^{-7} \) |
\(a_{547}= -0.59623864 \pm 1.0 \cdot 10^{-7} \) | \(a_{548}= -0.28177861 \pm 1.3 \cdot 10^{-7} \) | \(a_{549}= +0.58858127 \pm 8.7 \cdot 10^{-8} \) |
\(a_{550}= +0.19339319 \pm 1.2 \cdot 10^{-7} \) | \(a_{551}= +0.60868858 \pm 1.0 \cdot 10^{-7} \) | \(a_{552}= +0.80790104 \pm 1.4 \cdot 10^{-7} \) |
\(a_{553}= +0.00536254 \pm 1.1 \cdot 10^{-7} \) | \(a_{554}= -0.46605180 \pm 1.0 \cdot 10^{-7} \) | \(a_{555}= +0.99446409 \pm 8.4 \cdot 10^{-8} \) |
\(a_{556}= +0.52537629 \pm 1.1 \cdot 10^{-7} \) | \(a_{557}= +0.77214937 \pm 8.7 \cdot 10^{-8} \) | \(a_{558}= -0.12214028 \pm 2.4 \cdot 10^{-7} \) |
\(a_{559}= -0.09769627 \pm 1.1 \cdot 10^{-7} \) | \(a_{560}= +0.15906628 \pm 7.4 \cdot 10^{-8} \) | \(a_{561}= -1.06205927 \pm 9.3 \cdot 10^{-8} \) |
\(a_{562}= +1.61350754 \pm 1.1 \cdot 10^{-7} \) | \(a_{563}= +1.32696155 \pm 9.5 \cdot 10^{-8} \) | \(a_{564}= -1.86617057 \pm 1.9 \cdot 10^{-7} \) |
\(a_{565}= +0.85069026 \pm 9.3 \cdot 10^{-8} \) | \(a_{566}= +2.90563950 \pm 1.3 \cdot 10^{-7} \) | \(a_{567}= -0.10489030 \pm 1.1 \cdot 10^{-7} \) |
\(a_{568}= -0.12176778 \pm 7.8 \cdot 10^{-8} \) | \(a_{569}= +0.84408323 \pm 9.3 \cdot 10^{-8} \) | \(a_{570}= -1.07699124 \pm 1.4 \cdot 10^{-7} \) |
\(a_{571}= -0.74672907 \pm 1.0 \cdot 10^{-7} \) | \(a_{572}= -0.53822029 \pm 1.0 \cdot 10^{-7} \) | \(a_{573}= +1.77431739 \pm 1.1 \cdot 10^{-7} \) |
\(a_{574}= +0.11633588 \pm 1.0 \cdot 10^{-7} \) | \(a_{575}= +0.06240347 \pm 8.0 \cdot 10^{-8} \) | \(a_{576}= +0.18432155 \pm 1.4 \cdot 10^{-7} \) |
\(a_{577}= -0.71399454 \pm 9.4 \cdot 10^{-8} \) | \(a_{578}= -4.69577695 \pm 1.5 \cdot 10^{-7} \) | \(a_{579}= -0.27786110 \pm 8.9 \cdot 10^{-8} \) |
\(a_{580}= +2.20085412 \pm 1.2 \cdot 10^{-7} \) | \(a_{581}= +0.10697357 \pm 8.2 \cdot 10^{-8} \) | \(a_{582}= -0.33723777 \pm 1.5 \cdot 10^{-7} \) |
\(a_{583}= +0.12371643 \pm 7.3 \cdot 10^{-8} \) | \(a_{584}= -1.65834284 \pm 1.2 \cdot 10^{-7} \) | \(a_{585}= -0.15788861 \pm 1.0 \cdot 10^{-7} \) |
\(a_{586}= -0.07502803 \pm 9.9 \cdot 10^{-8} \) | \(a_{587}= -0.67712851 \pm 1.0 \cdot 10^{-7} \) | \(a_{588}= -2.71630063 \pm 1.4 \cdot 10^{-7} \) |
\(a_{589}= +0.10241549 \pm 1.1 \cdot 10^{-7} \) | \(a_{590}= -2.69294689 \pm 1.2 \cdot 10^{-7} \) | \(a_{591}= +0.75469840 \pm 9.0 \cdot 10^{-8} \) |
\(a_{592}= +2.03806051 \pm 1.1 \cdot 10^{-7} \) | \(a_{593}= +0.85542933 \pm 1.1 \cdot 10^{-7} \) | \(a_{594}= +0.64424198 \pm 9.2 \cdot 10^{-8} \) |
\(a_{595}= -0.14183141 \pm 7.0 \cdot 10^{-8} \) | \(a_{596}= +0.82190704 \pm 1.1 \cdot 10^{-7} \) | \(a_{597}= +1.27501517 \pm 1.0 \cdot 10^{-7} \) |
\(a_{598}= -0.24802984 \pm 9.5 \cdot 10^{-8} \) | \(a_{599}= -1.34699229 \pm 1.1 \cdot 10^{-7} \) | \(a_{600}= +0.63071262 \pm 9.7 \cdot 10^{-8} \) |
\(a_{601}= -0.95800542 \pm 1.1 \cdot 10^{-7} \) | \(a_{602}= -0.03158184 \pm 9.5 \cdot 10^{-8} \) | \(a_{603}= -0.22320237 \pm 8.2 \cdot 10^{-8} \) |
