Maass form invariants
Level: | \( 31 \) |
Weight: | \( 0 \) |
Character: | 31.1 |
Symmetry: | even |
Fricke sign: | $-1$ |
Spectral parameter: | \(3.57095767325986195615224710797 \pm 5 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.19993029 \pm 3.1 \cdot 10^{-8} \) | \(a_{3}= -0.77641260 \pm 2.8 \cdot 10^{-8} \) |
\(a_{4}= +0.43983269 \pm 3.2 \cdot 10^{-8} \) | \(a_{5}= -1.26391731 \pm 2.7 \cdot 10^{-8} \) | \(a_{6}= -0.93164099 \pm 3.2 \cdot 10^{-8} \) |
\(a_{7}= +0.58807463 \pm 2.7 \cdot 10^{-8} \) | \(a_{8}= -0.67216172 \pm 3.1 \cdot 10^{-8} \) | \(a_{9}= -0.39718348 \pm 2.7 \cdot 10^{-8} \) |
\(a_{10}= -1.51661267 \pm 2.6 \cdot 10^{-8} \) | \(a_{11}= +1.11715185 \pm 2.7 \cdot 10^{-8} \) | \(a_{12}= -0.34149165 \pm 3.0 \cdot 10^{-8} \) |
\(a_{13}= -0.53594345 \pm 2.2 \cdot 10^{-8} \) | \(a_{14}= +0.70564856 \pm 3.7 \cdot 10^{-8} \) | \(a_{15}= +0.98132133 \pm 2.9 \cdot 10^{-8} \) |
\(a_{16}= -1.24637990 \pm 3.3 \cdot 10^{-8} \) | \(a_{17}= -1.38855599 \pm 2.5 \cdot 10^{-8} \) | \(a_{18}= -0.47659248 \pm 2.4 \cdot 10^{-8} \) |
\(a_{19}= -0.67650317 \pm 2.5 \cdot 10^{-8} \) | \(a_{20}= -0.55591216 \pm 2.8 \cdot 10^{-8} \) | \(a_{21}= -0.45658855 \pm 2.7 \cdot 10^{-8} \) |
\(a_{22}= +1.34050434 \pm 3.2 \cdot 10^{-8} \) | \(a_{23}= +1.32245778 \pm 2.2 \cdot 10^{-8} \) | \(a_{24}= +0.52187482 \pm 3.3 \cdot 10^{-8} \) |
\(a_{25}= +0.59748698 \pm 2.9 \cdot 10^{-8} \) | \(a_{26}= -0.64309478 \pm 2.4 \cdot 10^{-8} \) | \(a_{27}= +1.08479085 \pm 2.8 \cdot 10^{-8} \) |
\(a_{28}= +0.25865445 \pm 4.0 \cdot 10^{-8} \) | \(a_{29}= -0.54316425 \pm 2.6 \cdot 10^{-8} \) | \(a_{30}= +1.17751718 \pm 2.9 \cdot 10^{-8} \) |
\(a_{31}= +0.17960530 \pm 1.0 \cdot 10^{-8} \) | \(a_{32}= -0.82340727 \pm 3.2 \cdot 10^{-8} \) | \(a_{33}= -0.86737077 \pm 3.1 \cdot 10^{-8} \) |
\(a_{34}= -1.66617039 \pm 2.7 \cdot 10^{-8} \) | \(a_{35}= -0.74327770 \pm 2.8 \cdot 10^{-8} \) | \(a_{36}= -0.17469428 \pm 2.4 \cdot 10^{-8} \) |
\(a_{37}= +0.93843530 \pm 2.7 \cdot 10^{-8} \) | \(a_{38}= -0.81175664 \pm 3.2 \cdot 10^{-8} \) | \(a_{39}= +0.41611325 \pm 2.7 \cdot 10^{-8} \) |
\(a_{40}= +0.84955683 \pm 2.6 \cdot 10^{-8} \) | \(a_{41}= -0.75545971 \pm 2.1 \cdot 10^{-8} \) | \(a_{42}= -0.54787443 \pm 3.6 \cdot 10^{-8} \) |
\(a_{43}= -1.61669622 \pm 2.7 \cdot 10^{-8} \) | \(a_{44}= +0.49135991 \pm 3.4 \cdot 10^{-8} \) | \(a_{45}= +0.50200707 \pm 2.8 \cdot 10^{-8} \) |
\(a_{46}= +1.58685715 \pm 2.7 \cdot 10^{-8} \) | \(a_{47}= -0.49815457 \pm 2.4 \cdot 10^{-8} \) | \(a_{48}= +0.96770505 \pm 3.0 \cdot 10^{-8} \) |
\(a_{49}= -0.65416823 \pm 2.4 \cdot 10^{-8} \) | \(a_{50}= +0.71694272 \pm 2.7 \cdot 10^{-8} \) | \(a_{51}= +1.07809237 \pm 2.4 \cdot 10^{-8} \) |
\(a_{52}= -0.23572545 \pm 2.4 \cdot 10^{-8} \) | \(a_{53}= -0.46919937 \pm 2.7 \cdot 10^{-8} \) | \(a_{54}= +1.30167340 \pm 3.0 \cdot 10^{-8} \) |
\(a_{55}= -1.41198757 \pm 2.8 \cdot 10^{-8} \) | \(a_{56}= -0.39528125 \pm 4.1 \cdot 10^{-8} \) | \(a_{57}= +0.52524558 \pm 2.3 \cdot 10^{-8} \) |
\(a_{58}= -0.65175923 \pm 3.2 \cdot 10^{-8} \) | \(a_{59}= +1.84103460 \pm 2.2 \cdot 10^{-8} \) | \(a_{60}= +0.43161720 \pm 2.7 \cdot 10^{-8} \) |
\(a_{61}= -0.44382758 \pm 2.4 \cdot 10^{-8} \) | \(a_{62}= +0.21551384 \pm 4.2 \cdot 10^{-8} \) | \(a_{63}= -0.23357353 \pm 2.0 \cdot 10^{-8} \) |
\(a_{64}= +0.25834857 \pm 3.3 \cdot 10^{-8} \) | \(a_{65}= +0.67738821 \pm 2.0 \cdot 10^{-8} \) | \(a_{66}= -1.04078446 \pm 3.6 \cdot 10^{-8} \) |
\(a_{67}= -0.10182804 \pm 2.4 \cdot 10^{-8} \) | \(a_{68}= -0.61073232 \pm 2.9 \cdot 10^{-8} \) | \(a_{69}= -1.02677288 \pm 2.6 \cdot 10^{-8} \) |
\(a_{70}= -0.89188143 \pm 3.1 \cdot 10^{-8} \) | \(a_{71}= -0.39795870 \pm 2.5 \cdot 10^{-8} \) | \(a_{72}= +0.26697153 \pm 2.6 \cdot 10^{-8} \) |
\(a_{73}= -1.33652957 \pm 2.2 \cdot 10^{-8} \) | \(a_{74}= +1.12605693 \pm 3.0 \cdot 10^{-8} \) | \(a_{75}= -0.46389642 \pm 2.9 \cdot 10^{-8} \) |
\(a_{76}= -0.29754821 \pm 2.8 \cdot 10^{-8} \) | \(a_{77}= +0.65696866 \pm 2.7 \cdot 10^{-8} \) | \(a_{78}= +0.49930689 \pm 2.6 \cdot 10^{-8} \) |
\(a_{79}= +0.74035468 \pm 2.3 \cdot 10^{-8} \) | \(a_{80}= +1.57532113 \pm 2.7 \cdot 10^{-8} \) | \(a_{81}= -0.44506181 \pm 2.6 \cdot 10^{-8} \) |
\(a_{82}= -0.90649898 \pm 2.6 \cdot 10^{-8} \) | \(a_{83}= -0.49124582 \pm 2.2 \cdot 10^{-8} \) | \(a_{84}= -0.20082257 \pm 3.8 \cdot 10^{-8} \) |
\(a_{85}= +1.75501996 \pm 2.9 \cdot 10^{-8} \) | \(a_{86}= -1.93992276 \pm 3.7 \cdot 10^{-8} \) | \(a_{87}= +0.42171957 \pm 2.7 \cdot 10^{-8} \) |
\(a_{88}= -0.75090671 \pm 3.1 \cdot 10^{-8} \) | \(a_{89}= -0.34988162 \pm 2.9 \cdot 10^{-8} \) | \(a_{90}= +0.60237349 \pm 2.2 \cdot 10^{-8} \) |
\(a_{91}= -0.31517475 \pm 2.0 \cdot 10^{-8} \) | \(a_{92}= +0.58166017 \pm 2.7 \cdot 10^{-8} \) | \(a_{93}= -0.13944782 \pm 3.9 \cdot 10^{-8} \) |
\(a_{94}= -0.59775076 \pm 2.8 \cdot 10^{-8} \) | \(a_{95}= +0.85504406 \pm 2.1 \cdot 10^{-8} \) | \(a_{96}= +0.63930378 \pm 2.7 \cdot 10^{-8} \) |
\(a_{97}= +1.83033450 \pm 2.5 \cdot 10^{-8} \) | \(a_{98}= -0.78495627 \pm 3.2 \cdot 10^{-8} \) | \(a_{99}= -0.44371426 \pm 2.9 \cdot 10^{-8} \) |
\(a_{100}= +0.26279431 \pm 3.2 \cdot 10^{-8} \) | \(a_{101}= -0.82628794 \pm 3.0 \cdot 10^{-8} \) | \(a_{102}= +1.29363568 \pm 2.5 \cdot 10^{-8} \) |
\(a_{103}= -1.95277103 \pm 2.5 \cdot 10^{-8} \) | \(a_{104}= +0.36024067 \pm 2.6 \cdot 10^{-8} \) | \(a_{105}= +0.57709017 \pm 3.1 \cdot 10^{-8} \) |
\(a_{106}= -0.56300653 \pm 3.0 \cdot 10^{-8} \) | \(a_{107}= +1.66923943 \pm 2.6 \cdot 10^{-8} \) | \(a_{108}= +0.47712648 \pm 3.0 \cdot 10^{-8} \) |
\(a_{109}= +1.05597701 \pm 2.6 \cdot 10^{-8} \) | \(a_{110}= -1.69428665 \pm 2.4 \cdot 10^{-8} \) | \(a_{111}= -0.72861299 \pm 3.2 \cdot 10^{-8} \) |
\(a_{112}= -0.73296439 \pm 4.0 \cdot 10^{-8} \) | \(a_{113}= +0.84189852 \pm 2.8 \cdot 10^{-8} \) | \(a_{114}= +0.63025808 \pm 2.9 \cdot 10^{-8} \) |
\(a_{115}= -1.67147729 \pm 2.4 \cdot 10^{-8} \) | \(a_{116}= -0.23890140 \pm 3.0 \cdot 10^{-8} \) | \(a_{117}= +0.21286788 \pm 3.1 \cdot 10^{-8} \) |
\(a_{118}= +2.20911318 \pm 2.4 \cdot 10^{-8} \) | \(a_{119}= -0.81657455 \pm 2.5 \cdot 10^{-8} \) | \(a_{120}= -0.65960663 \pm 3.1 \cdot 10^{-8} \) |
\(a_{121}= +0.24802826 \pm 2.5 \cdot 10^{-8} \) | \(a_{122}= -0.53256216 \pm 2.6 \cdot 10^{-8} \) | \(a_{123}= +0.58654843 \pm 1.9 \cdot 10^{-8} \) |
