Maass form invariants
Level: | \( 31 \) |
Weight: | \( 0 \) |
Character: | 31.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(3.47898831142711573223006071544 \pm 5 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.72791016 \pm 9.3 \cdot 10^{-7} \) | \(a_{3}= -1.32422091 \pm 8.4 \cdot 10^{-7} \) |
\(a_{4}= -0.47014679 \pm 1.0 \cdot 10^{-6} \) | \(a_{5}= +0.79843234 \pm 7.8 \cdot 10^{-7} \) | \(a_{6}= +0.96391386 \pm 1.0 \cdot 10^{-6} \) |
\(a_{7}= -1.08230912 \pm 7.6 \cdot 10^{-7} \) | \(a_{8}= +1.07013479 \pm 1.0 \cdot 10^{-6} \) | \(a_{9}= +0.75356103 \pm 7.9 \cdot 10^{-7} \) |
\(a_{10}= -0.58118701 \pm 9.5 \cdot 10^{-7} \) | \(a_{11}= +1.02328670 \pm 7.6 \cdot 10^{-7} \) | \(a_{12}= +0.62257821 \pm 1.2 \cdot 10^{-6} \) |
\(a_{13}= -1.75405630 \pm 8.0 \cdot 10^{-7} \) | \(a_{14}= +0.78782381 \pm 7.9 \cdot 10^{-7} \) | \(a_{15}= -1.05730080 \pm 8.1 \cdot 10^{-7} \) |
\(a_{16}= -0.30881520 \pm 9.5 \cdot 10^{-7} \) | \(a_{17}= +0.58426123 \pm 7.2 \cdot 10^{-7} \) | \(a_{18}= -0.54852473 \pm 1.0 \cdot 10^{-6} \) |
\(a_{19}= +1.49729922 \pm 8.1 \cdot 10^{-7} \) | \(a_{20}= -0.37538040 \pm 9.9 \cdot 10^{-7} \) | \(a_{21}= +1.43321637 \pm 8.2 \cdot 10^{-7} \) |
\(a_{22}= -0.74486079 \pm 8.3 \cdot 10^{-7} \) | \(a_{23}= +1.01158468 \pm 7.3 \cdot 10^{-7} \) | \(a_{24}= -1.41709487 \pm 1.2 \cdot 10^{-6} \) |
\(a_{25}= -0.36250580 \pm 7.4 \cdot 10^{-7} \) | \(a_{26}= +1.27679541 \pm 8.1 \cdot 10^{-7} \) | \(a_{27}= +0.32633964 \pm 7.0 \cdot 10^{-7} \) |
\(a_{28}= +0.50884416 \pm 8.2 \cdot 10^{-7} \) | \(a_{29}= -0.44026424 \pm 7.2 \cdot 10^{-7} \) | \(a_{30}= +0.76962000 \pm 1.0 \cdot 10^{-6} \) |
\(a_{31}= +0.17960530 \pm 1.0 \cdot 10^{-8} \) | \(a_{32}= -0.84534507 \pm 1.0 \cdot 10^{-6} \) | \(a_{33}= -1.35505765 \pm 8.2 \cdot 10^{-7} \) |
\(a_{34}= -0.42528969 \pm 1.0 \cdot 10^{-6} \) | \(a_{35}= -0.86415060 \pm 7.1 \cdot 10^{-7} \) | \(a_{36}= -0.35428430 \pm 1.1 \cdot 10^{-6} \) |
\(a_{37}= +0.60062855 \pm 7.0 \cdot 10^{-7} \) | \(a_{38}= -1.08989932 \pm 9.7 \cdot 10^{-7} \) | \(a_{39}= +2.32275804 \pm 7.8 \cdot 10^{-7} \) |
\(a_{40}= +0.85443022 \pm 1.0 \cdot 10^{-6} \) | \(a_{41}= +0.01108401 \pm 6.9 \cdot 10^{-7} \) | \(a_{42}= -1.04325276 \pm 9.5 \cdot 10^{-7} \) |
\(a_{43}= -0.16195906 \pm 6.6 \cdot 10^{-7} \) | \(a_{44}= -0.48109496 \pm 8.1 \cdot 10^{-7} \) | \(a_{45}= +0.60166749 \pm 7.7 \cdot 10^{-7} \) |
\(a_{46}= -0.73634277 \pm 7.0 \cdot 10^{-7} \) | \(a_{47}= +0.19649383 \pm 6.8 \cdot 10^{-7} \) | \(a_{48}= +0.40893955 \pm 1.1 \cdot 10^{-6} \) |
\(a_{49}= +0.17139303 \pm 7.3 \cdot 10^{-7} \) | \(a_{50}= +0.26387166 \pm 9.3 \cdot 10^{-7} \) | \(a_{51}= -0.77369094 \pm 8.3 \cdot 10^{-7} \) |
\(a_{52}= +0.82466394 \pm 8.2 \cdot 10^{-7} \) | \(a_{53}= +0.56987592 \pm 7.3 \cdot 10^{-7} \) | \(a_{54}= -0.23754594 \pm 9.2 \cdot 10^{-7} \) |
\(a_{55}= +0.81702520 \pm 8.2 \cdot 10^{-7} \) | \(a_{56}= -1.15821664 \pm 7.9 \cdot 10^{-7} \) | \(a_{57}= -1.98275494 \pm 7.9 \cdot 10^{-7} \) |
\(a_{58}= +0.32047282 \pm 8.4 \cdot 10^{-7} \) | \(a_{59}= +1.35832910 \pm 8.2 \cdot 10^{-7} \) | \(a_{60}= +0.49708658 \pm 1.2 \cdot 10^{-6} \) |
\(a_{61}= +1.43036060 \pm 7.5 \cdot 10^{-7} \) | \(a_{62}= -0.13073652 \pm 9.4 \cdot 10^{-7} \) | \(a_{63}= -0.81558597 \pm 8.9 \cdot 10^{-7} \) |
\(a_{64}= +0.92415047 \pm 1.0 \cdot 10^{-6} \) | \(a_{65}= -1.40049527 \pm 7.8 \cdot 10^{-7} \) | \(a_{66}= +0.98636024 \pm 8.3 \cdot 10^{-7} \) |