\(a_{604}= +0.97783557 \pm 1.0 \cdot 10^{-7} \) | \(a_{605}= -0.67959132 \pm 1.2 \cdot 10^{-7} \) | \(a_{606}= +3.17862379 \pm 1.4 \cdot 10^{-7} \) |
\(a_{607}= +1.78908654 \pm 9.8 \cdot 10^{-8} \) | \(a_{608}= -0.81626549 \pm 1.0 \cdot 10^{-7} \) | \(a_{609}= +0.10631758 \pm 1.1 \cdot 10^{-7} \) |
\(a_{610}= -2.54850562 \pm 1.2 \cdot 10^{-7} \) | \(a_{611}= +0.32762197 \pm 7.9 \cdot 10^{-8} \) | \(a_{612}= -1.64343067 \pm 1.2 \cdot 10^{-7} \) |
\(a_{613}= -0.31247185 \pm 1.0 \cdot 10^{-7} \) | \(a_{614}= -2.13050982 \pm 1.5 \cdot 10^{-7} \) | \(a_{615}= -0.77478931 \pm 1.0 \cdot 10^{-7} \) |
\(a_{616}= -0.09949368 \pm 8.1 \cdot 10^{-8} \) | \(a_{617}= +0.07614983 \pm 1.0 \cdot 10^{-7} \) | \(a_{618}= -0.91073440 \pm 1.2 \cdot 10^{-7} \) |
\(a_{619}= -0.26598740 \pm 1.0 \cdot 10^{-7} \) | \(a_{620}= +0.37030687 \pm 2.5 \cdot 10^{-7} \) | \(a_{621}= +0.20788185 \pm 6.6 \cdot 10^{-8} \) |
\(a_{622}= +0.85681793 \pm 8.6 \cdot 10^{-8} \) | \(a_{623}= +0.06026368 \pm 8.4 \cdot 10^{-8} \) | \(a_{624}= -1.19258836 \pm 1.0 \cdot 10^{-7} \) |
\(a_{625}= -0.73056316 \pm 9.6 \cdot 10^{-8} \) | \(a_{626}= +0.92893426 \pm 1.3 \cdot 10^{-7} \) | \(a_{627}= +0.32047443 \pm 1.1 \cdot 10^{-7} \) |
\(a_{628}= -1.47519626 \pm 1.1 \cdot 10^{-7} \) | \(a_{629}= -1.81723617 \pm 9.1 \cdot 10^{-8} \) | \(a_{630}= -0.05103996 \pm 1.4 \cdot 10^{-7} \) |
\(a_{631}= +0.08746249 \pm 1.0 \cdot 10^{-7} \) | \(a_{632}= -0.15385249 \pm 1.6 \cdot 10^{-7} \) | \(a_{633}= +0.80016440 \pm 7.9 \cdot 10^{-8} \) |
\(a_{634}= -1.90720479 \pm 1.2 \cdot 10^{-7} \) | \(a_{635}= +0.37561589 \pm 1.0 \cdot 10^{-7} \) | \(a_{636}= +0.70557278 \pm 1.4 \cdot 10^{-7} \) |
\(a_{637}= +0.47686947 \pm 9.8 \cdot 10^{-8} \) | \(a_{638}= -0.93529534 \pm 1.1 \cdot 10^{-7} \) | \(a_{639}= +0.01858782 \pm 1.0 \cdot 10^{-7} \) |
\(a_{640}= +0.46556826 \pm 1.2 \cdot 10^{-7} \) | \(a_{641}= +1.68896831 \pm 1.1 \cdot 10^{-7} \) | \(a_{642}= -0.06139851 \pm 8.4 \cdot 10^{-8} \) |
\(a_{643}= -1.12157008 \pm 1.0 \cdot 10^{-7} \) | \(a_{644}= -0.05614190 \pm 8.9 \cdot 10^{-8} \) | \(a_{645}= +0.21033299 \pm 7.9 \cdot 10^{-8} \) |
\(a_{646}= +1.96804235 \pm 1.0 \cdot 10^{-7} \) | \(a_{647}= +1.19286120 \pm 1.1 \cdot 10^{-7} \) | \(a_{648}= +3.00932707 \pm 1.4 \cdot 10^{-7} \) |
\(a_{649}= +0.80132556 \pm 1.0 \cdot 10^{-7} \) | \(a_{650}= -0.19363207 \pm 1.0 \cdot 10^{-7} \) | \(a_{651}= +0.01788857 \pm 2.2 \cdot 10^{-7} \) |
\(a_{652}= +0.12162520 \pm 1.2 \cdot 10^{-7} \) | \(a_{653}= +0.82447491 \pm 1.0 \cdot 10^{-7} \) | \(a_{654}= +2.28989870 \pm 1.2 \cdot 10^{-7} \) |
\(a_{655}= +0.09501435 \pm 1.1 \cdot 10^{-7} \) | \(a_{656}= -1.58785774 \pm 1.7 \cdot 10^{-7} \) | \(a_{657}= +0.25314558 \pm 9.2 \cdot 10^{-8} \) |
\(a_{658}= +0.10590891 \pm 9.2 \cdot 10^{-8} \) | \(a_{659}= -0.45144258 \pm 1.0 \cdot 10^{-7} \) | \(a_{660}= +1.15874930 \pm 1.0 \cdot 10^{-7} \) |