\(a_{124}= +0.07899628 \pm 4.2 \cdot 10^{-8} \) | \(a_{125}= +0.50874318 \pm 2.7 \cdot 10^{-8} \) | \(a_{126}= -0.28027195 \pm 2.0 \cdot 10^{-8} \) |
\(a_{127}= -1.05532563 \pm 2.4 \cdot 10^{-8} \) | \(a_{128}= +1.13340755 \pm 3.3 \cdot 10^{-8} \) | \(a_{129}= +1.25522331 \pm 2.7 \cdot 10^{-8} \) |
\(a_{130}= +0.81281862 \pm 2.2 \cdot 10^{-8} \) | \(a_{131}= -0.86221798 \pm 2.8 \cdot 10^{-8} \) | \(a_{132}= -0.38149802 \pm 3.6 \cdot 10^{-8} \) |
\(a_{133}= -0.39783435 \pm 2.6 \cdot 10^{-8} \) | \(a_{134}= -0.12218655 \pm 3.0 \cdot 10^{-8} \) | \(a_{135}= -1.37108594 \pm 2.5 \cdot 10^{-8} \) |
\(a_{136}= +0.93333418 \pm 2.7 \cdot 10^{-8} \) | \(a_{137}= -1.33917472 \pm 2.5 \cdot 10^{-8} \) | \(a_{138}= -1.23205588 \pm 3.1 \cdot 10^{-8} \) |
\(a_{139}= -1.15578603 \pm 2.9 \cdot 10^{-8} \) | \(a_{140}= -0.32691784 \pm 3.2 \cdot 10^{-8} \) | \(a_{141}= +0.38677349 \pm 2.3 \cdot 10^{-8} \) |
\(a_{142}= -0.47752270 \pm 3.0 \cdot 10^{-8} \) | \(a_{143}= -0.59873022 \pm 2.2 \cdot 10^{-8} \) | \(a_{144}= +0.49504150 \pm 2.3 \cdot 10^{-8} \) |
\(a_{145}= +0.68651470 \pm 2.2 \cdot 10^{-8} \) | \(a_{146}= -1.60374232 \pm 2.5 \cdot 10^{-8} \) | \(a_{147}= +0.50790446 \pm 2.6 \cdot 10^{-8} \) |
\(a_{148}= +0.41275452 \pm 2.8 \cdot 10^{-8} \) | \(a_{149}= +0.55065478 \pm 2.6 \cdot 10^{-8} \) | \(a_{150}= -0.55664336 \pm 2.8 \cdot 10^{-8} \) |
\(a_{151}= +0.69932742 \pm 2.2 \cdot 10^{-8} \) | \(a_{152}= +0.45471953 \pm 2.3 \cdot 10^{-8} \) | \(a_{153}= +0.55151150 \pm 2.6 \cdot 10^{-8} \) |
\(a_{154}= +0.78831659 \pm 4.0 \cdot 10^{-8} \) | \(a_{155}= -0.22700625 \pm 3.7 \cdot 10^{-8} \) | \(a_{156}= +0.18302021 \pm 2.4 \cdot 10^{-8} \) |
\(a_{157}= -0.39126315 \pm 2.3 \cdot 10^{-8} \) | \(a_{158}= +0.88837400 \pm 2.6 \cdot 10^{-8} \) | \(a_{159}= +0.36429230 \pm 2.9 \cdot 10^{-8} \) |
\(a_{160}= +1.04071870 \pm 2.0 \cdot 10^{-8} \) | \(a_{161}= +0.77770387 \pm 2.6 \cdot 10^{-8} \) | \(a_{162}= -0.53404314 \pm 2.9 \cdot 10^{-8} \) |
\(a_{163}= -0.52939227 \pm 2.6 \cdot 10^{-8} \) | \(a_{164}= -0.33227588 \pm 2.6 \cdot 10^{-8} \) | \(a_{165}= +1.09628494 \pm 3.0 \cdot 10^{-8} \) |
\(a_{166}= -0.58946073 \pm 2.1 \cdot 10^{-8} \) | \(a_{167}= +1.29681176 \pm 2.8 \cdot 10^{-8} \) | \(a_{168}= +0.30690134 \pm 3.9 \cdot 10^{-8} \) |
\(a_{169}= -0.71276462 \pm 2.2 \cdot 10^{-8} \) | \(a_{170}= +2.10590160 \pm 2.5 \cdot 10^{-8} \) | \(a_{171}= +0.26869588 \pm 1.8 \cdot 10^{-8} \) |
\(a_{172}= -0.71107585 \pm 3.1 \cdot 10^{-8} \) | \(a_{173}= +0.76599989 \pm 2.2 \cdot 10^{-8} \) | \(a_{174}= +0.50603408 \pm 3.0 \cdot 10^{-8} \) |
\(a_{175}= +0.35136693 \pm 2.7 \cdot 10^{-8} \) | \(a_{176}= -1.39239561 \pm 2.7 \cdot 10^{-8} \) | \(a_{177}= -1.42940246 \pm 2.1 \cdot 10^{-8} \) |
\(a_{178}= -0.41983355 \pm 3.7 \cdot 10^{-8} \) | \(a_{179}= +0.95135031 \pm 2.8 \cdot 10^{-8} \) | \(a_{180}= +0.22079912 \pm 2.4 \cdot 10^{-8} \) |
\(a_{181}= +0.03714720 \pm 2.5 \cdot 10^{-8} \) | \(a_{182}= -0.37818772 \pm 2.5 \cdot 10^{-8} \) | \(a_{183}= +0.34459333 \pm 2.9 \cdot 10^{-8} \) |
\(a_{184}= -0.88890549 \pm 2.7 \cdot 10^{-8} \) | \(a_{185}= -1.18610462 \pm 2.1 \cdot 10^{-8} \) | \(a_{186}= -0.16732766 \pm 7.1 \cdot 10^{-8} \) |
\(a_{187}= -1.55122790 \pm 2.4 \cdot 10^{-8} \) | \(a_{188}= -0.21910467 \pm 2.8 \cdot 10^{-8} \) | \(a_{189}= +0.63793798 \pm 2.5 \cdot 10^{-8} \) |
\(a_{190}= +1.02599327 \pm 2.4 \cdot 10^{-8} \) | \(a_{191}= -0.34203585 \pm 2.6 \cdot 10^{-8} \) | \(a_{192}= -0.20058509 \pm 3.1 \cdot 10^{-8} \) |
\(a_{193}= -1.73405070 \pm 3.2 \cdot 10^{-8} \) | \(a_{194}= +2.19627381 \pm 3.0 \cdot 10^{-8} \) | \(a_{195}= -0.52593274 \pm 2.2 \cdot 10^{-8} \) |
\(a_{196}= -0.28772458 \pm 3.5 \cdot 10^{-8} \) | \(a_{197}= +0.47591553 \pm 2.4 \cdot 10^{-8} \) | \(a_{198}= -0.53242618 \pm 2.4 \cdot 10^{-8} \) |
\(a_{199}= -1.93870818 \pm 2.9 \cdot 10^{-8} \) | \(a_{200}= -0.40160787 \pm 2.9 \cdot 10^{-8} \) | \(a_{201}= +0.07906058 \pm 2.1 \cdot 10^{-8} \) |
\(a_{202}= -0.99148792 \pm 3.7 \cdot 10^{-8} \) | \(a_{203}= -0.31942111 \pm 2.6 \cdot 10^{-8} \) | \(a_{204}= +0.47418027 \pm 2.5 \cdot 10^{-8} \) |
\(a_{205}= +0.95483860 \pm 2.2 \cdot 10^{-8} \) | \(a_{206}= -2.34318910 \pm 2.8 \cdot 10^{-8} \) | \(a_{207}= -0.52525838 \pm 2.0 \cdot 10^{-8} \) |
\(a_{208}= +0.66798914 \pm 2.7 \cdot 10^{-8} \) | \(a_{209}= -0.75575676 \pm 1.9 \cdot 10^{-8} \) | \(a_{210}= +0.69246798 \pm 3.5 \cdot 10^{-8} \) |
\(a_{211}= +0.43752818 \pm 2.2 \cdot 10^{-8} \) | \(a_{212}= -0.20636922 \pm 3.2 \cdot 10^{-8} \) | \(a_{213}= +0.30898015 \pm 2.9 \cdot 10^{-8} \) |
\(a_{214}= +2.00297095 \pm 2.5 \cdot 10^{-8} \) | \(a_{215}= +2.04337034 \pm 2.2 \cdot 10^{-8} \) | \(a_{216}= -0.72915488 \pm 3.3 \cdot 10^{-8} \) |
\(a_{217}= +0.10562132 \pm 3.8 \cdot 10^{-8} \) | \(a_{218}= +1.26709880 \pm 3.1 \cdot 10^{-8} \) | \(a_{219}= +1.03769840 \pm 2.2 \cdot 10^{-8} \) |
\(a_{220}= -0.62103830 \pm 2.6 \cdot 10^{-8} \) | \(a_{221}= +0.74418749 \pm 2.1 \cdot 10^{-8} \) | \(a_{222}= -0.87428479 \pm 3.0 \cdot 10^{-8} \) |
\(a_{223}= +1.72126909 \pm 2.9 \cdot 10^{-8} \) | \(a_{224}= -0.48422492 \pm 3.8 \cdot 10^{-8} \) | \(a_{225}= -0.23731195 \pm 3.0 \cdot 10^{-8} \) |
\(a_{226}= +1.01021953 \pm 3.1 \cdot 10^{-8} \) | \(a_{227}= -0.07159116 \pm 2.9 \cdot 10^{-8} \) | \(a_{228}= +0.23102018 \pm 2.5 \cdot 10^{-8} \) |
\(a_{229}= -1.08563520 \pm 2.9 \cdot 10^{-8} \) | \(a_{230}= -2.00565622 \pm 2.7 \cdot 10^{-8} \) | \(a_{231}= -0.51007875 \pm 3.0 \cdot 10^{-8} \) |
\(a_{232}= +0.36509421 \pm 2.5 \cdot 10^{-8} \) | \(a_{233}= +1.24722357 \pm 2.8 \cdot 10^{-8} \) | \(a_{234}= +0.25542662 \pm 2.5 \cdot 10^{-8} \) |
\(a_{235}= +0.62962619 \pm 2.5 \cdot 10^{-8} \) | \(a_{236}= +0.80974721 \pm 2.6 \cdot 10^{-8} \) | \(a_{237}= -0.57482070 \pm 2.4 \cdot 10^{-8} \) |
\(a_{238}= -0.97983253 \pm 3.1 \cdot 10^{-8} \) | \(a_{239}= +0.77853142 \pm 1.9 \cdot 10^{-8} \) | \(a_{240}= -1.22309917 \pm 2.7 \cdot 10^{-8} \) |
\(a_{241}= -1.87315764 \pm 2.9 \cdot 10^{-8} \) | \(a_{242}= +0.29761662 \pm 3.7 \cdot 10^{-8} \) | \(a_{243}= -0.73923926 \pm 2.1 \cdot 10^{-8} \) |
\(a_{244}= -0.19520988 \pm 1.8 \cdot 10^{-8} \) | \(a_{245}= +0.82681455 \pm 2.4 \cdot 10^{-8} \) | \(a_{246}= +0.70381723 \pm 2.4 \cdot 10^{-8} \) |
\(a_{247}= +0.36256744 \pm 1.8 \cdot 10^{-8} \) | \(a_{248}= -0.12072381 \pm 4.1 \cdot 10^{-8} \) | \(a_{249}= +0.38140944 \pm 2.0 \cdot 10^{-8} \) |