\(a_{67}= +0.57642513 \pm 6.3 \cdot 10^{-7} \) | \(a_{68}= -0.27468854 \pm 1.2 \cdot 10^{-6} \) | \(a_{69}= -1.33956159 \pm 8.4 \cdot 10^{-7} \) |
\(a_{70}= +0.62902400 \pm 8.0 \cdot 10^{-7} \) | \(a_{71}= +1.83430796 \pm 6.1 \cdot 10^{-7} \) | \(a_{72}= +0.80641187 \pm 1.0 \cdot 10^{-6} \) |
\(a_{73}= -1.17316378 \pm 6.9 \cdot 10^{-7} \) | \(a_{74}= -0.43720363 \pm 8.6 \cdot 10^{-7} \) | \(a_{75}= +0.48003776 \pm 7.5 \cdot 10^{-7} \) |
\(a_{76}= -0.70395043 \pm 9.4 \cdot 10^{-7} \) | \(a_{77}= -1.10751253 \pm 6.7 \cdot 10^{-7} \) | \(a_{78}= -1.69075919 \pm 7.9 \cdot 10^{-7} \) |
\(a_{79}= -1.24342803 \pm 8.0 \cdot 10^{-7} \) | \(a_{80}= -0.24656804 \pm 8.7 \cdot 10^{-7} \) | \(a_{81}= -1.18570681 \pm 8.1 \cdot 10^{-7} \) |
\(a_{82}= -0.00806816 \pm 9.3 \cdot 10^{-7} \) | \(a_{83}= -0.17369171 \pm 6.5 \cdot 10^{-7} \) | \(a_{84}= -0.67382208 \pm 1.0 \cdot 10^{-6} \) |
\(a_{85}= +0.46649306 \pm 6.5 \cdot 10^{-7} \) | \(a_{86}= +0.11789165 \pm 7.7 \cdot 10^{-7} \) | \(a_{87}= +0.58300712 \pm 8.6 \cdot 10^{-7} \) |
\(a_{88}= +1.09505471 \pm 7.8 \cdot 10^{-7} \) | \(a_{89}= +1.18564305 \pm 6.6 \cdot 10^{-7} \) | \(a_{90}= -0.43795988 \pm 1.0 \cdot 10^{-6} \) |
\(a_{91}= +1.89843113 \pm 8.5 \cdot 10^{-7} \) | \(a_{92}= -0.47559329 \pm 8.0 \cdot 10^{-7} \) | \(a_{93}= -0.23783710 \pm 8.5 \cdot 10^{-7} \) |
\(a_{94}= -0.14302986 \pm 9.0 \cdot 10^{-7} \) | \(a_{95}= +1.19549212 \pm 8.5 \cdot 10^{-7} \) | \(a_{96}= +1.11942362 \pm 1.2 \cdot 10^{-6} \) |
\(a_{97}= -0.24110381 \pm 7.5 \cdot 10^{-7} \) | \(a_{98}= -0.12475873 \pm 7.6 \cdot 10^{-7} \) | \(a_{99}= +0.77110898 \pm 7.1 \cdot 10^{-7} \) |
\(a_{100}= +0.17043094 \pm 9.1 \cdot 10^{-7} \) | \(a_{101}= +0.73133716 \pm 8.2 \cdot 10^{-7} \) | \(a_{102}= +0.56317750 \pm 1.1 \cdot 10^{-6} \) |
\(a_{103}= -1.18636316 \pm 6.7 \cdot 10^{-7} \) | \(a_{104}= -1.87707668 \pm 8.9 \cdot 10^{-7} \) | \(a_{105}= +1.14432630 \pm 7.3 \cdot 10^{-7} \) |
\(a_{106}= -0.41481847 \pm 8.6 \cdot 10^{-7} \) | \(a_{107}= -0.51402869 \pm 6.8 \cdot 10^{-7} \) | \(a_{108}= -0.15342754 \pm 9.3 \cdot 10^{-7} \) |
\(a_{109}= +0.98259511 \pm 7.6 \cdot 10^{-7} \) | \(a_{110}= -0.59472094 \pm 7.8 \cdot 10^{-7} \) | \(a_{111}= -0.79536489 \pm 7.4 \cdot 10^{-7} \) |
\(a_{112}= +0.33423351 \pm 6.4 \cdot 10^{-7} \) | \(a_{113}= +0.54102354 \pm 7.0 \cdot 10^{-7} \) | \(a_{114}= +1.44326748 \pm 8.8 \cdot 10^{-7} \) |
\(a_{115}= +0.80768192 \pm 6.8 \cdot 10^{-7} \) | \(a_{116}= +0.20698882 \pm 9.2 \cdot 10^{-7} \) | \(a_{117}= -1.32178847 \pm 8.0 \cdot 10^{-7} \) |
\(a_{118}= -0.98874156 \pm 1.0 \cdot 10^{-6} \) | \(a_{119}= -0.63235125 \pm 5.8 \cdot 10^{-7} \) | \(a_{120}= -1.13145437 \pm 1.2 \cdot 10^{-6} \) |
\(a_{121}= +0.04711568 \pm 8.0 \cdot 10^{-7} \) | \(a_{122}= -1.04117402 \pm 1.0 \cdot 10^{-6} \) | \(a_{123}= -0.01467767 \pm 8.7 \cdot 10^{-7} \) |
\(a_{124}= -0.08444086 \pm 1.0 \cdot 10^{-6} \) | \(a_{125}= -1.08786869 \pm 8.1 \cdot 10^{-7} \) | \(a_{126}= +0.59367332 \pm 1.1 \cdot 10^{-6} \) |
\(a_{127}= +1.17238057 \pm 7.6 \cdot 10^{-7} \) | \(a_{128}= +0.17264655 \pm 9.3 \cdot 10^{-7} \) | \(a_{129}= +0.21446958 \pm 6.3 \cdot 10^{-7} \) |
\(a_{130}= +1.01943474 \pm 8.2 \cdot 10^{-7} \) | \(a_{131}= -0.84127728 \pm 8.0 \cdot 10^{-7} \) | \(a_{132}= +0.63707601 \pm 8.5 \cdot 10^{-7} \) |
\(a_{133}= -1.62054060 \pm 7.4 \cdot 10^{-7} \) | \(a_{134}= -0.41958571 \pm 7.0 \cdot 10^{-7} \) | \(a_{135}= +0.26056012 \pm 6.8 \cdot 10^{-7} \) |