\(a_{661}= +0.29188794 \pm 1.0 \cdot 10^{-7} \) | \(a_{662}= -2.06697677 \pm 1.0 \cdot 10^{-7} \) | \(a_{663}= +1.06337112 \pm 9.8 \cdot 10^{-8} \) |
\(a_{664}= -3.06909658 \pm 1.3 \cdot 10^{-7} \) | \(a_{665}= +0.04279737 \pm 9.8 \cdot 10^{-8} \) | \(a_{666}= -0.65395709 \pm 1.1 \cdot 10^{-7} \) |
\(a_{667}= -0.30179798 \pm 9.6 \cdot 10^{-8} \) | \(a_{668}= -2.40657784 \pm 1.2 \cdot 10^{-7} \) | \(a_{669}= +1.33945877 \pm 1.3 \cdot 10^{-7} \) |
\(a_{670}= +0.96644682 \pm 1.0 \cdot 10^{-7} \) | \(a_{671}= +0.75834495 \pm 9.0 \cdot 10^{-8} \) | \(a_{672}= -0.14257433 \pm 1.1 \cdot 10^{-7} \) |
\(a_{673}= +0.40356130 \pm 8.8 \cdot 10^{-8} \) | \(a_{674}= +3.09212595 \pm 1.2 \cdot 10^{-7} \) | \(a_{675}= +0.16228931 \pm 8.5 \cdot 10^{-8} \) |
\(a_{676}= -1.79670035 \pm 1.1 \cdot 10^{-7} \) | \(a_{677}= +0.37318727 \pm 9.6 \cdot 10^{-8} \) | \(a_{678}= -2.06178513 \pm 1.2 \cdot 10^{-7} \) |
\(a_{679}= +0.01340112 \pm 9.6 \cdot 10^{-8} \) | \(a_{680}= +4.06917589 \pm 1.5 \cdot 10^{-7} \) | \(a_{681}= -1.73568881 \pm 1.0 \cdot 10^{-7} \) |
\(a_{682}= -0.15736904 \pm 2.3 \cdot 10^{-7} \) | \(a_{683}= -0.65731801 \pm 9.6 \cdot 10^{-8} \) | \(a_{684}= +0.49590217 \pm 1.3 \cdot 10^{-7} \) |
\(a_{685}= -0.10650233 \pm 9.1 \cdot 10^{-8} \) | \(a_{686}= +0.30943341 \pm 9.4 \cdot 10^{-8} \) | \(a_{687}= -1.77642914 \pm 1.1 \cdot 10^{-7} \) |
\(a_{688}= +0.43105766 \pm 1.0 \cdot 10^{-7} \) | \(a_{689}= -0.12386925 \pm 1.0 \cdot 10^{-7} \) | \(a_{690}= +0.53399027 \pm 8.1 \cdot 10^{-8} \) |
\(a_{691}= -0.97994824 \pm 9.8 \cdot 10^{-8} \) | \(a_{692}= +4.44551314 \pm 1.6 \cdot 10^{-7} \) | \(a_{693}= +0.01518768 \pm 9.5 \cdot 10^{-8} \) |
\(a_{694}= -0.00443204 \pm 1.3 \cdot 10^{-7} \) | \(a_{695}= +0.19857363 \pm 7.0 \cdot 10^{-8} \) | \(a_{696}= -3.05027588 \pm 1.3 \cdot 10^{-7} \) |
\(a_{697}= +1.41581297 \pm 8.2 \cdot 10^{-8} \) | \(a_{698}= -1.95441171 \pm 1.1 \cdot 10^{-7} \) | \(a_{699}= -2.23180112 \pm 9.6 \cdot 10^{-8} \) |
\(a_{700}= -0.04382889 \pm 1.0 \cdot 10^{-7} \) | \(a_{701}= +1.05943854 \pm 1.1 \cdot 10^{-7} \) | \(a_{702}= -0.64503775 \pm 9.4 \cdot 10^{-8} \) |
\(a_{703}= +0.54834766 \pm 9.7 \cdot 10^{-8} \) | \(a_{704}= +0.23748515 \pm 1.1 \cdot 10^{-7} \) | \(a_{705}= -0.70534636 \pm 1.1 \cdot 10^{-7} \) |
\(a_{706}= -3.05659628 \pm 1.4 \cdot 10^{-7} \) | \(a_{707}= -0.12631182 \pm 9.5 \cdot 10^{-8} \) | \(a_{708}= +4.57007600 \pm 1.7 \cdot 10^{-7} \) |
\(a_{709}= +0.57134409 \pm 8.4 \cdot 10^{-8} \) | \(a_{710}= -0.08048363 \pm 6.8 \cdot 10^{-8} \) | \(a_{711}= +0.02348554 \pm 1.1 \cdot 10^{-7} \) |
\(a_{712}= -1.72897885 \pm 1.3 \cdot 10^{-7} \) | \(a_{713}= -0.05077932 \pm 1.0 \cdot 10^{-7} \) | \(a_{714}= +0.34375131 \pm 9.0 \cdot 10^{-8} \) |
\(a_{715}= -0.20342820 \pm 1.1 \cdot 10^{-7} \) | \(a_{716}= -2.84264204 \pm 1.5 \cdot 10^{-7} \) | \(a_{717}= -1.40076751 \pm 1.1 \cdot 10^{-7} \) |