\(a_{250}= +0.61045635 \pm 2.4 \cdot 10^{-8} \) | \(a_{251}= -0.49171462 \pm 3.1 \cdot 10^{-8} \) | \(a_{252}= -0.10273327 \pm 2.1 \cdot 10^{-8} \) |
\(a_{253}= +1.47738616 \pm 2.4 \cdot 10^{-8} \) | \(a_{254}= -1.26631719 \pm 2.9 \cdot 10^{-8} \) | \(a_{255}= -1.36261961 \pm 2.7 \cdot 10^{-8} \) |
\(a_{256}= +1.10166147 \pm 3.6 \cdot 10^{-8} \) | \(a_{257}= +0.27098768 \pm 2.7 \cdot 10^{-8} \) | \(a_{258}= +1.50618047 \pm 3.4 \cdot 10^{-8} \) |
\(a_{259}= +0.55186999 \pm 2.1 \cdot 10^{-8} \) | \(a_{260}= +0.29793748 \pm 2.2 \cdot 10^{-8} \) | \(a_{261}= +0.21573587 \pm 2.5 \cdot 10^{-8} \) |
\(a_{262}= -1.03460147 \pm 3.0 \cdot 10^{-8} \) | \(a_{263}= -0.57640128 \pm 2.5 \cdot 10^{-8} \) | \(a_{264}= +0.58301343 \pm 3.6 \cdot 10^{-8} \) |
\(a_{265}= +0.59302920 \pm 3.2 \cdot 10^{-8} \) | \(a_{266}= -0.47737348 \pm 3.5 \cdot 10^{-8} \) | \(a_{267}= +0.27165250 \pm 3.0 \cdot 10^{-8} \) |
\(a_{268}= -0.04478730 \pm 3.1 \cdot 10^{-8} \) | \(a_{269}= -1.02987875 \pm 2.8 \cdot 10^{-8} \) | \(a_{270}= -1.64520755 \pm 2.5 \cdot 10^{-8} \) |
\(a_{271}= -0.25147579 \pm 2.7 \cdot 10^{-8} \) | \(a_{272}= +1.73066827 \pm 2.9 \cdot 10^{-8} \) | \(a_{273}= +0.24470564 \pm 2.0 \cdot 10^{-8} \) |
\(a_{274}= -1.60691631 \pm 3.1 \cdot 10^{-8} \) | \(a_{275}= +0.66748368 \pm 3.3 \cdot 10^{-8} \) | \(a_{276}= -0.45160828 \pm 3.1 \cdot 10^{-8} \) |
\(a_{277}= +0.22921279 \pm 2.5 \cdot 10^{-8} \) | \(a_{278}= -1.38686266 \pm 3.9 \cdot 10^{-8} \) | \(a_{279}= -0.07133626 \pm 3.7 \cdot 10^{-8} \) |
\(a_{280}= +0.49960282 \pm 3.3 \cdot 10^{-8} \) | \(a_{281}= -0.42804614 \pm 2.4 \cdot 10^{-8} \) | \(a_{282}= +0.46410122 \pm 2.6 \cdot 10^{-8} \) |
\(a_{283}= +1.07431299 \pm 2.8 \cdot 10^{-8} \) | \(a_{284}= -0.17503525 \pm 2.7 \cdot 10^{-8} \) | \(a_{285}= -0.66386698 \pm 2.2 \cdot 10^{-8} \) |
\(a_{286}= -0.71843452 \pm 2.3 \cdot 10^{-8} \) | \(a_{287}= -0.44426669 \pm 2.3 \cdot 10^{-8} \) | \(a_{288}= +0.32704376 \pm 2.4 \cdot 10^{-8} \) |
\(a_{289}= +0.92808774 \pm 2.0 \cdot 10^{-8} \) | \(a_{290}= +0.82376978 \pm 2.1 \cdot 10^{-8} \) | \(a_{291}= -1.42109477 \pm 2.4 \cdot 10^{-8} \) |
\(a_{292}= -0.58784940 \pm 2.4 \cdot 10^{-8} \) | \(a_{293}= +0.01204331 \pm 3.0 \cdot 10^{-8} \) | \(a_{294}= +0.60944994 \pm 3.2 \cdot 10^{-8} \) |
\(a_{295}= -2.32691551 \pm 2.5 \cdot 10^{-8} \) | \(a_{296}= -0.63078028 \pm 2.7 \cdot 10^{-8} \) | \(a_{297}= +1.21187611 \pm 2.9 \cdot 10^{-8} \) |
\(a_{298}= +0.66074735 \pm 3.4 \cdot 10^{-8} \) | \(a_{299}= -0.70876259 \pm 1.5 \cdot 10^{-8} \) | \(a_{300}= -0.20403681 \pm 2.6 \cdot 10^{-8} \) |
\(a_{301}= -0.95073803 \pm 2.8 \cdot 10^{-8} \) | \(a_{302}= +0.83914415 \pm 2.8 \cdot 10^{-8} \) | \(a_{303}= +0.64154037 \pm 2.7 \cdot 10^{-8} \) |
\(a_{304}= +0.84317994 \pm 3.1 \cdot 10^{-8} \) | \(a_{305}= +0.56096136 \pm 2.3 \cdot 10^{-8} \) | \(a_{306}= +0.66177535 \pm 2.1 \cdot 10^{-8} \) |
\(a_{307}= +0.65608049 \pm 2.1 \cdot 10^{-8} \) | \(a_{308}= +0.28895630 \pm 4.4 \cdot 10^{-8} \) | \(a_{309}= +1.51615603 \pm 2.2 \cdot 10^{-8} \) |
\(a_{310}= -0.27239168 \pm 6.9 \cdot 10^{-8} \) | \(a_{311}= -0.13255513 \pm 2.7 \cdot 10^{-8} \) | \(a_{312}= -0.27969539 \pm 3.1 \cdot 10^{-8} \) |
\(a_{313}= -1.86325355 \pm 2.7 \cdot 10^{-8} \) | \(a_{314}= -0.46948851 \pm 2.3 \cdot 10^{-8} \) | \(a_{315}= +0.29521762 \pm 2.4 \cdot 10^{-8} \) |
\(a_{316}= +0.32563219 \pm 2.4 \cdot 10^{-8} \) | \(a_{317}= -0.98419070 \pm 2.5 \cdot 10^{-8} \) | \(a_{318}= +0.43712536 \pm 3.2 \cdot 10^{-8} \) |
\(a_{319}= -0.60679695 \pm 2.6 \cdot 10^{-8} \) | \(a_{320}= -0.32653123 \pm 2.4 \cdot 10^{-8} \) | \(a_{321}= -1.29601852 \pm 3.1 \cdot 10^{-8} \) |
\(a_{322}= +0.93319043 \pm 3.5 \cdot 10^{-8} \) | \(a_{323}= +0.93936252 \pm 2.1 \cdot 10^{-8} \) | \(a_{324}= -0.19575273 \pm 2.8 \cdot 10^{-8} \) |
\(a_{325}= -0.32021923 \pm 1.8 \cdot 10^{-8} \) | \(a_{326}= -0.63523382 \pm 2.6 \cdot 10^{-8} \) | \(a_{327}= -0.81987386 \pm 2.7 \cdot 10^{-8} \) |
\(a_{328}= +0.50779109 \pm 2.6 \cdot 10^{-8} \) | \(a_{329}= -0.29295207 \pm 2.6 \cdot 10^{-8} \) | \(a_{330}= +1.31546550 \pm 3.2 \cdot 10^{-8} \) |
\(a_{331}= +1.06250379 \pm 2.5 \cdot 10^{-8} \) | \(a_{332}= -0.21606597 \pm 2.3 \cdot 10^{-8} \) | \(a_{333}= -0.37273099 \pm 3.6 \cdot 10^{-8} \) |
\(a_{334}= +1.55608371 \pm 2.8 \cdot 10^{-8} \) | \(a_{335}= +0.12870223 \pm 1.9 \cdot 10^{-8} \) | \(a_{336}= +0.56908279 \pm 3.4 \cdot 10^{-8} \) |
\(a_{337}= -0.43355496 \pm 3.2 \cdot 10^{-8} \) | \(a_{338}= -0.85526785 \pm 2.6 \cdot 10^{-8} \) | \(a_{339}= -0.65366062 \pm 2.5 \cdot 10^{-8} \) |
\(a_{340}= +0.77191516 \pm 3.1 \cdot 10^{-8} \) | \(a_{341}= +0.20064640 \pm 3.8 \cdot 10^{-8} \) | \(a_{342}= +0.32241632 \pm 2.0 \cdot 10^{-8} \) |
\(a_{343}= -0.97277437 \pm 2.3 \cdot 10^{-8} \) | \(a_{344}= +1.08668131 \pm 3.0 \cdot 10^{-8} \) | \(a_{345}= +1.29775602 \pm 3.1 \cdot 10^{-8} \) |
\(a_{346}= +0.91914646 \pm 2.3 \cdot 10^{-8} \) | \(a_{347}= +1.39692951 \pm 2.2 \cdot 10^{-8} \) | \(a_{348}= +0.18548605 \pm 3.0 \cdot 10^{-8} \) |
\(a_{349}= -0.49289452 \pm 2.1 \cdot 10^{-8} \) | \(a_{350}= +0.42161582 \pm 3.1 \cdot 10^{-8} \) | \(a_{351}= -0.58138655 \pm 3.1 \cdot 10^{-8} \) |
\(a_{352}= -0.91987096 \pm 1.8 \cdot 10^{-8} \) | \(a_{353}= +1.10021050 \pm 2.6 \cdot 10^{-8} \) | \(a_{354}= -1.71518330 \pm 2.5 \cdot 10^{-8} \) |
\(a_{355}= +0.50298690 \pm 2.5 \cdot 10^{-8} \) | \(a_{356}= -0.15388938 \pm 4.0 \cdot 10^{-8} \) | \(a_{357}= +0.63399877 \pm 2.3 \cdot 10^{-8} \) |
\(a_{358}= +1.14155405 \pm 3.3 \cdot 10^{-8} \) | \(a_{359}= -0.95386461 \pm 2.5 \cdot 10^{-8} \) | \(a_{360}= -0.33742994 \pm 2.4 \cdot 10^{-8} \) |
\(a_{361}= -0.54234347 \pm 2.4 \cdot 10^{-8} \) | \(a_{362}= +0.04457405 \pm 2.6 \cdot 10^{-8} \) | \(a_{363}= -0.19257227 \pm 2.7 \cdot 10^{-8} \) |
\(a_{364}= -0.13862416 \pm 2.6 \cdot 10^{-8} \) | \(a_{365}= +1.68926287 \pm 2.3 \cdot 10^{-8} \) | \(a_{366}= +0.41348797 \pm 2.9 \cdot 10^{-8} \) |
\(a_{367}= -0.19450522 \pm 2.2 \cdot 10^{-8} \) | \(a_{368}= -1.64828479 \pm 2.4 \cdot 10^{-8} \) | \(a_{369}= +0.30005611 \pm 1.6 \cdot 10^{-8} \) |
\(a_{370}= -1.42324285 \pm 2.4 \cdot 10^{-8} \) | \(a_{371}= -0.27592424 \pm 2.9 \cdot 10^{-8} \) | \(a_{372}= -0.06133371 \pm 7.1 \cdot 10^{-8} \) |
\(a_{373}= -0.42859758 \pm 2.1 \cdot 10^{-8} \) | \(a_{374}= -1.86136534 \pm 2.4 \cdot 10^{-8} \) | \(a_{375}= -0.39499461 \pm 2.9 \cdot 10^{-8} \) |