\(a_{136}= +0.62523827 \pm 1.2 \cdot 10^{-6} \) | \(a_{137}= +0.61685362 \pm 7.5 \cdot 10^{-7} \) | \(a_{138}= +0.97508050 \pm 7.1 \cdot 10^{-7} \) |
\(a_{139}= +0.12552064 \pm 5.8 \cdot 10^{-7} \) | \(a_{140}= +0.40627763 \pm 7.4 \cdot 10^{-7} \) | \(a_{141}= -0.26020124 \pm 8.5 \cdot 10^{-7} \) |
\(a_{142}= -1.33521141 \pm 6.7 \cdot 10^{-7} \) | \(a_{143}= -1.79490249 \pm 7.8 \cdot 10^{-7} \) | \(a_{144}= -0.23271110 \pm 9.9 \cdot 10^{-7} \) |
\(a_{145}= -0.35152121 \pm 6.9 \cdot 10^{-7} \) | \(a_{146}= +0.85395784 \pm 8.5 \cdot 10^{-7} \) | \(a_{147}= -0.22696223 \pm 7.7 \cdot 10^{-7} \) |
\(a_{148}= -0.28238359 \pm 9.7 \cdot 10^{-7} \) | \(a_{149}= -0.69803267 \pm 6.7 \cdot 10^{-7} \) | \(a_{150}= -0.34942437 \pm 9.7 \cdot 10^{-7} \) |
\(a_{151}= +1.72522785 \pm 7.3 \cdot 10^{-7} \) | \(a_{152}= +1.60231199 \pm 8.7 \cdot 10^{-7} \) | \(a_{153}= +0.44027649 \pm 7.0 \cdot 10^{-7} \) |
\(a_{154}= +0.80616963 \pm 7.3 \cdot 10^{-7} \) | \(a_{155}= +0.14340268 \pm 7.9 \cdot 10^{-7} \) | \(a_{156}= -1.09203724 \pm 8.7 \cdot 10^{-7} \) |
\(a_{157}= +0.94869573 \pm 6.6 \cdot 10^{-7} \) | \(a_{158}= +0.90510390 \pm 9.8 \cdot 10^{-7} \) | \(a_{159}= -0.75464161 \pm 7.3 \cdot 10^{-7} \) |
\(a_{160}= -0.67495084 \pm 9.4 \cdot 10^{-7} \) | \(a_{161}= -1.09484732 \pm 6.5 \cdot 10^{-7} \) | \(a_{162}= +0.86308804 \pm 1.0 \cdot 10^{-6} \) |
\(a_{163}= -1.33368813 \pm 7.7 \cdot 10^{-7} \) | \(a_{164}= -0.00521111 \pm 1.1 \cdot 10^{-6} \) | \(a_{165}= -1.08192185 \pm 7.5 \cdot 10^{-7} \) |
\(a_{166}= +0.12643196 \pm 8.7 \cdot 10^{-7} \) | \(a_{167}= +1.45375887 \pm 7.7 \cdot 10^{-7} \) | \(a_{168}= +1.53373470 \pm 8.6 \cdot 10^{-7} \) |
\(a_{169}= +2.07671351 \pm 7.4 \cdot 10^{-7} \) | \(a_{170}= -0.33956504 \pm 8.8 \cdot 10^{-7} \) | \(a_{171}= +1.12830634 \pm 7.3 \cdot 10^{-7} \) |
\(a_{172}= +0.07614453 \pm 7.6 \cdot 10^{-7} \) | \(a_{173}= +0.74413138 \pm 8.1 \cdot 10^{-7} \) | \(a_{174}= -0.42437681 \pm 1.0 \cdot 10^{-6} \) |
\(a_{175}= +0.39234333 \pm 6.9 \cdot 10^{-7} \) | \(a_{176}= -0.31600649 \pm 5.0 \cdot 10^{-7} \) | \(a_{177}= -1.79872780 \pm 8.5 \cdot 10^{-7} \) |
\(a_{178}= -0.86304163 \pm 7.5 \cdot 10^{-7} \) | \(a_{179}= -0.52876682 \pm 8.4 \cdot 10^{-7} \) | \(a_{180}= -0.28287204 \pm 1.0 \cdot 10^{-6} \) |
\(a_{181}= +0.76962661 \pm 6.9 \cdot 10^{-7} \) | \(a_{182}= -1.38188732 \pm 7.7 \cdot 10^{-7} \) | \(a_{183}= -1.89411342 \pm 7.7 \cdot 10^{-7} \) |
\(a_{184}= +1.08253196 \pm 9.2 \cdot 10^{-7} \) | \(a_{185}= +0.47956126 \pm 6.7 \cdot 10^{-7} \) | \(a_{186}= +0.17312404 \pm 1.7 \cdot 10^{-6} \) |
\(a_{187}= +0.59786675 \pm 5.7 \cdot 10^{-7} \) | \(a_{188}= -0.09238095 \pm 1.0 \cdot 10^{-6} \) | \(a_{189}= -0.35320037 \pm 8.3 \cdot 10^{-7} \) |
\(a_{190}= -0.87021086 \pm 1.0 \cdot 10^{-6} \) | \(a_{191}= +1.06154133 \pm 7.7 \cdot 10^{-7} \) | \(a_{192}= -1.22377938 \pm 1.2 \cdot 10^{-6} \) |
\(a_{193}= -1.41367437 \pm 7.3 \cdot 10^{-7} \) | \(a_{194}= +0.17550191 \pm 9.5 \cdot 10^{-7} \) | \(a_{195}= +1.85456513 \pm 6.7 \cdot 10^{-7} \) |
\(a_{196}= -0.08057988 \pm 9.0 \cdot 10^{-7} \) | \(a_{197}= -0.66033993 \pm 5.7 \cdot 10^{-7} \) | \(a_{198}= -0.56129806 \pm 7.9 \cdot 10^{-7} \) |
\(a_{199}= +0.92963472 \pm 6.9 \cdot 10^{-7} \) | \(a_{200}= -0.38793007 \pm 7.8 \cdot 10^{-7} \) | \(a_{201}= -0.76331421 \pm 6.9 \cdot 10^{-7} \) |
\(a_{202}= -0.53234775 \pm 9.6 \cdot 10^{-7} \) | \(a_{203}= +0.47650200 \pm 7.3 \cdot 10^{-7} \) | \(a_{204}= +0.36374831 \pm 1.4 \cdot 10^{-6} \) |