\(a_{718}= +2.10487673 \pm 1.2 \cdot 10^{-7} \) | \(a_{719}= +0.08931519 \pm 8.6 \cdot 10^{-8} \) | \(a_{720}= +0.69663965 \pm 1.2 \cdot 10^{-7} \) |
\(a_{721}= +0.03619067 \pm 9.4 \cdot 10^{-8} \) | \(a_{722}= +1.23250537 \pm 1.3 \cdot 10^{-7} \) | \(a_{723}= +0.17359269 \pm 8.7 \cdot 10^{-8} \) |
\(a_{724}= -0.29146397 \pm 1.3 \cdot 10^{-7} \) | \(a_{725}= -0.23560781 \pm 9.3 \cdot 10^{-8} \) | \(a_{726}= +1.64709925 \pm 1.3 \cdot 10^{-7} \) |
\(a_{727}= +0.33040946 \pm 7.5 \cdot 10^{-8} \) | \(a_{728}= +0.09961657 \pm 1.0 \cdot 10^{-7} \) | \(a_{729}= +0.40198101 \pm 9.8 \cdot 10^{-8} \) |
\(a_{730}= -1.09609828 \pm 1.3 \cdot 10^{-7} \) | \(a_{731}= -0.38435246 \pm 7.6 \cdot 10^{-8} \) | \(a_{732}= +4.32495138 \pm 1.9 \cdot 10^{-7} \) |
\(a_{733}= +0.49113342 \pm 1.1 \cdot 10^{-7} \) | \(a_{734}= -2.89686064 \pm 1.3 \cdot 10^{-7} \) | \(a_{735}= -1.02666541 \pm 8.4 \cdot 10^{-8} \) |
\(a_{736}= +0.40471808 \pm 1.2 \cdot 10^{-7} \) | \(a_{737}= -0.28758032 \pm 9.9 \cdot 10^{-8} \) | \(a_{738}= +0.50949951 \pm 1.6 \cdot 10^{-7} \) |
\(a_{739}= -0.95108564 \pm 1.0 \cdot 10^{-7} \) | \(a_{740}= +1.98267760 \pm 1.1 \cdot 10^{-7} \) | \(a_{741}= -0.32087028 \pm 9.8 \cdot 10^{-8} \) |
\(a_{742}= -0.04004267 \pm 1.1 \cdot 10^{-7} \) | \(a_{743}= -1.35950999 \pm 1.0 \cdot 10^{-7} \) | \(a_{744}= -0.51322716 \pm 2.6 \cdot 10^{-7} \) |
\(a_{745}= +0.31065174 \pm 9.9 \cdot 10^{-8} \) | \(a_{746}= +1.11411613 \pm 1.1 \cdot 10^{-7} \) | \(a_{747}= +0.46849674 \pm 9.8 \cdot 10^{-8} \) |
\(a_{748}= -2.11744310 \pm 1.0 \cdot 10^{-7} \) | \(a_{749}= +0.00243985 \pm 7.7 \cdot 10^{-8} \) | \(a_{750}= +2.30558746 \pm 1.7 \cdot 10^{-7} \) |
\(a_{751}= -0.36028287 \pm 9.2 \cdot 10^{-8} \) | \(a_{752}= -1.44554095 \pm 1.7 \cdot 10^{-7} \) | \(a_{753}= +1.25130811 \pm 1.1 \cdot 10^{-7} \) |
\(a_{754}= +0.93645062 \pm 9.2 \cdot 10^{-8} \) | \(a_{755}= +0.36958720 \pm 1.0 \cdot 10^{-7} \) | \(a_{756}= -0.14600520 \pm 1.4 \cdot 10^{-7} \) |
\(a_{757}= -1.26194915 \pm 1.0 \cdot 10^{-7} \) | \(a_{758}= +1.14587921 \pm 9.6 \cdot 10^{-8} \) | \(a_{759}= -0.15889658 \pm 1.1 \cdot 10^{-7} \) |
\(a_{760}= -1.22786632 \pm 1.1 \cdot 10^{-7} \) | \(a_{761}= +0.81633200 \pm 1.2 \cdot 10^{-7} \) | \(a_{762}= -0.91036573 \pm 1.3 \cdot 10^{-7} \) |
\(a_{763}= -0.09099576 \pm 1.1 \cdot 10^{-7} \) | \(a_{764}= +3.53748253 \pm 1.5 \cdot 10^{-7} \) | \(a_{765}= -0.62115857 \pm 8.4 \cdot 10^{-8} \) |
\(a_{766}= -1.26647526 \pm 1.1 \cdot 10^{-7} \) | \(a_{767}= -0.80231535 \pm 1.0 \cdot 10^{-7} \) | \(a_{768}= -1.70828251 \pm 1.5 \cdot 10^{-7} \) |
\(a_{769}= -0.39918701 \pm 8.9 \cdot 10^{-8} \) | \(a_{770}= -0.06576134 \pm 8.9 \cdot 10^{-8} \) | \(a_{771}= -0.23952371 \pm 1.1 \cdot 10^{-7} \) |
\(a_{772}= -0.55397574 \pm 1.0 \cdot 10^{-7} \) | \(a_{773}= +0.49131919 \pm 8.5 \cdot 10^{-8} \) | \(a_{774}= -0.13831445 \pm 1.2 \cdot 10^{-7} \) |