\(a_{376}= +0.33484043 \pm 2.5 \cdot 10^{-8} \) | \(a_{377}= +0.29110532 \pm 1.9 \cdot 10^{-8} \) | \(a_{378}= +0.76548110 \pm 3.4 \cdot 10^{-8} \) |
\(a_{379}= +1.13325238 \pm 2.3 \cdot 10^{-8} \) | \(a_{380}= +0.37607633 \pm 2.2 \cdot 10^{-8} \) | \(a_{381}= +0.81936811 \pm 2.1 \cdot 10^{-8} \) |
\(a_{382}= -0.41041918 \pm 3.2 \cdot 10^{-8} \) | \(a_{383}= +0.38838981 \pm 2.3 \cdot 10^{-8} \) | \(a_{384}= -0.87999190 \pm 3.0 \cdot 10^{-8} \) |
\(a_{385}= -0.83035407 \pm 2.6 \cdot 10^{-8} \) | \(a_{386}= -2.08073995 \pm 3.3 \cdot 10^{-8} \) | \(a_{387}= +0.64212503 \pm 1.6 \cdot 10^{-8} \) |
\(a_{388}= +0.80504096 \pm 2.9 \cdot 10^{-8} \) | \(a_{389}= -1.36626613 \pm 3.0 \cdot 10^{-8} \) | \(a_{390}= -0.63108262 \pm 2.3 \cdot 10^{-8} \) |
\(a_{391}= -1.83630668 \pm 2.0 \cdot 10^{-8} \) | \(a_{392}= +0.43970684 \pm 3.7 \cdot 10^{-8} \) | \(a_{393}= +0.66943690 \pm 2.6 \cdot 10^{-8} \) |
\(a_{394}= +0.57106546 \pm 2.7 \cdot 10^{-8} \) | \(a_{395}= -0.93574710 \pm 2.0 \cdot 10^{-8} \) | \(a_{396}= -0.19516004 \pm 2.5 \cdot 10^{-8} \) |
\(a_{397}= +1.19557781 \pm 2.7 \cdot 10^{-8} \) | \(a_{398}= -2.32631466 \pm 3.7 \cdot 10^{-8} \) | \(a_{399}= +0.30888360 \pm 2.3 \cdot 10^{-8} \) |
\(a_{400}= -0.74469575 \pm 3.3 \cdot 10^{-8} \) | \(a_{401}= -0.03143433 \pm 2.8 \cdot 10^{-8} \) | \(a_{402}= +0.09486718 \pm 2.4 \cdot 10^{-8} \) |
\(a_{403}= -0.09625829 \pm 3.2 \cdot 10^{-8} \) | \(a_{404}= -0.36342845 \pm 3.9 \cdot 10^{-8} \) | \(a_{405}= +0.56252133 \pm 2.3 \cdot 10^{-8} \) |
\(a_{406}= -0.38328307 \pm 3.4 \cdot 10^{-8} \) | \(a_{407}= +1.04837473 \pm 2.5 \cdot 10^{-8} \) | \(a_{408}= -0.72465241 \pm 2.7 \cdot 10^{-8} \) |
\(a_{409}= +0.04314060 \pm 2.6 \cdot 10^{-8} \) | \(a_{410}= +1.14573976 \pm 2.4 \cdot 10^{-8} \) | \(a_{411}= +1.03975212 \pm 2.6 \cdot 10^{-8} \) |
\(a_{412}= -0.85889254 \pm 2.7 \cdot 10^{-8} \) | \(a_{413}= +1.08266574 \pm 1.9 \cdot 10^{-8} \) | \(a_{414}= -0.63027344 \pm 2.1 \cdot 10^{-8} \) |
\(a_{415}= +0.62089409 \pm 3.0 \cdot 10^{-8} \) | \(a_{416}= +0.44129973 \pm 2.8 \cdot 10^{-8} \) | \(a_{417}= +0.89736683 \pm 3.4 \cdot 10^{-8} \) |
\(a_{418}= -0.90685543 \pm 2.3 \cdot 10^{-8} \) | \(a_{419}= +0.90330451 \pm 3.0 \cdot 10^{-8} \) | \(a_{420}= +0.25382313 \pm 3.3 \cdot 10^{-8} \) |
\(a_{421}= +0.06329047 \pm 2.7 \cdot 10^{-8} \) | \(a_{422}= +0.52500332 \pm 2.7 \cdot 10^{-8} \) | \(a_{423}= +0.19785877 \pm 2.2 \cdot 10^{-8} \) |
\(a_{424}= +0.31537785 \pm 2.9 \cdot 10^{-8} \) | \(a_{425}= -0.82964412 \pm 3.1 \cdot 10^{-8} \) | \(a_{426}= +0.37075464 \pm 2.9 \cdot 10^{-8} \) |
\(a_{427}= -0.26100374 \pm 2.5 \cdot 10^{-8} \) | \(a_{428}= +0.73418608 \pm 2.1 \cdot 10^{-8} \) | \(a_{429}= +0.46486168 \pm 2.7 \cdot 10^{-8} \) |
\(a_{430}= +2.45190196 \pm 2.7 \cdot 10^{-8} \) | \(a_{431}= -0.46492292 \pm 2.4 \cdot 10^{-8} \) | \(a_{432}= -1.35206151 \pm 3.3 \cdot 10^{-8} \) |
\(a_{433}= -0.07201546 \pm 2.5 \cdot 10^{-8} \) | \(a_{434}= +0.12673822 \pm 7.0 \cdot 10^{-8} \) | \(a_{435}= -0.53301866 \pm 2.7 \cdot 10^{-8} \) |
\(a_{436}= +0.46445321 \pm 3.1 \cdot 10^{-8} \) | \(a_{437}= -0.89464688 \pm 1.7 \cdot 10^{-8} \) | \(a_{438}= +1.24516574 \pm 2.5 \cdot 10^{-8} \) |
\(a_{439}= -1.18976997 \pm 2.7 \cdot 10^{-8} \) | \(a_{440}= +0.94908399 \pm 2.4 \cdot 10^{-8} \) | \(a_{441}= +0.25982481 \pm 2.0 \cdot 10^{-8} \) |
\(a_{442}= +0.89297311 \pm 2.3 \cdot 10^{-8} \) | \(a_{443}= +0.06047380 \pm 2.4 \cdot 10^{-8} \) | \(a_{444}= -0.32046781 \pm 2.5 \cdot 10^{-8} \) |
\(a_{445}= +0.44222144 \pm 2.2 \cdot 10^{-8} \) | \(a_{446}= +2.06540291 \pm 3.6 \cdot 10^{-8} \) | \(a_{447}= -0.42753531 \pm 2.7 \cdot 10^{-8} \) |
\(a_{448}= +0.15192824 \pm 4.0 \cdot 10^{-8} \) | \(a_{449}= +1.34952720 \pm 2.6 \cdot 10^{-8} \) | \(a_{450}= -0.28475780 \pm 2.2 \cdot 10^{-8} \) |
\(a_{451}= -0.84396321 \pm 1.9 \cdot 10^{-8} \) | \(a_{452}= +0.37029449 \pm 2.8 \cdot 10^{-8} \) | \(a_{453}= -0.54296662 \pm 2.2 \cdot 10^{-8} \) |
\(a_{454}= -0.08590440 \pm 3.3 \cdot 10^{-8} \) | \(a_{455}= +0.39835482 \pm 1.9 \cdot 10^{-8} \) | \(a_{456}= -0.35304997 \pm 2.2 \cdot 10^{-8} \) |
\(a_{457}= +0.62382234 \pm 2.6 \cdot 10^{-8} \) | \(a_{458}= -1.30268656 \pm 3.4 \cdot 10^{-8} \) | \(a_{459}= -1.50629284 \pm 2.5 \cdot 10^{-8} \) |
\(a_{460}= -0.73517036 \pm 2.5 \cdot 10^{-8} \) | \(a_{461}= +0.38586260 \pm 2.9 \cdot 10^{-8} \) | \(a_{462}= -0.61205894 \pm 4.3 \cdot 10^{-8} \) |
\(a_{463}= +0.14215609 \pm 2.6 \cdot 10^{-8} \) | \(a_{464}= +0.67698900 \pm 2.5 \cdot 10^{-8} \) | \(a_{465}= +0.17625051 \pm 6.6 \cdot 10^{-8} \) |
\(a_{466}= +1.49658134 \pm 3.0 \cdot 10^{-8} \) | \(a_{467}= -0.85770048 \pm 2.7 \cdot 10^{-8} \) | \(a_{468}= +0.09362625 \pm 2.3 \cdot 10^{-8} \) |
\(a_{469}= -0.05988249 \pm 2.3 \cdot 10^{-8} \) | \(a_{470}= +0.75550753 \pm 2.3 \cdot 10^{-8} \) | \(a_{471}= +0.30378164 \pm 2.4 \cdot 10^{-8} \) |
\(a_{472}= -1.23747298 \pm 2.8 \cdot 10^{-8} \) | \(a_{473}= -1.80609518 \pm 2.5 \cdot 10^{-8} \) | \(a_{474}= -0.68974477 \pm 2.4 \cdot 10^{-8} \) |
\(a_{475}= -0.40420183 \pm 2.1 \cdot 10^{-8} \) | \(a_{476}= -0.35915618 \pm 3.5 \cdot 10^{-8} \) | \(a_{477}= +0.18635824 \pm 2.6 \cdot 10^{-8} \) |
\(a_{478}= +0.93418344 \pm 2.3 \cdot 10^{-8} \) | \(a_{479}= +0.52212067 \pm 2.2 \cdot 10^{-8} \) | \(a_{480}= -0.80802711 \pm 2.0 \cdot 10^{-8} \) |
\(a_{481}= -0.50294825 \pm 2.6 \cdot 10^{-8} \) | \(a_{482}= -2.24765858 \pm 3.3 \cdot 10^{-8} \) | \(a_{483}= -0.60381908 \pm 2.9 \cdot 10^{-8} \) |
\(a_{484}= +0.10909094 \pm 4.0 \cdot 10^{-8} \) | \(a_{485}= -2.31339147 \pm 2.4 \cdot 10^{-8} \) | \(a_{486}= -0.88703558 \pm 2.2 \cdot 10^{-8} \) |
\(a_{487}= +0.27338827 \pm 2.6 \cdot 10^{-8} \) | \(a_{488}= +0.29832391 \pm 2.2 \cdot 10^{-8} \) | \(a_{489}= +0.41102683 \pm 3.4 \cdot 10^{-8} \) |
\(a_{490}= +0.99211982 \pm 2.9 \cdot 10^{-8} \) | \(a_{491}= +0.33423232 \pm 2.1 \cdot 10^{-8} \) | \(a_{492}= +0.25798318 \pm 2.3 \cdot 10^{-8} \) |
\(a_{493}= +0.75421397 \pm 2.4 \cdot 10^{-8} \) | \(a_{494}= +0.43505565 \pm 2.4 \cdot 10^{-8} \) | \(a_{495}= +0.56081813 \pm 3.1 \cdot 10^{-8} \) |
\(a_{496}= -0.22385644 \pm 4.3 \cdot 10^{-8} \) | \(a_{497}= -0.23402942 \pm 2.4 \cdot 10^{-8} \) | \(a_{498}= +0.45766474 \pm 2.1 \cdot 10^{-8} \) |
\(a_{499}= +0.32146401 \pm 2.8 \cdot 10^{-8} \) | \(a_{500}= +0.22376188 \pm 2.6 \cdot 10^{-8} \) | \(a_{501}= -1.00686099 \pm 3.0 \cdot 10^{-8} \) |