\(a_{205}= +0.00884983 \pm 6.7 \cdot 10^{-7} \) | \(a_{206}= +0.86356580 \pm 8.0 \cdot 10^{-7} \) | \(a_{207}= +0.76229079 \pm 6.6 \cdot 10^{-7} \) |
\(a_{208}= +0.54167925 \pm 7.8 \cdot 10^{-7} \) | \(a_{209}= +1.53216639 \pm 8.9 \cdot 10^{-7} \) | \(a_{210}= -0.83296674 \pm 9.9 \cdot 10^{-7} \) |
\(a_{211}= -0.46366598 \pm 7.5 \cdot 10^{-7} \) | \(a_{212}= -0.26792534 \pm 9.0 \cdot 10^{-7} \) | \(a_{213}= -2.42902896 \pm 7.4 \cdot 10^{-7} \) |
\(a_{214}= +0.37416671 \pm 7.6 \cdot 10^{-7} \) | \(a_{215}= -0.12931335 \pm 7.2 \cdot 10^{-7} \) | \(a_{216}= +0.34922741 \pm 8.2 \cdot 10^{-7} \) |
\(a_{217}= -0.19438846 \pm 7.7 \cdot 10^{-7} \) | \(a_{218}= -0.71524097 \pm 9.5 \cdot 10^{-7} \) | \(a_{219}= +1.55352801 \pm 6.9 \cdot 10^{-7} \) |
\(a_{220}= -0.38412177 \pm 6.9 \cdot 10^{-7} \) | \(a_{221}= -1.02482709 \pm 7.1 \cdot 10^{-7} \) | \(a_{222}= +0.57895419 \pm 9.0 \cdot 10^{-7} \) |
\(a_{223}= -1.14459942 \pm 8.6 \cdot 10^{-7} \) | \(a_{224}= +0.91492468 \pm 7.8 \cdot 10^{-7} \) | \(a_{225}= -0.27317024 \pm 6.7 \cdot 10^{-7} \) |
\(a_{226}= -0.39381654 \pm 8.5 \cdot 10^{-7} \) | \(a_{227}= -0.37655928 \pm 7.2 \cdot 10^{-7} \) | \(a_{228}= +0.93218588 \pm 9.5 \cdot 10^{-7} \) |
\(a_{229}= -1.11954380 \pm 7.8 \cdot 10^{-7} \) | \(a_{230}= -0.58791988 \pm 7.2 \cdot 10^{-7} \) | \(a_{231}= +1.46659125 \pm 8.2 \cdot 10^{-7} \) |
\(a_{232}= -0.47114208 \pm 8.7 \cdot 10^{-7} \) | \(a_{233}= -0.47403626 \pm 6.0 \cdot 10^{-7} \) | \(a_{234}= +0.96214326 \pm 8.6 \cdot 10^{-7} \) |
\(a_{235}= +0.15688703 \pm 7.2 \cdot 10^{-7} \) | \(a_{236}= -0.63861407 \pm 1.2 \cdot 10^{-6} \) | \(a_{237}= +1.64657340 \pm 8.7 \cdot 10^{-7} \) |
\(a_{238}= +0.46029491 \pm 5.6 \cdot 10^{-7} \) | \(a_{239}= +1.50266569 \pm 7.8 \cdot 10^{-7} \) | \(a_{240}= +0.32651056 \pm 1.0 \cdot 10^{-6} \) |
\(a_{241}= +0.40593105 \pm 6.1 \cdot 10^{-7} \) | \(a_{242}= -0.03429598 \pm 8.9 \cdot 10^{-7} \) | \(a_{243}= +1.24379811 \pm 8.6 \cdot 10^{-7} \) |
\(a_{244}= -0.67247945 \pm 1.2 \cdot 10^{-6} \) | \(a_{245}= +0.13684574 \pm 6.9 \cdot 10^{-7} \) | \(a_{246}= +0.01068403 \pm 1.2 \cdot 10^{-6} \) |
\(a_{247}= -2.62634714 \pm 8.0 \cdot 10^{-7} \) | \(a_{248}= +0.19220188 \pm 1.0 \cdot 10^{-6} \) | \(a_{249}= +0.23000619 \pm 7.0 \cdot 10^{-7} \) |
\(a_{250}= +0.79187068 \pm 1.0 \cdot 10^{-6} \) | \(a_{251}= +1.08828240 \pm 7.2 \cdot 10^{-7} \) | \(a_{252}= +0.38344513 \pm 1.1 \cdot 10^{-6} \) |
\(a_{253}= +1.03514115 \pm 6.7 \cdot 10^{-7} \) | \(a_{254}= -0.85338773 \pm 9.3 \cdot 10^{-7} \) | \(a_{255}= -0.61773986 \pm 7.8 \cdot 10^{-7} \) |
\(a_{256}= -1.04982165 \pm 9.1 \cdot 10^{-7} \) | \(a_{257}= +1.65410061 \pm 7.6 \cdot 10^{-7} \) | \(a_{258}= -0.15611459 \pm 8.3 \cdot 10^{-7} \) |
\(a_{259}= -0.65006576 \pm 7.2 \cdot 10^{-7} \) | \(a_{260}= +0.65843836 \pm 7.4 \cdot 10^{-7} \) | \(a_{261}= -0.33176597 \pm 7.4 \cdot 10^{-7} \) |
\(a_{262}= +0.61237429 \pm 9.2 \cdot 10^{-7} \) | \(a_{263}= +0.42554440 \pm 8.1 \cdot 10^{-7} \) | \(a_{264}= -1.45009434 \pm 7.8 \cdot 10^{-7} \) |
\(a_{265}= +0.45500736 \pm 6.6 \cdot 10^{-7} \) | \(a_{266}= +1.17960798 \pm 8.4 \cdot 10^{-7} \) | \(a_{267}= -1.57005333 \pm 6.5 \cdot 10^{-7} \) |
\(a_{268}= -0.27100442 \pm 7.1 \cdot 10^{-7} \) | \(a_{269}= +0.23032827 \pm 6.9 \cdot 10^{-7} \) | \(a_{270}= -0.18966436 \pm 8.4 \cdot 10^{-7} \) |
\(a_{271}= +1.61998338 \pm 9.0 \cdot 10^{-7} \) | \(a_{272}= -0.18042875 \pm 1.1 \cdot 10^{-6} \) | \(a_{273}= -2.51394220 \pm 8.0 \cdot 10^{-7} \) |