\(a_{775}= -0.03964242 \pm 1.1 \cdot 10^{-7} \) | \(a_{776}= -0.38448121 \pm 1.5 \cdot 10^{-7} \) | \(a_{777}= +0.09577803 \pm 8.7 \cdot 10^{-8} \) |
\(a_{778}= +0.02715755 \pm 9.7 \cdot 10^{-8} \) | \(a_{779}= -0.42721895 \pm 9.7 \cdot 10^{-8} \) | \(a_{780}= -1.16018058 \pm 9.5 \cdot 10^{-8} \) |
\(a_{781}= +0.02394908 \pm 8.8 \cdot 10^{-8} \) | \(a_{782}= -0.97578831 \pm 7.8 \cdot 10^{-8} \) | \(a_{783}= -0.78486963 \pm 8.2 \cdot 10^{-8} \) |
\(a_{784}= -2.10405409 \pm 1.1 \cdot 10^{-7} \) | \(a_{785}= -0.55757192 \pm 8.3 \cdot 10^{-8} \) | \(a_{786}= -0.23028260 \pm 1.4 \cdot 10^{-7} \) |
\(a_{787}= +0.91610784 \pm 1.0 \cdot 10^{-7} \) | \(a_{788}= +1.50465325 \pm 9.8 \cdot 10^{-8} \) | \(a_{789}= -1.56051103 \pm 1.1 \cdot 10^{-7} \) |
\(a_{790}= -0.10169034 \pm 1.1 \cdot 10^{-7} \) | \(a_{791}= +0.08193100 \pm 7.9 \cdot 10^{-8} \) | \(a_{792}= -0.43573812 \pm 8.3 \cdot 10^{-8} \) |
\(a_{793}= -0.75928166 \pm 9.8 \cdot 10^{-8} \) | \(a_{794}= +0.61903509 \pm 1.2 \cdot 10^{-7} \) | \(a_{795}= +0.26668152 \pm 8.9 \cdot 10^{-8} \) |
\(a_{796}= +2.54201639 \pm 1.1 \cdot 10^{-7} \) | \(a_{797}= +0.50303954 \pm 1.0 \cdot 10^{-7} \) | \(a_{798}= -0.10372632 \pm 1.1 \cdot 10^{-7} \) |
\(a_{799}= +1.28891625 \pm 8.6 \cdot 10^{-8} \) | \(a_{800}= +0.31595553 \pm 9.9 \cdot 10^{-8} \) | \(a_{801}= +0.26392814 \pm 8.6 \cdot 10^{-8} \) |
\(a_{802}= +2.01226220 \pm 1.0 \cdot 10^{-7} \) | \(a_{803}= +0.32616000 \pm 8.0 \cdot 10^{-8} \) | \(a_{804}= -1.64011234 \pm 1.1 \cdot 10^{-7} \) |
\(a_{805}= -0.02121965 \pm 7.2 \cdot 10^{-8} \) | \(a_{806}= +0.15756342 \pm 2.4 \cdot 10^{-7} \) | \(a_{807}= -1.30891387 \pm 8.8 \cdot 10^{-8} \) |
\(a_{808}= +3.62391534 \pm 1.4 \cdot 10^{-7} \) | \(a_{809}= +1.03231342 \pm 1.0 \cdot 10^{-7} \) | \(a_{810}= +1.98904482 \pm 1.4 \cdot 10^{-7} \) |
\(a_{811}= +1.20477055 \pm 1.1 \cdot 10^{-7} \) | \(a_{812}= +0.21196691 \pm 1.0 \cdot 10^{-7} \) | \(a_{813}= +0.71316876 \pm 1.4 \cdot 10^{-7} \) |
\(a_{814}= -0.84257703 \pm 1.0 \cdot 10^{-7} \) | \(a_{815}= +0.04597002 \pm 9.7 \cdot 10^{-8} \) | \(a_{816}= -4.69182979 \pm 1.9 \cdot 10^{-7} \) |
\(a_{817}= +0.11597765 \pm 7.6 \cdot 10^{-8} \) | \(a_{818}= -1.89891381 \pm 1.0 \cdot 10^{-7} \) | \(a_{819}= -0.01520644 \pm 1.1 \cdot 10^{-7} \) |
\(a_{820}= -1.54470878 \pm 1.3 \cdot 10^{-7} \) | \(a_{821}= -1.35436477 \pm 1.1 \cdot 10^{-7} \) | \(a_{822}= +0.25812559 \pm 1.4 \cdot 10^{-7} \) |
\(a_{823}= +1.13234685 \pm 9.5 \cdot 10^{-8} \) | \(a_{824}= -1.03831865 \pm 1.1 \cdot 10^{-7} \) | \(a_{825}= -0.12404747 \pm 1.0 \cdot 10^{-7} \) |
\(a_{826}= -0.25936095 \pm 1.1 \cdot 10^{-7} \) | \(a_{827}= -0.68060614 \pm 1.0 \cdot 10^{-7} \) | \(a_{828}= -0.24587659 \pm 1.0 \cdot 10^{-7} \) |
\(a_{829}= +0.22361183 \pm 1.0 \cdot 10^{-7} \) | \(a_{830}= -2.02855008 \pm 1.3 \cdot 10^{-7} \) | \(a_{831}= +0.29893786 \pm 9.5 \cdot 10^{-8} \) |