\(a_{502}= -0.59002327 \pm 3.8 \cdot 10^{-8} \) | \(a_{503}= +0.31884681 \pm 2.1 \cdot 10^{-8} \) | \(a_{504}= +0.15699918 \pm 2.2 \cdot 10^{-8} \) |
\(a_{505}= +1.04435963 \pm 2.9 \cdot 10^{-8} \) | \(a_{506}= +1.77276040 \pm 3.4 \cdot 10^{-8} \) | \(a_{507}= +0.55339943 \pm 2.5 \cdot 10^{-8} \) |
\(a_{508}= -0.46416671 \pm 2.7 \cdot 10^{-8} \) | \(a_{509}= -0.33174236 \pm 2.5 \cdot 10^{-8} \) | \(a_{510}= -1.63504854 \pm 2.5 \cdot 10^{-8} \) |
\(a_{511}= -0.78597913 \pm 2.0 \cdot 10^{-8} \) | \(a_{512}= +0.18850942 \pm 3.5 \cdot 10^{-8} \) | \(a_{513}= -0.73386445 \pm 2.3 \cdot 10^{-8} \) |
\(a_{514}= +0.32516633 \pm 3.1 \cdot 10^{-8} \) | \(a_{515}= +2.46814111 \pm 2.6 \cdot 10^{-8} \) | \(a_{516}= +0.55208825 \pm 2.8 \cdot 10^{-8} \) |
\(a_{517}= -0.55651430 \pm 1.9 \cdot 10^{-8} \) | \(a_{518}= +0.66220551 \pm 2.8 \cdot 10^{-8} \) | \(a_{519}= -0.59473196 \pm 2.6 \cdot 10^{-8} \) |
\(a_{520}= -0.45531442 \pm 2.2 \cdot 10^{-8} \) | \(a_{521}= +0.85192391 \pm 2.2 \cdot 10^{-8} \) | \(a_{522}= +0.25886800 \pm 2.5 \cdot 10^{-8} \) |
\(a_{523}= +1.08287897 \pm 2.7 \cdot 10^{-8} \) | \(a_{524}= -0.37923166 \pm 2.9 \cdot 10^{-8} \) | \(a_{525}= -0.27280571 \pm 2.9 \cdot 10^{-8} \) |
\(a_{526}= -0.69164136 \pm 3.4 \cdot 10^{-8} \) | \(a_{527}= -0.24939202 \pm 3.6 \cdot 10^{-8} \) | \(a_{528}= +1.08107349 \pm 2.9 \cdot 10^{-8} \) |
\(a_{529}= +0.74889459 \pm 2.2 \cdot 10^{-8} \) | \(a_{530}= +0.71159370 \pm 2.6 \cdot 10^{-8} \) | \(a_{531}= -0.73122852 \pm 2.1 \cdot 10^{-8} \) |
\(a_{532}= -0.17498055 \pm 3.1 \cdot 10^{-8} \) | \(a_{533}= +0.40488368 \pm 1.7 \cdot 10^{-8} \) | \(a_{534}= +0.32596406 \pm 3.8 \cdot 10^{-8} \) |
\(a_{535}= -2.10978062 \pm 2.5 \cdot 10^{-8} \) | \(a_{536}= +0.06844491 \pm 3.1 \cdot 10^{-8} \) | \(a_{537}= -0.73864037 \pm 2.6 \cdot 10^{-8} \) |
\(a_{538}= -1.23578271 \pm 3.3 \cdot 10^{-8} \) | \(a_{539}= -0.73080525 \pm 2.5 \cdot 10^{-8} \) | \(a_{540}= -0.60304842 \pm 2.4 \cdot 10^{-8} \) |
\(a_{541}= -0.50608978 \pm 2.5 \cdot 10^{-8} \) | \(a_{542}= -0.30175342 \pm 2.8 \cdot 10^{-8} \) | \(a_{543}= -0.02884155 \pm 3.0 \cdot 10^{-8} \) |
\(a_{544}= +1.14334710 \pm 2.7 \cdot 10^{-8} \) | \(a_{545}= -1.33466763 \pm 2.9 \cdot 10^{-8} \) | \(a_{546}= +0.29362971 \pm 2.4 \cdot 10^{-8} \) |
\(a_{547}= -0.35777404 \pm 2.4 \cdot 10^{-8} \) | \(a_{548}= -0.58901283 \pm 2.8 \cdot 10^{-8} \) | \(a_{549}= +0.17628098 \pm 2.7 \cdot 10^{-8} \) |
\(a_{550}= +0.80093389 \pm 3.1 \cdot 10^{-8} \) | \(a_{551}= +0.36745233 \pm 2.5 \cdot 10^{-8} \) | \(a_{552}= +0.69015742 \pm 3.1 \cdot 10^{-8} \) |
\(a_{553}= +0.43538380 \pm 2.1 \cdot 10^{-8} \) | \(a_{554}= +0.27503937 \pm 2.5 \cdot 10^{-8} \) | \(a_{555}= +0.92090657 \pm 2.8 \cdot 10^{-8} \) |
\(a_{556}= -0.50835248 \pm 4.1 \cdot 10^{-8} \) | \(a_{557}= -0.01028026 \pm 3.0 \cdot 10^{-8} \) | \(a_{558}= -0.08559854 \pm 6.9 \cdot 10^{-8} \) |
\(a_{559}= +0.86645775 \pm 2.0 \cdot 10^{-8} \) | \(a_{560}= +0.92640639 \pm 3.0 \cdot 10^{-8} \) | \(a_{561}= +1.20439288 \pm 2.3 \cdot 10^{-8} \) |
\(a_{562}= -0.51362552 \pm 3.2 \cdot 10^{-8} \) | \(a_{563}= -0.47468301 \pm 2.5 \cdot 10^{-8} \) | \(a_{564}= +0.17011562 \pm 2.5 \cdot 10^{-8} \) |
\(a_{565}= -1.06409011 \pm 3.1 \cdot 10^{-8} \) | \(a_{566}= +1.28910070 \pm 3.3 \cdot 10^{-8} \) | \(a_{567}= -0.26172956 \pm 2.5 \cdot 10^{-8} \) |
\(a_{568}= +0.26749261 \pm 2.5 \cdot 10^{-8} \) | \(a_{569}= +0.58189907 \pm 2.4 \cdot 10^{-8} \) | \(a_{570}= -0.79659410 \pm 2.5 \cdot 10^{-8} \) |
\(a_{571}= +0.33503264 \pm 2.6 \cdot 10^{-8} \) | \(a_{572}= -0.26334113 \pm 2.2 \cdot 10^{-8} \) | \(a_{573}= +0.26556094 \pm 2.8 \cdot 10^{-8} \) |
\(a_{574}= -0.53308905 \pm 3.1 \cdot 10^{-8} \) | \(a_{575}= +0.79015130 \pm 2.2 \cdot 10^{-8} \) | \(a_{576}= -0.10261178 \pm 3.0 \cdot 10^{-8} \) |
\(a_{577}= -0.57964366 \pm 2.6 \cdot 10^{-8} \) | \(a_{578}= +1.11364059 \pm 2.0 \cdot 10^{-8} \) | \(a_{579}= +1.34633881 \pm 2.6 \cdot 10^{-8} \) |
\(a_{580}= +0.30195161 \pm 2.1 \cdot 10^{-8} \) | \(a_{581}= -0.28888920 \pm 2.1 \cdot 10^{-8} \) | \(a_{582}= -1.70521465 \pm 3.1 \cdot 10^{-8} \) |
\(a_{583}= -0.52416694 \pm 3.1 \cdot 10^{-8} \) | \(a_{584}= +0.89836401 \pm 2.5 \cdot 10^{-8} \) | \(a_{585}= -0.26904740 \pm 2.4 \cdot 10^{-8} \) |
\(a_{586}= +0.01445113 \pm 3.6 \cdot 10^{-8} \) | \(a_{587}= +1.47722088 \pm 2.8 \cdot 10^{-8} \) | \(a_{588}= +0.22339299 \pm 3.5 \cdot 10^{-8} \) |
\(a_{589}= -0.12150356 \pm 3.5 \cdot 10^{-8} \) | \(a_{590}= -2.79213640 \pm 2.4 \cdot 10^{-8} \) | \(a_{591}= -0.36950682 \pm 2.3 \cdot 10^{-8} \) |
\(a_{592}= -1.16964689 \pm 2.7 \cdot 10^{-8} \) | \(a_{593}= +0.97274184 \pm 3.1 \cdot 10^{-8} \) | \(a_{594}= +1.45416685 \pm 3.0 \cdot 10^{-8} \) |
\(a_{595}= +1.03208271 \pm 2.8 \cdot 10^{-8} \) | \(a_{596}= +0.24219597 \pm 3.4 \cdot 10^{-8} \) | \(a_{597}= +1.50523745 \pm 3.0 \cdot 10^{-8} \) |
\(a_{598}= -0.85046569 \pm 1.8 \cdot 10^{-8} \) | \(a_{599}= -1.96329784 \pm 2.8 \cdot 10^{-8} \) | \(a_{600}= +0.31181341 \pm 3.1 \cdot 10^{-8} \) |
\(a_{601}= -1.48039737 \pm 2.6 \cdot 10^{-8} \) | \(a_{602}= -1.14081936 \pm 4.0 \cdot 10^{-8} \) | \(a_{603}= +0.04044442 \pm 2.0 \cdot 10^{-8} \) |
\(a_{604}= +0.30758706 \pm 2.9 \cdot 10^{-8} \) | \(a_{605}= -0.31348722 \pm 2.0 \cdot 10^{-8} \) | \(a_{606}= +0.76980372 \pm 3.4 \cdot 10^{-8} \) |
\(a_{607}= +1.36769206 \pm 2.4 \cdot 10^{-8} \) | \(a_{608}= +0.55703762 \pm 3.4 \cdot 10^{-8} \) | \(a_{609}= +0.24800258 \pm 2.7 \cdot 10^{-8} \) |
\(a_{610}= +0.67311453 \pm 2.2 \cdot 10^{-8} \) | \(a_{611}= +0.26698268 \pm 1.8 \cdot 10^{-8} \) | \(a_{612}= +0.24257279 \pm 2.3 \cdot 10^{-8} \) |
\(a_{613}= +0.65818484 \pm 2.7 \cdot 10^{-8} \) | \(a_{614}= +0.78725085 \pm 2.8 \cdot 10^{-8} \) | \(a_{615}= -0.74134872 \pm 2.1 \cdot 10^{-8} \) |
\(a_{616}= -0.44158918 \pm 4.2 \cdot 10^{-8} \) | \(a_{617}= +0.34073894 \pm 2.3 \cdot 10^{-8} \) | \(a_{618}= +1.81928154 \pm 2.6 \cdot 10^{-8} \) |
\(a_{619}= -1.68347443 \pm 3.2 \cdot 10^{-8} \) | \(a_{620}= -0.09984477 \pm 7.0 \cdot 10^{-8} \) | \(a_{621}= +1.43459011 \pm 2.0 \cdot 10^{-8} \) |
\(a_{622}= -0.15905691 \pm 2.6 \cdot 10^{-8} \) | \(a_{623}= -0.20575650 \pm 3.2 \cdot 10^{-8} \) | \(a_{624}= -0.51863518 \pm 2.5 \cdot 10^{-8} \) |