\(a_{274}= -0.44901402 \pm 9.2 \cdot 10^{-7} \) | \(a_{275}= -0.37094737 \pm 8.7 \cdot 10^{-7} \) | \(a_{276}= +0.62979058 \pm 8.7 \cdot 10^{-7} \) |
\(a_{277}= +0.94442154 \pm 7.3 \cdot 10^{-7} \) | \(a_{278}= -0.09136775 \pm 7.3 \cdot 10^{-7} \) | \(a_{279}= +0.13534356 \pm 8.0 \cdot 10^{-7} \) |
\(a_{280}= -0.92475762 \pm 7.4 \cdot 10^{-7} \) | \(a_{281}= -1.86019480 \pm 7.6 \cdot 10^{-7} \) | \(a_{282}= +0.18940313 \pm 1.1 \cdot 10^{-6} \) |
\(a_{283}= -0.58653518 \pm 7.3 \cdot 10^{-7} \) | \(a_{284}= -0.86239400 \pm 6.3 \cdot 10^{-7} \) | \(a_{285}= -1.58309566 \pm 8.4 \cdot 10^{-7} \) |
\(a_{286}= +1.30652777 \pm 8.3 \cdot 10^{-7} \) | \(a_{287}= -0.01199632 \pm 6.4 \cdot 10^{-7} \) | \(a_{288}= -0.63701910 \pm 1.0 \cdot 10^{-6} \) |
\(a_{289}= -0.65863882 \pm 7.8 \cdot 10^{-7} \) | \(a_{290}= +0.25587586 \pm 8.8 \cdot 10^{-7} \) | \(a_{291}= +0.31927471 \pm 8.9 \cdot 10^{-7} \) |
\(a_{292}= +0.55155919 \pm 8.6 \cdot 10^{-7} \) | \(a_{293}= -1.10476754 \pm 6.5 \cdot 10^{-7} \) | \(a_{294}= +0.16520811 \pm 8.7 \cdot 10^{-7} \) |
\(a_{295}= +1.08453388 \pm 7.1 \cdot 10^{-7} \) | \(a_{296}= +0.64275351 \pm 9.8 \cdot 10^{-7} \) | \(a_{297}= +0.33393902 \pm 6.1 \cdot 10^{-7} \) |
\(a_{298}= +0.50810508 \pm 8.4 \cdot 10^{-7} \) | \(a_{299}= -1.77437649 \pm 7.6 \cdot 10^{-7} \) | \(a_{300}= -0.22568821 \pm 9.7 \cdot 10^{-7} \) |
\(a_{301}= +0.17528977 \pm 6.5 \cdot 10^{-7} \) | \(a_{302}= -1.25581089 \pm 8.0 \cdot 10^{-7} \) | \(a_{303}= -0.96845196 \pm 9.5 \cdot 10^{-7} \) |
\(a_{304}= -0.46238876 \pm 6.1 \cdot 10^{-7} \) | \(a_{305}= +1.14204616 \pm 7.2 \cdot 10^{-7} \) | \(a_{306}= -0.32048173 \pm 8.7 \cdot 10^{-7} \) |
\(a_{307}= +0.84384599 \pm 8.0 \cdot 10^{-7} \) | \(a_{308}= +0.52069346 \pm 7.6 \cdot 10^{-7} \) | \(a_{309}= +1.57100691 \pm 7.8 \cdot 10^{-7} \) |
\(a_{310}= -0.10438427 \pm 1.7 \cdot 10^{-6} \) | \(a_{311}= -0.56863504 \pm 6.1 \cdot 10^{-7} \) | \(a_{312}= +2.48566419 \pm 9.0 \cdot 10^{-7} \) |
\(a_{313}= +0.18071802 \pm 7.7 \cdot 10^{-7} \) | \(a_{314}= -0.69056527 \pm 8.0 \cdot 10^{-7} \) | \(a_{315}= -0.65119021 \pm 7.7 \cdot 10^{-7} \) |
\(a_{316}= +0.58459370 \pm 1.1 \cdot 10^{-6} \) | \(a_{317}= +0.55976812 \pm 7.3 \cdot 10^{-7} \) | \(a_{318}= +0.54931130 \pm 9.5 \cdot 10^{-7} \) |
\(a_{319}= -0.45051654 \pm 7.5 \cdot 10^{-7} \) | \(a_{320}= +0.73787162 \pm 9.8 \cdot 10^{-7} \) | \(a_{321}= +0.68068754 \pm 6.5 \cdot 10^{-7} \) |
\(a_{322}= +0.79695050 \pm 5.9 \cdot 10^{-7} \) | \(a_{323}= +0.87481388 \pm 6.2 \cdot 10^{-7} \) | \(a_{324}= +0.55745625 \pm 1.1 \cdot 10^{-6} \) |
\(a_{325}= +0.63585559 \pm 6.7 \cdot 10^{-7} \) | \(a_{326}= +0.97080515 \pm 9.1 \cdot 10^{-7} \) | \(a_{327}= -1.30117299 \pm 6.8 \cdot 10^{-7} \) |
\(a_{328}= +0.01186138 \pm 1.2 \cdot 10^{-6} \) | \(a_{329}= -0.21266707 \pm 5.6 \cdot 10^{-7} \) | \(a_{330}= +0.78754191 \pm 7.7 \cdot 10^{-7} \) |
\(a_{331}= -0.56183253 \pm 6.9 \cdot 10^{-7} \) | \(a_{332}= +0.08166060 \pm 9.9 \cdot 10^{-7} \) | \(a_{333}= +0.45261027 \pm 6.9 \cdot 10^{-7} \) |
\(a_{334}= -1.05820586 \pm 8.9 \cdot 10^{-7} \) | \(a_{335}= +0.46023646 \pm 6.5 \cdot 10^{-7} \) | \(a_{336}= -0.44259900 \pm 7.4 \cdot 10^{-7} \) |
\(a_{337}= +0.31929832 \pm 7.9 \cdot 10^{-7} \) | \(a_{338}= -1.51166087 \pm 7.7 \cdot 10^{-7} \) | \(a_{339}= -0.71643469 \pm 7.2 \cdot 10^{-7} \) |
\(a_{340}= -0.21932021 \pm 1.0 \cdot 10^{-6} \) | \(a_{341}= +0.18378772 \pm 7.7 \cdot 10^{-7} \) | \(a_{342}= -0.82130565 \pm 9.5 \cdot 10^{-7} \) |