\(a_{832}= -0.23777849 \pm 1.1 \cdot 10^{-7} \) | \(a_{833}= +1.87607932 \pm 9.1 \cdot 10^{-8} \) | \(a_{834}= -0.48127523 \pm 1.2 \cdot 10^{-7} \) |
\(a_{835}= -0.90960117 \pm 9.8 \cdot 10^{-8} \) | \(a_{836}= +0.63893455 \pm 1.2 \cdot 10^{-7} \) | \(a_{837}= -0.13205901 \pm 1.0 \cdot 10^{-7} \) |
\(a_{838}= +2.43284083 \pm 1.2 \cdot 10^{-7} \) | \(a_{839}= +0.16911759 \pm 9.0 \cdot 10^{-8} \) | \(a_{840}= -0.21446726 \pm 1.1 \cdot 10^{-7} \) |
\(a_{841}= +0.13945526 \pm 7.0 \cdot 10^{-8} \) | \(a_{842}= +0.39844658 \pm 1.4 \cdot 10^{-7} \) | \(a_{843}= -1.03494610 \pm 9.9 \cdot 10^{-8} \) |
\(a_{844}= +1.59529948 \pm 9.7 \cdot 10^{-8} \) | \(a_{845}= -0.67908908 \pm 1.0 \cdot 10^{-7} \) | \(a_{846}= +0.46383400 \pm 1.4 \cdot 10^{-7} \) |
\(a_{847}= -0.06545226 \pm 1.0 \cdot 10^{-7} \) | \(a_{848}= +0.54653866 \pm 9.1 \cdot 10^{-8} \) | \(a_{849}= -1.86375345 \pm 9.9 \cdot 10^{-8} \) |
\(a_{850}= -0.76177894 \pm 8.1 \cdot 10^{-8} \) | \(a_{851}= -0.27187994 \pm 9.6 \cdot 10^{-8} \) | \(a_{852}= +0.13658506 \pm 9.9 \cdot 10^{-8} \) |
\(a_{853}= +0.11643192 \pm 9.7 \cdot 10^{-8} \) | \(a_{854}= -0.24544964 \pm 7.9 \cdot 10^{-8} \) | \(a_{855}= +0.18743345 \pm 1.0 \cdot 10^{-7} \) |
\(a_{856}= -0.06999979 \pm 1.0 \cdot 10^{-7} \) | \(a_{857}= -1.25320315 \pm 9.3 \cdot 10^{-8} \) | \(a_{858}= +0.49304108 \pm 1.1 \cdot 10^{-7} \) |
\(a_{859}= +1.25793535 \pm 1.0 \cdot 10^{-7} \) | \(a_{860}= +0.41934396 \pm 9.4 \cdot 10^{-8} \) | \(a_{861}= -0.07462089 \pm 1.0 \cdot 10^{-7} \) |
\(a_{862}= +1.12150454 \pm 1.2 \cdot 10^{-7} \) | \(a_{863}= +0.71971361 \pm 1.0 \cdot 10^{-7} \) | \(a_{864}= +1.05252837 \pm 9.8 \cdot 10^{-8} \) |
\(a_{865}= +1.68024648 \pm 1.3 \cdot 10^{-7} \) | \(a_{866}= +1.06975295 \pm 1.3 \cdot 10^{-7} \) | \(a_{867}= +3.01199461 \pm 1.2 \cdot 10^{-7} \) |
\(a_{868}= +0.03566470 \pm 2.5 \cdot 10^{-7} \) | \(a_{869}= +0.03025944 \pm 1.0 \cdot 10^{-7} \) | \(a_{870}= -2.01611034 \pm 1.4 \cdot 10^{-7} \) |
\(a_{871}= +0.28793554 \pm 8.3 \cdot 10^{-8} \) | \(a_{872}= +2.61068927 \pm 1.2 \cdot 10^{-7} \) | \(a_{873}= +0.05869095 \pm 1.1 \cdot 10^{-7} \) |
\(a_{874}= +0.29444232 \pm 1.0 \cdot 10^{-7} \) | \(a_{875}= -0.09161919 \pm 1.0 \cdot 10^{-7} \) | \(a_{876}= +1.86013786 \pm 1.4 \cdot 10^{-7} \) |
\(a_{877}= +0.51791245 \pm 1.0 \cdot 10^{-7} \) | \(a_{878}= +0.34067196 \pm 1.2 \cdot 10^{-7} \) | \(a_{879}= +0.04812495 \pm 9.1 \cdot 10^{-8} \) |
\(a_{880}= +0.89757045 \pm 7.2 \cdot 10^{-8} \) | \(a_{881}= -1.33437717 \pm 1.0 \cdot 10^{-7} \) | \(a_{882}= +0.67513260 \pm 1.1 \cdot 10^{-7} \) |
\(a_{883}= -0.14217946 \pm 1.0 \cdot 10^{-7} \) | \(a_{884}= +2.12005857 \pm 1.1 \cdot 10^{-7} \) | \(a_{885}= +1.72732683 \pm 1.0 \cdot 10^{-7} \) |
\(a_{886}= -3.10895781 \pm 1.3 \cdot 10^{-7} \) | \(a_{887}= -1.26781969 \pm 9.2 \cdot 10^{-8} \) | \(a_{888}= -2.74789392 \pm 1.4 \cdot 10^{-7} \) |