\(a_{625}= -1.24049629 \pm 2.4 \cdot 10^{-8} \) | \(a_{626}= -2.23577437 \pm 3.1 \cdot 10^{-8} \) | \(a_{627}= +0.58677907 \pm 2.1 \cdot 10^{-8} \) |
\(a_{628}= -0.17209033 \pm 2.4 \cdot 10^{-8} \) | \(a_{629}= -1.30306995 \pm 2.6 \cdot 10^{-8} \) | \(a_{630}= +0.35424057 \pm 2.0 \cdot 10^{-8} \) |
\(a_{631}= -0.71437862 \pm 2.8 \cdot 10^{-8} \) | \(a_{632}= -0.49763807 \pm 2.3 \cdot 10^{-8} \) | \(a_{633}= -0.33970239 \pm 2.4 \cdot 10^{-8} \) |
\(a_{634}= -1.18096022 \pm 2.7 \cdot 10^{-8} \) | \(a_{635}= +1.33384433 \pm 2.0 \cdot 10^{-8} \) | \(a_{636}= +0.16022766 \pm 3.3 \cdot 10^{-8} \) |
\(a_{637}= +0.35059718 \pm 1.9 \cdot 10^{-8} \) | \(a_{638}= -0.72811404 \pm 3.4 \cdot 10^{-8} \) | \(a_{639}= +0.15806262 \pm 3.3 \cdot 10^{-8} \) |
\(a_{640}= -1.43253342 \pm 2.3 \cdot 10^{-8} \) | \(a_{641}= -1.87320403 \pm 2.5 \cdot 10^{-8} \) | \(a_{642}= -1.55513188 \pm 2.8 \cdot 10^{-8} \) |
\(a_{643}= +0.18903746 \pm 2.5 \cdot 10^{-8} \) | \(a_{644}= +0.34205959 \pm 3.6 \cdot 10^{-8} \) | \(a_{645}= -1.58649848 \pm 2.4 \cdot 10^{-8} \) |
\(a_{646}= +1.12716954 \pm 2.5 \cdot 10^{-8} \) | \(a_{647}= +0.25007155 \pm 3.0 \cdot 10^{-8} \) | \(a_{648}= +0.29915351 \pm 2.8 \cdot 10^{-8} \) |
\(a_{649}= +2.05671522 \pm 2.3 \cdot 10^{-8} \) | \(a_{650}= -0.38424075 \pm 1.9 \cdot 10^{-8} \) | \(a_{651}= -0.08200572 \pm 6.7 \cdot 10^{-8} \) |
\(a_{652}= -0.23284403 \pm 2.8 \cdot 10^{-8} \) | \(a_{653}= -0.58433996 \pm 2.5 \cdot 10^{-8} \) | \(a_{654}= -0.98379147 \pm 3.4 \cdot 10^{-8} \) |
\(a_{655}= +1.08977223 \pm 3.1 \cdot 10^{-8} \) | \(a_{656}= +0.94158979 \pm 2.8 \cdot 10^{-8} \) | \(a_{657}= +0.53084746 \pm 2.0 \cdot 10^{-8} \) |
\(a_{658}= -0.35152206 \pm 3.3 \cdot 10^{-8} \) | \(a_{659}= -0.46034506 \pm 2.5 \cdot 10^{-8} \) | \(a_{660}= +0.48218196 \pm 2.5 \cdot 10^{-8} \) |
\(a_{661}= +0.71722441 \pm 2.3 \cdot 10^{-8} \) | \(a_{662}= +1.27493048 \pm 2.8 \cdot 10^{-8} \) | \(a_{663}= -0.57779654 \pm 2.4 \cdot 10^{-8} \) |
\(a_{664}= +0.33019663 \pm 1.9 \cdot 10^{-8} \) | \(a_{665}= +0.50282972 \pm 2.3 \cdot 10^{-8} \) | \(a_{666}= -0.44725121 \pm 3.2 \cdot 10^{-8} \) |
\(a_{667}= -0.71831179 \pm 2.3 \cdot 10^{-8} \) | \(a_{668}= +0.57038021 \pm 2.8 \cdot 10^{-8} \) | \(a_{669}= -1.33641500 \pm 3.0 \cdot 10^{-8} \) |
\(a_{670}= +0.15443370 \pm 2.1 \cdot 10^{-8} \) | \(a_{671}= -0.49582281 \pm 2.3 \cdot 10^{-8} \) | \(a_{672}= +0.37595833 \pm 2.9 \cdot 10^{-8} \) |
\(a_{673}= -0.03670092 \pm 2.4 \cdot 10^{-8} \) | \(a_{674}= -0.52023572 \pm 4.0 \cdot 10^{-8} \) | \(a_{675}= +0.64814841 \pm 2.4 \cdot 10^{-8} \) |
\(a_{676}= -0.31349718 \pm 2.5 \cdot 10^{-8} \) | \(a_{677}= +0.07327478 \pm 3.1 \cdot 10^{-8} \) | \(a_{678}= -0.78434717 \pm 3.0 \cdot 10^{-8} \) |
\(a_{679}= +1.07637328 \pm 2.5 \cdot 10^{-8} \) | \(a_{680}= -1.17965723 \pm 2.5 \cdot 10^{-8} \) | \(a_{681}= +0.05558428 \pm 3.6 \cdot 10^{-8} \) |
\(a_{682}= +0.24076169 \pm 7.0 \cdot 10^{-8} \) | \(a_{683}= -0.59651469 \pm 2.9 \cdot 10^{-8} \) | \(a_{684}= +0.11818123 \pm 2.2 \cdot 10^{-8} \) |
\(a_{685}= +1.69260611 \pm 2.1 \cdot 10^{-8} \) | \(a_{686}= -1.16726143 \pm 2.8 \cdot 10^{-8} \) | \(a_{687}= +0.84290085 \pm 2.9 \cdot 10^{-8} \) |
\(a_{688}= +2.01501767 \pm 3.7 \cdot 10^{-8} \) | \(a_{689}= +0.25146433 \pm 1.9 \cdot 10^{-8} \) | \(a_{690}= +1.55721676 \pm 3.4 \cdot 10^{-8} \) |
\(a_{691}= +0.77667650 \pm 2.6 \cdot 10^{-8} \) | \(a_{692}= +0.33691179 \pm 2.2 \cdot 10^{-8} \) | \(a_{693}= -0.26093710 \pm 2.0 \cdot 10^{-8} \) |
\(a_{694}= +1.67621803 \pm 2.2 \cdot 10^{-8} \) | \(a_{695}= +1.46081797 \pm 2.7 \cdot 10^{-8} \) | \(a_{696}= -0.28346375 \pm 2.8 \cdot 10^{-8} \) |
\(a_{697}= +1.04899810 \pm 2.3 \cdot 10^{-8} \) | \(a_{698}= -0.59143906 \pm 2.3 \cdot 10^{-8} \) | \(a_{699}= -0.96836010 \pm 3.4 \cdot 10^{-8} \) |
\(a_{700}= +0.15454266 \pm 3.7 \cdot 10^{-8} \) | \(a_{701}= -1.01228493 \pm 2.7 \cdot 10^{-8} \) | \(a_{702}= -0.69762333 \pm 2.8 \cdot 10^{-8} \) |
\(a_{703}= -0.63485445 \pm 2.4 \cdot 10^{-8} \) | \(a_{704}= +0.28861459 \pm 2.5 \cdot 10^{-8} \) | \(a_{705}= -0.48884971 \pm 2.6 \cdot 10^{-8} \) |
\(a_{706}= +1.32017591 \pm 3.3 \cdot 10^{-8} \) | \(a_{707}= -0.48591897 \pm 3.0 \cdot 10^{-8} \) | \(a_{708}= -0.62869794 \pm 2.6 \cdot 10^{-8} \) |
\(a_{709}= -0.88258178 \pm 3.0 \cdot 10^{-8} \) | \(a_{710}= +0.60354921 \pm 2.4 \cdot 10^{-8} \) | \(a_{711}= -0.29405665 \pm 2.4 \cdot 10^{-8} \) |
\(a_{712}= +0.23517703 \pm 4.0 \cdot 10^{-8} \) | \(a_{713}= +0.23752043 \pm 3.2 \cdot 10^{-8} \) | \(a_{714}= +0.76075432 \pm 2.9 \cdot 10^{-8} \) |
\(a_{715}= +0.75674549 \pm 2.0 \cdot 10^{-8} \) | \(a_{716}= +0.41843497 \pm 3.7 \cdot 10^{-8} \) | \(a_{717}= -0.60446161 \pm 2.1 \cdot 10^{-8} \) |
\(a_{718}= -1.14457104 \pm 3.1 \cdot 10^{-8} \) | \(a_{719}= -1.41967054 \pm 2.7 \cdot 10^{-8} \) | \(a_{720}= -0.62569152 \pm 2.4 \cdot 10^{-8} \) |
\(a_{721}= -1.14837510 \pm 2.4 \cdot 10^{-8} \) | \(a_{722}= -0.65077435 \pm 2.9 \cdot 10^{-8} \) | \(a_{723}= +1.45434319 \pm 3.2 \cdot 10^{-8} \) |
\(a_{724}= +0.01633855 \pm 2.4 \cdot 10^{-8} \) | \(a_{725}= -0.32453356 \pm 2.6 \cdot 10^{-8} \) | \(a_{726}= -0.23107330 \pm 3.6 \cdot 10^{-8} \) |
\(a_{727}= +0.31351217 \pm 2.6 \cdot 10^{-8} \) | \(a_{728}= +0.21184840 \pm 2.9 \cdot 10^{-8} \) | \(a_{729}= +1.01901648 \pm 2.3 \cdot 10^{-8} \) |
\(a_{730}= +2.02699768 \pm 2.4 \cdot 10^{-8} \) | \(a_{731}= +2.24487322 \pm 2.2 \cdot 10^{-8} \) | \(a_{732}= +0.15156341 \pm 1.8 \cdot 10^{-8} \) |
\(a_{733}= +1.80462748 \pm 2.5 \cdot 10^{-8} \) | \(a_{734}= -0.23339270 \pm 2.6 \cdot 10^{-8} \) | \(a_{735}= -0.64194924 \pm 2.5 \cdot 10^{-8} \) |
\(a_{736}= -1.08892135 \pm 2.0 \cdot 10^{-8} \) | \(a_{737}= -0.11375739 \pm 2.0 \cdot 10^{-8} \) | \(a_{738}= +0.36004642 \pm 1.9 \cdot 10^{-8} \) |
\(a_{739}= -0.32580174 \pm 2.3 \cdot 10^{-8} \) | \(a_{740}= -0.52168759 \pm 2.3 \cdot 10^{-8} \) | \(a_{741}= -0.28150193 \pm 1.8 \cdot 10^{-8} \) |
\(a_{742}= -0.33108986 \pm 3.8 \cdot 10^{-8} \) | \(a_{743}= +0.70539707 \pm 2.7 \cdot 10^{-8} \) | \(a_{744}= +0.09373149 \pm 7.0 \cdot 10^{-8} \) |
\(a_{745}= -0.69598211 \pm 2.4 \cdot 10^{-8} \) | \(a_{746}= -0.51428721 \pm 2.5 \cdot 10^{-8} \) | \(a_{747}= +0.19511472 \pm 2.0 \cdot 10^{-8} \) |
\(a_{748}= -0.68228075 \pm 2.6 \cdot 10^{-8} \) | \(a_{749}= +0.98163736 \pm 2.4 \cdot 10^{-8} \) | \(a_{750}= -0.47396600 \pm 2.6 \cdot 10^{-8} \) |