\(a_{343}= +0.89680888 \pm 7.3 \cdot 10^{-7} \) | \(a_{344}= -0.17331803 \pm 7.9 \cdot 10^{-7} \) | \(a_{345}= -1.06954929 \pm 7.0 \cdot 10^{-7} \) |
\(a_{346}= -0.54166079 \pm 1.0 \cdot 10^{-6} \) | \(a_{347}= +0.52317930 \pm 7.9 \cdot 10^{-7} \) | \(a_{348}= -0.27409893 \pm 1.1 \cdot 10^{-6} \) |
\(a_{349}= -0.46692592 \pm 8.0 \cdot 10^{-7} \) | \(a_{350}= -0.28559070 \pm 8.2 \cdot 10^{-7} \) | \(a_{351}= -0.57241811 \pm 6.4 \cdot 10^{-7} \) |
\(a_{352}= -0.86503037 \pm 7.3 \cdot 10^{-7} \) | \(a_{353}= +0.03863244 \pm 8.7 \cdot 10^{-7} \) | \(a_{354}= +1.30931225 \pm 1.1 \cdot 10^{-6} \) |
\(a_{355}= +1.46457079 \pm 5.2 \cdot 10^{-7} \) | \(a_{356}= -0.55742628 \pm 8.1 \cdot 10^{-7} \) | \(a_{357}= +0.83737276 \pm 5.9 \cdot 10^{-7} \) |
\(a_{358}= +0.38489475 \pm 9.8 \cdot 10^{-7} \) | \(a_{359}= -1.67618185 \pm 7.4 \cdot 10^{-7} \) | \(a_{360}= +0.64386532 \pm 1.0 \cdot 10^{-6} \) |
\(a_{361}= +1.24190496 \pm 7.9 \cdot 10^{-7} \) | \(a_{362}= -0.56021903 \pm 7.9 \cdot 10^{-7} \) | \(a_{363}= -0.06239157 \pm 7.7 \cdot 10^{-7} \) |
\(a_{364}= -0.89254130 \pm 7.8 \cdot 10^{-7} \) | \(a_{365}= -0.93669190 \pm 8.0 \cdot 10^{-7} \) | \(a_{366}= +1.37874441 \pm 1.1 \cdot 10^{-6} \) |
\(a_{367}= +0.26058147 \pm 8.5 \cdot 10^{-7} \) | \(a_{368}= -0.31239273 \pm 8.2 \cdot 10^{-7} \) | \(a_{369}= +0.00835248 \pm 8.0 \cdot 10^{-7} \) |
\(a_{370}= -0.34907751 \pm 7.9 \cdot 10^{-7} \) | \(a_{371}= -0.61678190 \pm 7.4 \cdot 10^{-7} \) | \(a_{372}= +0.11181835 \pm 1.8 \cdot 10^{-6} \) |
\(a_{373}= +1.35928322 \pm 6.8 \cdot 10^{-7} \) | \(a_{374}= -0.43519328 \pm 7.0 \cdot 10^{-7} \) | \(a_{375}= +1.44057847 \pm 9.2 \cdot 10^{-7} \) |
\(a_{376}= +0.21027489 \pm 1.2 \cdot 10^{-6} \) | \(a_{377}= +0.77224827 \pm 7.1 \cdot 10^{-7} \) | \(a_{378}= +0.25709814 \pm 1.0 \cdot 10^{-6} \) |
\(a_{379}= -0.82671131 \pm 7.5 \cdot 10^{-7} \) | \(a_{380}= -0.56205678 \pm 9.8 \cdot 10^{-7} \) | \(a_{381}= -1.55249086 \pm 8.0 \cdot 10^{-7} \) |
\(a_{382}= -0.77270672 \pm 1.0 \cdot 10^{-6} \) | \(a_{383}= +0.15011342 \pm 7.3 \cdot 10^{-7} \) | \(a_{384}= -0.22862217 \pm 1.1 \cdot 10^{-6} \) |
\(a_{385}= -0.88427382 \pm 6.2 \cdot 10^{-7} \) | \(a_{386}= +1.02902794 \pm 7.7 \cdot 10^{-7} \) | \(a_{387}= -0.12204604 \pm 7.0 \cdot 10^{-7} \) |
\(a_{388}= +0.11335418 \pm 1.0 \cdot 10^{-6} \) | \(a_{389}= -0.05925566 \pm 6.5 \cdot 10^{-7} \) | \(a_{390}= -1.34995681 \pm 6.3 \cdot 10^{-7} \) |
\(a_{391}= +0.59102971 \pm 6.0 \cdot 10^{-7} \) | \(a_{392}= +0.18341364 \pm 9.6 \cdot 10^{-7} \) | \(a_{393}= +1.11403697 \pm 8.2 \cdot 10^{-7} \) |
\(a_{394}= +0.48066815 \pm 7.0 \cdot 10^{-7} \) | \(a_{395}= -0.99279315 \pm 7.4 \cdot 10^{-7} \) | \(a_{396}= -0.36253441 \pm 7.9 \cdot 10^{-7} \) |
\(a_{397}= -1.22686499 \pm 7.6 \cdot 10^{-7} \) | \(a_{398}= -0.67669056 \pm 8.1 \cdot 10^{-7} \) | \(a_{399}= +2.14595375 \pm 7.3 \cdot 10^{-7} \) |
\(a_{400}= +0.11194730 \pm 5.5 \cdot 10^{-7} \) | \(a_{401}= -0.02416509 \pm 7.7 \cdot 10^{-7} \) | \(a_{402}= +0.55562417 \pm 8.6 \cdot 10^{-7} \) |
\(a_{403}= -0.31503781 \pm 8.1 \cdot 10^{-7} \) | \(a_{404}= -0.34383582 \pm 1.0 \cdot 10^{-6} \) | \(a_{405}= -0.94670666 \pm 7.6 \cdot 10^{-7} \) |
\(a_{406}= -0.34685065 \pm 7.4 \cdot 10^{-7} \) | \(a_{407}= +0.61461521 \pm 6.9 \cdot 10^{-7} \) | \(a_{408}= -0.82795359 \pm 1.5 \cdot 10^{-6} \) |
\(a_{409}= +1.21614778 \pm 6.3 \cdot 10^{-7} \) | \(a_{410}= -0.00644188 \pm 9.2 \cdot 10^{-7} \) | \(a_{411}= -0.81685046 \pm 8.5 \cdot 10^{-7} \) |