\(a_{889}= +0.03617602 \pm 9.6 \cdot 10^{-8} \) | \(a_{890}= -1.14278586 \pm 1.0 \cdot 10^{-7} \) | \(a_{891}= -0.59186925 \pm 8.3 \cdot 10^{-8} \) |
\(a_{892}= +2.67049855 \pm 1.3 \cdot 10^{-7} \) | \(a_{893}= -0.38892810 \pm 6.9 \cdot 10^{-8} \) | \(a_{894}= -0.75291464 \pm 1.2 \cdot 10^{-7} \) |
\(a_{895}= -1.07441799 \pm 1.1 \cdot 10^{-7} \) | \(a_{896}= +0.04483944 \pm 9.8 \cdot 10^{-8} \) | \(a_{897}= +0.15909285 \pm 1.1 \cdot 10^{-7} \) |
\(a_{898}= +1.47903400 \pm 1.2 \cdot 10^{-7} \) | \(a_{899}= +0.19172016 \pm 1.0 \cdot 10^{-7} \) | \(a_{900}= -0.19195107 \pm 1.1 \cdot 10^{-7} \) |
\(a_{901}= -0.48732106 \pm 7.7 \cdot 10^{-8} \) | \(a_{902}= +0.65645375 \pm 8.4 \cdot 10^{-8} \) | \(a_{903}= +0.02025742 \pm 9.2 \cdot 10^{-8} \) |
\(a_{904}= -2.35061940 \pm 1.2 \cdot 10^{-7} \) | \(a_{905}= -0.11016305 \pm 8.2 \cdot 10^{-8} \) | \(a_{906}= -0.89575424 \pm 1.1 \cdot 10^{-7} \) |
\(a_{907}= +0.38364165 \pm 8.6 \cdot 10^{-8} \) | \(a_{908}= -3.46046817 \pm 1.3 \cdot 10^{-7} \) | \(a_{909}= -0.55318967 \pm 1.0 \cdot 10^{-7} \) |
\(a_{910}= +0.06584257 \pm 9.2 \cdot 10^{-8} \) | \(a_{911}= +1.33947326 \pm 1.0 \cdot 10^{-7} \) | \(a_{912}= +1.41575099 \pm 8.3 \cdot 10^{-8} \) |
\(a_{913}= +0.60362461 \pm 7.1 \cdot 10^{-8} \) | \(a_{914}= -0.54769575 \pm 1.2 \cdot 10^{-7} \) | \(a_{915}= +1.63467840 \pm 9.3 \cdot 10^{-8} \) |
\(a_{916}= -3.54169277 \pm 1.5 \cdot 10^{-7} \) | \(a_{917}= +0.00915095 \pm 1.2 \cdot 10^{-7} \) | \(a_{918}= -2.53767974 \pm 1.1 \cdot 10^{-7} \) |
\(a_{919}= -0.71809080 \pm 1.0 \cdot 10^{-7} \) | \(a_{920}= +0.60879666 \pm 1.0 \cdot 10^{-7} \) | \(a_{921}= +1.36656493 \pm 1.1 \cdot 10^{-7} \) |
\(a_{922}= +0.72862978 \pm 9.5 \cdot 10^{-8} \) | \(a_{923}= -0.02397866 \pm 9.8 \cdot 10^{-8} \) | \(a_{924}= +0.11160054 \pm 1.1 \cdot 10^{-7} \) |
\(a_{925}= -0.21225138 \pm 7.9 \cdot 10^{-8} \) | \(a_{926}= -1.25373753 \pm 1.3 \cdot 10^{-7} \) | \(a_{927}= +0.15849905 \pm 1.0 \cdot 10^{-7} \) |
\(a_{928}= -1.52803591 \pm 1.0 \cdot 10^{-7} \) | \(a_{929}= +0.81163375 \pm 9.9 \cdot 10^{-8} \) | \(a_{930}= -0.33922263 \pm 3.5 \cdot 10^{-7} \) |
\(a_{931}= -0.56610348 \pm 7.7 \cdot 10^{-8} \) | \(a_{932}= -4.44957453 \pm 1.4 \cdot 10^{-7} \) | \(a_{933}= -0.54958552 \pm 7.5 \cdot 10^{-8} \) |
\(a_{934}= -3.02475368 \pm 1.2 \cdot 10^{-7} \) | \(a_{935}= -0.80031848 \pm 6.9 \cdot 10^{-8} \) | \(a_{936}= +0.43627634 \pm 1.1 \cdot 10^{-7} \) |
\(a_{937}= +0.67075808 \pm 1.0 \cdot 10^{-7} \) | \(a_{938}= +0.09307966 \pm 9.2 \cdot 10^{-8} \) | \(a_{939}= -0.59584282 \pm 1.1 \cdot 10^{-7} \) |
\(a_{940}= -1.40625936 \pm 1.3 \cdot 10^{-7} \) | \(a_{941}= +0.94134498 \pm 9.9 \cdot 10^{-8} \) | \(a_{942}= +1.35136554 \pm 1.2 \cdot 10^{-7} \) |
\(a_{943}= +0.21182230 \pm 9.0 \cdot 10^{-8} \) | \(a_{944}= +3.53999369 \pm 1.2 \cdot 10^{-7} \) | \(a_{945}= -0.05518479 \pm 9.9 \cdot 10^{-8} \) |