\(a_{751}= -1.17786362 \pm 3.2 \cdot 10^{-8} \) | \(a_{752}= +0.62088984 \pm 2.8 \cdot 10^{-8} \) | \(a_{753}= +0.38177343 \pm 3.0 \cdot 10^{-8} \) |
\(a_{754}= +0.34930609 \pm 2.2 \cdot 10^{-8} \) | \(a_{755}= -0.88389203 \pm 1.9 \cdot 10^{-8} \) | \(a_{756}= +0.28058598 \pm 3.7 \cdot 10^{-8} \) |
\(a_{757}= -1.12133627 \pm 2.6 \cdot 10^{-8} \) | \(a_{758}= +1.35982385 \pm 2.8 \cdot 10^{-8} \) | \(a_{759}= -1.14706123 \pm 2.9 \cdot 10^{-8} \) |
\(a_{760}= -0.57472788 \pm 1.7 \cdot 10^{-8} \) | \(a_{761}= -0.63945410 \pm 2.2 \cdot 10^{-8} \) | \(a_{762}= +0.98318462 \pm 2.5 \cdot 10^{-8} \) |
\(a_{763}= +0.62099329 \pm 2.7 \cdot 10^{-8} \) | \(a_{764}= -0.15043855 \pm 3.2 \cdot 10^{-8} \) | \(a_{765}= -0.69706493 \pm 2.9 \cdot 10^{-8} \) |
\(a_{766}= +0.46604069 \pm 3.1 \cdot 10^{-8} \) | \(a_{767}= -0.98669044 \pm 1.9 \cdot 10^{-8} \) | \(a_{768}= -0.85534385 \pm 3.4 \cdot 10^{-8} \) |
\(a_{769}= -0.10256089 \pm 2.4 \cdot 10^{-8} \) | \(a_{770}= -0.99636699 \pm 2.6 \cdot 10^{-8} \) | \(a_{771}= -0.21039825 \pm 3.2 \cdot 10^{-8} \) |
\(a_{772}= -0.76269219 \pm 3.1 \cdot 10^{-8} \) | \(a_{773}= -1.24638522 \pm 2.7 \cdot 10^{-8} \) | \(a_{774}= +0.77050527 \pm 1.9 \cdot 10^{-8} \) |
\(a_{775}= +0.10731183 \pm 3.9 \cdot 10^{-8} \) | \(a_{776}= -1.23028078 \pm 2.9 \cdot 10^{-8} \) | \(a_{777}= -0.42847881 \pm 2.2 \cdot 10^{-8} \) |
\(a_{778}= -1.63942411 \pm 3.8 \cdot 10^{-8} \) | \(a_{779}= +0.51107088 \pm 2.0 \cdot 10^{-8} \) | \(a_{780}= -0.23132241 \pm 2.1 \cdot 10^{-8} \) |
\(a_{781}= -0.44458030 \pm 2.4 \cdot 10^{-8} \) | \(a_{782}= -2.20344000 \pm 2.4 \cdot 10^{-8} \) | \(a_{783}= -0.58921961 \pm 2.3 \cdot 10^{-8} \) |
\(a_{784}= +0.81534213 \pm 3.4 \cdot 10^{-8} \) | \(a_{785}= +0.49452427 \pm 2.6 \cdot 10^{-8} \) | \(a_{786}= +0.80327761 \pm 2.9 \cdot 10^{-8} \) |
\(a_{787}= +0.77946560 \pm 2.6 \cdot 10^{-8} \) | \(a_{788}= +0.20932321 \pm 3.3 \cdot 10^{-8} \) | \(a_{789}= +0.44752522 \pm 2.7 \cdot 10^{-8} \) |
\(a_{790}= -1.12283128 \pm 2.1 \cdot 10^{-8} \) | \(a_{791}= +0.49509916 \pm 2.8 \cdot 10^{-8} \) | \(a_{792}= +0.29824774 \pm 2.5 \cdot 10^{-8} \) |
\(a_{793}= +0.23786649 \pm 2.3 \cdot 10^{-8} \) | \(a_{794}= +1.43461002 \pm 3.5 \cdot 10^{-8} \) | \(a_{795}= -0.46043534 \pm 3.3 \cdot 10^{-8} \) |
\(a_{796}= -0.85270724 \pm 3.1 \cdot 10^{-8} \) | \(a_{797}= +0.84001629 \pm 2.2 \cdot 10^{-8} \) | \(a_{798}= +0.37063879 \pm 3.1 \cdot 10^{-8} \) |
\(a_{799}= +0.69171552 \pm 2.5 \cdot 10^{-8} \) | \(a_{800}= -0.49197512 \pm 2.8 \cdot 10^{-8} \) | \(a_{801}= +0.13896720 \pm 2.5 \cdot 10^{-8} \) |
\(a_{802}= -0.03771900 \pm 3.7 \cdot 10^{-8} \) | \(a_{803}= -1.49310649 \pm 2.4 \cdot 10^{-8} \) | \(a_{804}= +0.03477343 \pm 2.4 \cdot 10^{-8} \) |
\(a_{805}= -0.98295339 \pm 3.0 \cdot 10^{-8} \) | \(a_{806}= -0.11550323 \pm 6.4 \cdot 10^{-8} \) | \(a_{807}= +0.79961084 \pm 3.2 \cdot 10^{-8} \) |
\(a_{808}= +0.55539912 \pm 3.3 \cdot 10^{-8} \) | \(a_{809}= -0.44400878 \pm 2.3 \cdot 10^{-8} \) | \(a_{810}= +0.67498638 \pm 2.3 \cdot 10^{-8} \) |
\(a_{811}= +1.55030935 \pm 2.8 \cdot 10^{-8} \) | \(a_{812}= -0.14049185 \pm 3.4 \cdot 10^{-8} \) | \(a_{813}= +0.19524897 \pm 2.7 \cdot 10^{-8} \) |
\(a_{814}= +1.25797659 \pm 2.5 \cdot 10^{-8} \) | \(a_{815}= +0.66910806 \pm 2.5 \cdot 10^{-8} \) | \(a_{816}= -1.34371265 \pm 2.5 \cdot 10^{-8} \) |
\(a_{817}= +1.09370011 \pm 3.2 \cdot 10^{-8} \) | \(a_{818}= +0.05176571 \pm 3.0 \cdot 10^{-8} \) | \(a_{819}= +0.12518220 \pm 1.8 \cdot 10^{-8} \) |
\(a_{820}= +0.41996923 \pm 2.5 \cdot 10^{-8} \) | \(a_{821}= +1.20958876 \pm 2.4 \cdot 10^{-8} \) | \(a_{822}= +1.24763007 \pm 3.0 \cdot 10^{-8} \) |
\(a_{823}= -1.68264794 \pm 2.7 \cdot 10^{-8} \) | \(a_{824}= +1.31257793 \pm 2.6 \cdot 10^{-8} \) | \(a_{825}= -0.51824274 \pm 3.2 \cdot 10^{-8} \) |
\(a_{826}= +1.29912341 \pm 2.4 \cdot 10^{-8} \) | \(a_{827}= +0.76555240 \pm 2.5 \cdot 10^{-8} \) | \(a_{828}= -0.23102581 \pm 2.1 \cdot 10^{-8} \) |
\(a_{829}= -1.04048835 \pm 2.8 \cdot 10^{-8} \) | \(a_{830}= +0.74502963 \pm 1.7 \cdot 10^{-8} \) | \(a_{831}= -0.17796370 \pm 1.9 \cdot 10^{-8} \) |
\(a_{832}= -0.13846023 \pm 2.9 \cdot 10^{-8} \) | \(a_{833}= +0.90834922 \pm 2.3 \cdot 10^{-8} \) | \(a_{834}= +1.07677764 \pm 4.0 \cdot 10^{-8} \) |
\(a_{835}= -1.63906284 \pm 3.2 \cdot 10^{-8} \) | \(a_{836}= -0.33240653 \pm 2.1 \cdot 10^{-8} \) | \(a_{837}= +0.19483419 \pm 3.8 \cdot 10^{-8} \) |
\(a_{838}= +1.08390244 \pm 3.9 \cdot 10^{-8} \) | \(a_{839}= -1.39870374 \pm 2.4 \cdot 10^{-8} \) | \(a_{840}= -0.38789792 \pm 3.8 \cdot 10^{-8} \) |
\(a_{841}= -0.70497260 \pm 2.4 \cdot 10^{-8} \) | \(a_{842}= +0.07594415 \pm 3.2 \cdot 10^{-8} \) | \(a_{843}= +0.33234041 \pm 2.8 \cdot 10^{-8} \) |
\(a_{844}= +0.19243920 \pm 3.0 \cdot 10^{-8} \) | \(a_{845}= +0.90087554 \pm 2.1 \cdot 10^{-8} \) | \(a_{846}= +0.23741673 \pm 2.0 \cdot 10^{-8} \) |
\(a_{847}= +0.14585913 \pm 3.1 \cdot 10^{-8} \) | \(a_{848}= +0.58480066 \pm 2.6 \cdot 10^{-8} \) | \(a_{849}= -0.83411014 \pm 3.8 \cdot 10^{-8} \) |
\(a_{850}= -0.99551511 \pm 2.2 \cdot 10^{-8} \) | \(a_{851}= +1.24104106 \pm 1.9 \cdot 10^{-8} \) | \(a_{852}= +0.13589957 \pm 2.4 \cdot 10^{-8} \) |
\(a_{853}= +0.86874501 \pm 3.3 \cdot 10^{-8} \) | \(a_{854}= -0.31318629 \pm 2.4 \cdot 10^{-8} \) | \(a_{855}= -0.33960937 \pm 1.9 \cdot 10^{-8} \) |
\(a_{856}= -1.12199884 \pm 2.6 \cdot 10^{-8} \) | \(a_{857}= +0.61367486 \pm 2.7 \cdot 10^{-8} \) | \(a_{858}= +0.55780161 \pm 2.4 \cdot 10^{-8} \) |
\(a_{859}= -1.37522549 \pm 2.5 \cdot 10^{-8} \) | \(a_{860}= +0.89874108 \pm 2.0 \cdot 10^{-8} \) | \(a_{861}= +0.34493425 \pm 2.1 \cdot 10^{-8} \) |
\(a_{862}= -0.55787509 \pm 3.3 \cdot 10^{-8} \) | \(a_{863}= -1.03639215 \pm 2.2 \cdot 10^{-8} \) | \(a_{864}= -0.89322468 \pm 3.3 \cdot 10^{-8} \) |
\(a_{865}= -0.96816052 \pm 1.7 \cdot 10^{-8} \) | \(a_{866}= -0.08641353 \pm 2.4 \cdot 10^{-8} \) | \(a_{867}= -0.72057901 \pm 1.8 \cdot 10^{-8} \) |
\(a_{868}= +0.04645571 \pm 7.0 \cdot 10^{-8} \) | \(a_{869}= +0.82708860 \pm 2.2 \cdot 10^{-8} \) | \(a_{870}= -0.63958524 \pm 2.4 \cdot 10^{-8} \) |
\(a_{871}= +0.05457407 \pm 1.9 \cdot 10^{-8} \) | \(a_{872}= -0.70978732 \pm 3.0 \cdot 10^{-8} \) | \(a_{873}= -0.72697862 \pm 1.8 \cdot 10^{-8} \) |
\(a_{874}= -1.07351388 \pm 2.2 \cdot 10^{-8} \) | \(a_{875}= +0.29917896 \pm 2.5 \cdot 10^{-8} \) | \(a_{876}= +0.45641368 \pm 2.2 \cdot 10^{-8} \) |