\(a_{412}= +0.55776483 \pm 8.4 \cdot 10^{-7} \) | \(a_{413}= -1.47013197 \pm 7.9 \cdot 10^{-7} \) | \(a_{414}= -0.55487922 \pm 6.8 \cdot 10^{-7} \) |
\(a_{415}= -0.13868108 \pm 6.7 \cdot 10^{-7} \) | \(a_{416}= +1.48278285 \pm 8.5 \cdot 10^{-7} \) | \(a_{417}= -0.16621705 \pm 7.0 \cdot 10^{-7} \) |
\(a_{418}= -1.11527949 \pm 1.0 \cdot 10^{-6} \) | \(a_{419}= +0.29607641 \pm 7.2 \cdot 10^{-7} \) | \(a_{420}= -0.53800134 \pm 1.0 \cdot 10^{-6} \) |
\(a_{421}= -1.16096973 \pm 8.8 \cdot 10^{-7} \) | \(a_{422}= +0.33750718 \pm 7.3 \cdot 10^{-7} \) | \(a_{423}= +0.14807010 \pm 7.6 \cdot 10^{-7} \) |
\(a_{424}= +0.60984405 \pm 8.2 \cdot 10^{-7} \) | \(a_{425}= -0.21179809 \pm 4.8 \cdot 10^{-7} \) | \(a_{426}= +1.76811487 \pm 7.9 \cdot 10^{-7} \) |
\(a_{427}= -1.54809232 \pm 5.8 \cdot 10^{-7} \) | \(a_{428}= +0.24166894 \pm 7.5 \cdot 10^{-7} \) | \(a_{429}= +2.37684742 \pm 8.2 \cdot 10^{-7} \) |
\(a_{430}= +0.09412850 \pm 8.2 \cdot 10^{-7} \) | \(a_{431}= +0.29828891 \pm 7.4 \cdot 10^{-7} \) | \(a_{432}= -0.10077864 \pm 7.0 \cdot 10^{-7} \) |
\(a_{433}= +0.63670316 \pm 8.6 \cdot 10^{-7} \) | \(a_{434}= +0.14149733 \pm 1.7 \cdot 10^{-6} \) | \(a_{435}= +0.46549173 \pm 8.3 \cdot 10^{-7} \) |
\(a_{436}= -0.46196394 \pm 9.8 \cdot 10^{-7} \) | \(a_{437}= +1.51464496 \pm 7.8 \cdot 10^{-7} \) | \(a_{438}= -1.13082883 \pm 9.6 \cdot 10^{-7} \) |
\(a_{439}= +0.90731666 \pm 7.7 \cdot 10^{-7} \) | \(a_{440}= +0.87432709 \pm 8.9 \cdot 10^{-7} \) | \(a_{441}= +0.12915511 \pm 8.3 \cdot 10^{-7} \) |
\(a_{442}= +0.74598206 \pm 7.0 \cdot 10^{-7} \) | \(a_{443}= -0.91988207 \pm 7.4 \cdot 10^{-7} \) | \(a_{444}= +0.37393825 \pm 1.0 \cdot 10^{-6} \) |
\(a_{445}= +0.94665575 \pm 7.1 \cdot 10^{-7} \) | \(a_{446}= +0.83316555 \pm 9.1 \cdot 10^{-7} \) | \(a_{447}= +0.92434946 \pm 6.9 \cdot 10^{-7} \) |
\(a_{448}= -1.00021648 \pm 7.6 \cdot 10^{-7} \) | \(a_{449}= +0.13993949 \pm 6.6 \cdot 10^{-7} \) | \(a_{450}= +0.19884340 \pm 8.6 \cdot 10^{-7} \) |
\(a_{451}= +0.01134212 \pm 6.4 \cdot 10^{-7} \) | \(a_{452}= -0.25436048 \pm 8.9 \cdot 10^{-7} \) | \(a_{453}= -2.28458280 \pm 7.3 \cdot 10^{-7} \) |
\(a_{454}= +0.27410133 \pm 9.2 \cdot 10^{-7} \) | \(a_{455}= +1.51576880 \pm 7.0 \cdot 10^{-7} \) | \(a_{456}= -2.12181505 \pm 9.6 \cdot 10^{-7} \) |
\(a_{457}= +0.82777666 \pm 8.2 \cdot 10^{-7} \) | \(a_{458}= +0.81492731 \pm 1.0 \cdot 10^{-6} \) | \(a_{459}= +0.19066760 \pm 6.3 \cdot 10^{-7} \) |
\(a_{460}= -0.37972906 \pm 7.7 \cdot 10^{-7} \) | \(a_{461}= -0.25237733 \pm 6.8 \cdot 10^{-7} \) | \(a_{462}= -1.06754668 \pm 7.9 \cdot 10^{-7} \) |
\(a_{463}= -1.46112009 \pm 7.8 \cdot 10^{-7} \) | \(a_{464}= +0.13596029 \pm 6.5 \cdot 10^{-7} \) | \(a_{465}= -0.18989683 \pm 1.6 \cdot 10^{-6} \) |
\(a_{466}= +0.34505581 \pm 8.7 \cdot 10^{-7} \) | \(a_{467}= +0.82156900 \pm 7.2 \cdot 10^{-7} \) | \(a_{468}= +0.62143461 \pm 8.7 \cdot 10^{-7} \) |
\(a_{469}= -0.62387017 \pm 6.4 \cdot 10^{-7} \) | \(a_{470}= -0.11419966 \pm 9.0 \cdot 10^{-7} \) | \(a_{471}= -1.25628273 \pm 8.0 \cdot 10^{-7} \) |
\(a_{472}= +1.45359523 \pm 1.1 \cdot 10^{-6} \) | \(a_{473}= -0.16573056 \pm 6.7 \cdot 10^{-7} \) | \(a_{474}= -1.19855752 \pm 1.1 \cdot 10^{-6} \) |
\(a_{475}= -0.54277966 \pm 8.6 \cdot 10^{-7} \) | \(a_{476}= +0.29729791 \pm 5.7 \cdot 10^{-7} \) | \(a_{477}= +0.42943628 \pm 8.0 \cdot 10^{-7} \) |
\(a_{478}= -1.09380563 \pm 8.5 \cdot 10^{-7} \) | \(a_{479}= -1.27922073 \pm 7.5 \cdot 10^{-7} \) | \(a_{480}= +0.89378402 \pm 1.1 \cdot 10^{-6} \) |