\(a_{946}= -0.17820829 \pm 9.7 \cdot 10^{-8} \) | \(a_{947}= +1.41199512 \pm 1.0 \cdot 10^{-7} \) | \(a_{948}= +0.17257399 \pm 1.8 \cdot 10^{-7} \) |
\(a_{949}= -0.32656288 \pm 1.0 \cdot 10^{-7} \) | \(a_{950}= +0.22986539 \pm 1.5 \cdot 10^{-7} \) | \(a_{951}= +1.22333122 \pm 1.0 \cdot 10^{-7} \) |
\(a_{952}= +0.39190722 \pm 7.6 \cdot 10^{-8} \) | \(a_{953}= -0.61110314 \pm 1.1 \cdot 10^{-7} \) | \(a_{954}= -0.17536910 \pm 1.5 \cdot 10^{-7} \) |
\(a_{955}= +1.33704308 \pm 1.1 \cdot 10^{-7} \) | \(a_{956}= -2.79273067 \pm 1.2 \cdot 10^{-7} \) | \(a_{957}= +0.59992299 \pm 1.2 \cdot 10^{-7} \) |
\(a_{958}= -2.62176872 \pm 1.4 \cdot 10^{-7} \) | \(a_{959}= -0.01025737 \pm 1.0 \cdot 10^{-7} \) | \(a_{960}= +0.51191987 \pm 1.5 \cdot 10^{-7} \) |
\(a_{961}= +0.03225806 \pm 1.7 \cdot 10^{-6} \) | \(a_{962}= +0.84361778 \pm 1.0 \cdot 10^{-7} \) | \(a_{963}= +0.01068545 \pm 8.5 \cdot 10^{-8} \) |
\(a_{964}= +0.34609429 \pm 8.2 \cdot 10^{-8} \) | \(a_{965}= -0.20938321 \pm 9.0 \cdot 10^{-8} \) | \(a_{966}= +0.05142925 \pm 7.2 \cdot 10^{-8} \) |
\(a_{967}= -0.57779054 \pm 9.5 \cdot 10^{-8} \) | \(a_{968}= +1.87784042 \pm 1.3 \cdot 10^{-7} \) | \(a_{969}= -1.26235403 \pm 8.2 \cdot 10^{-8} \) |
\(a_{970}= -0.25412670 \pm 1.1 \cdot 10^{-7} \) | \(a_{971}= -0.15004840 \pm 1.0 \cdot 10^{-7} \) | \(a_{972}= -1.65822227 \pm 1.5 \cdot 10^{-7} \) |
\(a_{973}= +0.01912486 \pm 8.2 \cdot 10^{-8} \) | \(a_{974}= +3.09904765 \pm 1.4 \cdot 10^{-7} \) | \(a_{975}= +0.12420069 \pm 7.3 \cdot 10^{-8} \) |
\(a_{976}= +3.35011947 \pm 1.6 \cdot 10^{-7} \) | \(a_{977}= -0.70959188 \pm 1.1 \cdot 10^{-7} \) | \(a_{978}= -0.11141576 \pm 1.3 \cdot 10^{-7} \) |
\(a_{979}= +0.34005257 \pm 9.6 \cdot 10^{-8} \) | \(a_{980}= -2.04687785 \pm 1.1 \cdot 10^{-7} \) | \(a_{981}= -0.39852100 \pm 1.0 \cdot 10^{-7} \) |
\(a_{982}= +1.07067887 \pm 1.0 \cdot 10^{-7} \) | \(a_{983}= -0.98028068 \pm 7.7 \cdot 10^{-8} \) | \(a_{984}= +2.14089061 \pm 2.4 \cdot 10^{-7} \) |
\(a_{985}= +0.56870562 \pm 7.9 \cdot 10^{-8} \) | \(a_{986}= +3.68414372 \pm 1.2 \cdot 10^{-7} \) | \(a_{987}= -0.06793276 \pm 9.4 \cdot 10^{-8} \) |
\(a_{988}= -0.63972376 \pm 1.0 \cdot 10^{-7} \) | \(a_{989}= -0.05750366 \pm 7.9 \cdot 10^{-8} \) | \(a_{990}= -0.28800546 \pm 8.6 \cdot 10^{-8} \) |
\(a_{991}= -0.64281044 \pm 9.9 \cdot 10^{-8} \) | \(a_{992}= -0.25710118 \pm 1.4 \cdot 10^{-7} \) | \(a_{993}= +1.32581316 \pm 1.1 \cdot 10^{-7} \) |
\(a_{994}= -0.00775148 \pm 9.4 \cdot 10^{-8} \) | \(a_{995}= +0.96079214 \pm 9.0 \cdot 10^{-8} \) | \(a_{996}= +3.44255881 \pm 1.5 \cdot 10^{-7} \) |
\(a_{997}= -1.12091836 \pm 1.0 \cdot 10^{-7} \) | \(a_{998}= +0.85724232 \pm 1.2 \cdot 10^{-7} \) | \(a_{999}= -0.70706342 \pm 7.2 \cdot 10^{-8} \) |
\(a_{1000}= +2.62857586 \pm 1.5 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000