\(a_{877}= +1.68800817 \pm 3.1 \cdot 10^{-8} \) | \(a_{878}= -1.42764102 \pm 3.2 \cdot 10^{-8} \) | \(a_{879}= -0.00935057 \pm 3.5 \cdot 10^{-8} \) |
\(a_{880}= +1.75987292 \pm 2.7 \cdot 10^{-8} \) | \(a_{881}= +1.35575500 \pm 2.1 \cdot 10^{-8} \) | \(a_{882}= +0.31177166 \pm 1.7 \cdot 10^{-8} \) |
\(a_{883}= -0.66711441 \pm 2.3 \cdot 10^{-8} \) | \(a_{884}= +0.32731799 \pm 2.4 \cdot 10^{-8} \) | \(a_{885}= +1.80664652 \pm 2.2 \cdot 10^{-8} \) |
\(a_{886}= +0.07256434 \pm 3.0 \cdot 10^{-8} \) | \(a_{887}= -1.31017425 \pm 2.9 \cdot 10^{-8} \) | \(a_{888}= +0.48974576 \pm 3.5 \cdot 10^{-8} \) |
\(a_{889}= -0.62061023 \pm 2.4 \cdot 10^{-8} \) | \(a_{890}= +0.53063490 \pm 3.0 \cdot 10^{-8} \) | \(a_{891}= -0.49720162 \pm 2.9 \cdot 10^{-8} \) |
\(a_{892}= +0.75707042 \pm 3.6 \cdot 10^{-8} \) | \(a_{893}= +0.33700315 \pm 2.4 \cdot 10^{-8} \) | \(a_{894}= -0.51301256 \pm 3.4 \cdot 10^{-8} \) |
\(a_{895}= -1.20242813 \pm 2.9 \cdot 10^{-8} \) | \(a_{896}= +0.66652822 \pm 4.2 \cdot 10^{-8} \) | \(a_{897}= +0.55029220 \pm 1.9 \cdot 10^{-8} \) |
\(a_{898}= +1.61933857 \pm 3.2 \cdot 10^{-8} \) | \(a_{899}= -0.09755518 \pm 3.6 \cdot 10^{-8} \) | \(a_{900}= -0.10437756 \pm 2.6 \cdot 10^{-8} \) |
\(a_{901}= +0.65150959 \pm 2.6 \cdot 10^{-8} \) | \(a_{902}= -1.01269702 \pm 2.2 \cdot 10^{-8} \) | \(a_{903}= +0.73816498 \pm 2.6 \cdot 10^{-8} \) |
\(a_{904}= -0.56589195 \pm 2.1 \cdot 10^{-8} \) | \(a_{905}= -0.04695099 \pm 2.2 \cdot 10^{-8} \) | \(a_{906}= -0.65152209 \pm 2.6 \cdot 10^{-8} \) |
\(a_{907}= -1.20162388 \pm 2.5 \cdot 10^{-8} \) | \(a_{908}= -0.03148813 \pm 2.5 \cdot 10^{-8} \) | \(a_{909}= +0.32818792 \pm 2.6 \cdot 10^{-8} \) |
\(a_{910}= +0.47799801 \pm 2.1 \cdot 10^{-8} \) | \(a_{911}= -1.27363764 \pm 3.5 \cdot 10^{-8} \) | \(a_{912}= -0.65465553 \pm 2.8 \cdot 10^{-8} \) |
\(a_{913}= -0.54879617 \pm 2.5 \cdot 10^{-8} \) | \(a_{914}= +0.74854331 \pm 3.1 \cdot 10^{-8} \) | \(a_{915}= -0.43553747 \pm 2.7 \cdot 10^{-8} \) |
\(a_{916}= -0.47749786 \pm 3.8 \cdot 10^{-8} \) | \(a_{917}= -0.50704852 \pm 3.0 \cdot 10^{-8} \) | \(a_{918}= -1.80744640 \pm 2.5 \cdot 10^{-8} \) |
\(a_{919}= -1.00397012 \pm 2.6 \cdot 10^{-8} \) | \(a_{920}= +1.12350304 \pm 2.6 \cdot 10^{-8} \) | \(a_{921}= -0.50938915 \pm 2.2 \cdot 10^{-8} \) |
\(a_{922}= +0.46300822 \pm 3.7 \cdot 10^{-8} \) | \(a_{923}= +0.21328336 \pm 2.1 \cdot 10^{-8} \) | \(a_{924}= -0.22434931 \pm 4.6 \cdot 10^{-8} \) |
\(a_{925}= +0.56070287 \pm 2.4 \cdot 10^{-8} \) | \(a_{926}= +0.17057740 \pm 2.7 \cdot 10^{-8} \) | \(a_{927}= +0.77560839 \pm 1.9 \cdot 10^{-8} \) |
\(a_{928}= +0.44724539 \pm 2.7 \cdot 10^{-8} \) | \(a_{929}= +0.17937462 \pm 2.3 \cdot 10^{-8} \) | \(a_{930}= +0.21148833 \pm 9.8 \cdot 10^{-8} \) |
\(a_{931}= +0.44254688 \pm 1.7 \cdot 10^{-8} \) | \(a_{932}= +0.54856971 \pm 2.6 \cdot 10^{-8} \) | \(a_{933}= +0.10291747 \pm 3.5 \cdot 10^{-8} \) |
\(a_{934}= -1.02918078 \pm 3.3 \cdot 10^{-8} \) | \(a_{935}= +1.96062380 \pm 3.0 \cdot 10^{-8} \) | \(a_{936}= -0.14308164 \pm 3.2 \cdot 10^{-8} \) |
\(a_{937}= +0.83267813 \pm 2.3 \cdot 10^{-8} \) | \(a_{938}= -0.07185481 \pm 3.4 \cdot 10^{-8} \) | \(a_{939}= +1.44665353 \pm 2.6 \cdot 10^{-8} \) |
\(a_{940}= +0.27693018 \pm 2.6 \cdot 10^{-8} \) | \(a_{941}= +0.15452081 \pm 2.7 \cdot 10^{-8} \) | \(a_{942}= +0.36451679 \pm 2.5 \cdot 10^{-8} \) |
\(a_{943}= -0.99906357 \pm 1.7 \cdot 10^{-8} \) | \(a_{944}= -2.29462852 \pm 3.1 \cdot 10^{-8} \) | \(a_{945}= -0.80630086 \pm 2.3 \cdot 10^{-8} \) |
\(a_{946}= -2.16718831 \pm 3.4 \cdot 10^{-8} \) | \(a_{947}= -0.04856826 \pm 2.5 \cdot 10^{-8} \) | \(a_{948}= -0.25282494 \pm 2.0 \cdot 10^{-8} \) |
\(a_{949}= +0.71630427 \pm 1.8 \cdot 10^{-8} \) | \(a_{950}= -0.48501402 \pm 2.3 \cdot 10^{-8} \) | \(a_{951}= +0.76413806 \pm 2.6 \cdot 10^{-8} \) |
\(a_{952}= +0.54887015 \pm 3.5 \cdot 10^{-8} \) | \(a_{953}= +0.59383598 \pm 2.1 \cdot 10^{-8} \) | \(a_{954}= +0.22361689 \pm 2.0 \cdot 10^{-8} \) |
\(a_{955}= +0.43230503 \pm 2.3 \cdot 10^{-8} \) | \(a_{956}= +0.34242357 \pm 2.4 \cdot 10^{-8} \) | \(a_{957}= +0.47112480 \pm 3.0 \cdot 10^{-8} \) |
\(a_{958}= +0.62650841 \pm 2.5 \cdot 10^{-8} \) | \(a_{959}= -0.78753468 \pm 2.3 \cdot 10^{-8} \) | \(a_{960}= +0.25352296 \pm 2.8 \cdot 10^{-8} \) |
\(a_{961}= +0.03225806 \pm 1.7 \cdot 10^{-6} \) | \(a_{962}= -0.60350284 \pm 2.5 \cdot 10^{-8} \) | \(a_{963}= -0.66299432 \pm 3.2 \cdot 10^{-8} \) |
\(a_{964}= -0.82387597 \pm 2.9 \cdot 10^{-8} \) | \(a_{965}= +2.19169670 \pm 3.4 \cdot 10^{-8} \) | \(a_{966}= -0.72454080 \pm 3.7 \cdot 10^{-8} \) |
\(a_{967}= -1.02703807 \pm 2.8 \cdot 10^{-8} \) | \(a_{968}= -0.16671510 \pm 3.6 \cdot 10^{-8} \) | \(a_{969}= -0.72933290 \pm 1.8 \cdot 10^{-8} \) |
\(a_{970}= -2.77590849 \pm 3.1 \cdot 10^{-8} \) | \(a_{971}= +1.31926428 \pm 2.9 \cdot 10^{-8} \) | \(a_{972}= -0.32514159 \pm 2.3 \cdot 10^{-8} \) |
\(a_{973}= -0.67968844 \pm 3.3 \cdot 10^{-8} \) | \(a_{974}= +0.32804687 \pm 3.2 \cdot 10^{-8} \) | \(a_{975}= +0.24862225 \pm 1.8 \cdot 10^{-8} \) |
\(a_{976}= +0.55317777 \pm 2.2 \cdot 10^{-8} \) | \(a_{977}= -0.68517126 \pm 2.8 \cdot 10^{-8} \) | \(a_{978}= +0.49320354 \pm 3.1 \cdot 10^{-8} \) |
\(a_{979}= -0.39087090 \pm 2.8 \cdot 10^{-8} \) | \(a_{980}= +0.36366007 \pm 3.2 \cdot 10^{-8} \) | \(a_{981}= -0.41941662 \pm 2.1 \cdot 10^{-8} \) |
\(a_{982}= +0.40105549 \pm 2.8 \cdot 10^{-8} \) | \(a_{983}= -0.83483793 \pm 2.3 \cdot 10^{-8} \) | \(a_{984}= -0.39425540 \pm 2.4 \cdot 10^{-8} \) |
\(a_{985}= -0.60151788 \pm 3.0 \cdot 10^{-8} \) | \(a_{986}= +0.90500419 \pm 2.8 \cdot 10^{-8} \) | \(a_{987}= +0.22745167 \pm 2.5 \cdot 10^{-8} \) |
\(a_{988}= +0.15946901 \pm 2.2 \cdot 10^{-8} \) | \(a_{989}= -2.13801250 \pm 2.1 \cdot 10^{-8} \) | \(a_{990}= +0.67294266 \pm 2.7 \cdot 10^{-8} \) |
\(a_{991}= +0.72065474 \pm 3.0 \cdot 10^{-8} \) | \(a_{992}= -0.14788831 \pm 4.2 \cdot 10^{-8} \) | \(a_{993}= -0.82494133 \pm 2.9 \cdot 10^{-8} \) |
\(a_{994}= -0.28081899 \pm 3.2 \cdot 10^{-8} \) | \(a_{995}= +2.45036683 \pm 2.8 \cdot 10^{-8} \) | \(a_{996}= +0.16775634 \pm 1.9 \cdot 10^{-8} \) |
\(a_{997}= +0.76057349 \pm 2.6 \cdot 10^{-8} \) | \(a_{998}= +0.38573440 \pm 3.6 \cdot 10^{-8} \) | \(a_{999}= +1.01800603 \pm 3.4 \cdot 10^{-8} \) |
\(a_{1000}= -0.34195769 \pm 2.0 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000