\(a_{481}= -1.05353629 \pm 6.8 \cdot 10^{-7} \) | \(a_{482}= -0.29548134 \pm 7.0 \cdot 10^{-7} \) | \(a_{483}= +1.44981972 \pm 7.2 \cdot 10^{-7} \) |
\(a_{484}= -0.02215128 \pm 9.1 \cdot 10^{-7} \) | \(a_{485}= -0.19250508 \pm 6.5 \cdot 10^{-7} \) | \(a_{486}= -0.90537328 \pm 1.0 \cdot 10^{-6} \) |
\(a_{487}= +1.80063516 \pm 8.1 \cdot 10^{-7} \) | \(a_{488}= +1.53067865 \pm 1.3 \cdot 10^{-6} \) | \(a_{489}= +1.76609772 \pm 8.2 \cdot 10^{-7} \) |
\(a_{490}= -0.09961140 \pm 8.0 \cdot 10^{-7} \) | \(a_{491}= -0.89272333 \pm 6.6 \cdot 10^{-7} \) | \(a_{492}= +0.00690066 \pm 1.6 \cdot 10^{-6} \) |
\(a_{493}= -0.25722933 \pm 7.1 \cdot 10^{-7} \) | \(a_{494}= +1.91174478 \pm 8.8 \cdot 10^{-7} \) | \(a_{495}= +0.61567834 \pm 6.5 \cdot 10^{-7} \) |
\(a_{496}= -0.05546485 \pm 9.6 \cdot 10^{-7} \) | \(a_{497}= -1.98528823 \pm 7.1 \cdot 10^{-7} \) | \(a_{498}= -0.16742385 \pm 9.5 \cdot 10^{-7} \) |
\(a_{499}= -0.92434940 \pm 7.8 \cdot 10^{-7} \) | \(a_{500}= +0.51145798 \pm 1.1 \cdot 10^{-6} \) | \(a_{501}= -1.92509790 \pm 7.6 \cdot 10^{-7} \) |
\(a_{502}= -0.79217182 \pm 8.7 \cdot 10^{-7} \) | \(a_{503}= +1.15183567 \pm 9.4 \cdot 10^{-7} \) | \(a_{504}= -0.87278692 \pm 9.4 \cdot 10^{-7} \) |
\(a_{505}= +0.58392324 \pm 9.0 \cdot 10^{-7} \) | \(a_{506}= -0.75348977 \pm 4.9 \cdot 10^{-7} \) | \(a_{507}= -2.75002746 \pm 6.8 \cdot 10^{-7} \) |
\(a_{508}= -0.55119096 \pm 8.9 \cdot 10^{-7} \) | \(a_{509}= +0.10730942 \pm 7.5 \cdot 10^{-7} \) | \(a_{510}= +0.44965913 \pm 1.0 \cdot 10^{-6} \) |
\(a_{511}= +1.26972586 \pm 6.9 \cdot 10^{-7} \) | \(a_{512}= +0.59152930 \pm 8.3 \cdot 10^{-7} \) | \(a_{513}= +0.48862809 \pm 6.2 \cdot 10^{-7} \) |
\(a_{514}= -1.20403665 \pm 9.3 \cdot 10^{-7} \) | \(a_{515}= -0.94723071 \pm 7.3 \cdot 10^{-7} \) | \(a_{516}= -0.10083218 \pm 9.2 \cdot 10^{-7} \) |
\(a_{517}= +0.20106953 \pm 6.2 \cdot 10^{-7} \) | \(a_{518}= +0.47318947 \pm 7.5 \cdot 10^{-7} \) | \(a_{519}= -0.98539433 \pm 9.1 \cdot 10^{-7} \) |
\(a_{520}= -1.49871872 \pm 9.3 \cdot 10^{-7} \) | \(a_{521}= +1.52618540 \pm 7.7 \cdot 10^{-7} \) | \(a_{522}= +0.24149582 \pm 8.8 \cdot 10^{-7} \) |
\(a_{523}= -0.18317949 \pm 6.8 \cdot 10^{-7} \) | \(a_{524}= +0.39552382 \pm 1.0 \cdot 10^{-6} \) | \(a_{525}= -0.51954925 \pm 7.6 \cdot 10^{-7} \) |
\(a_{526}= -0.30975810 \pm 9.1 \cdot 10^{-7} \) | \(a_{527}= +0.10493641 \pm 7.3 \cdot 10^{-7} \) | \(a_{528}= +0.41846240 \pm 5.3 \cdot 10^{-7} \) |
\(a_{529}= +0.02330357 \pm 7.7 \cdot 10^{-7} \) | \(a_{530}= -0.33120448 \pm 8.7 \cdot 10^{-7} \) | \(a_{531}= +1.02358387 \pm 7.9 \cdot 10^{-7} \) |
\(a_{532}= +0.76189196 \pm 8.2 \cdot 10^{-7} \) | \(a_{533}= -0.01944197 \pm 7.0 \cdot 10^{-7} \) | \(a_{534}= +1.14285778 \pm 8.8 \cdot 10^{-7} \) |
\(a_{535}= -0.41041713 \pm 7.4 \cdot 10^{-7} \) | \(a_{536}= +0.61685258 \pm 6.7 \cdot 10^{-7} \) | \(a_{537}= +0.70020409 \pm 9.6 \cdot 10^{-7} \) |
\(a_{538}= -0.16765829 \pm 8.7 \cdot 10^{-7} \) | \(a_{539}= +0.17538421 \pm 6.4 \cdot 10^{-7} \) | \(a_{540}= -0.12250151 \pm 8.8 \cdot 10^{-7} \) |
\(a_{541}= +0.65041078 \pm 7.8 \cdot 10^{-7} \) | \(a_{542}= -1.17920237 \pm 9.0 \cdot 10^{-7} \) | \(a_{543}= -1.01915565 \pm 8.3 \cdot 10^{-7} \) |
\(a_{544}= -0.49390235 \pm 1.0 \cdot 10^{-6} \) | \(a_{545}= +0.78453571 \pm 7.5 \cdot 10^{-7} \) | \(a_{546}= +1.82992408 \pm 7.6 \cdot 10^{-7} \) |
\(a_{547}= -0.73531014 \pm 7.4 \cdot 10^{-7} \) | \(a_{548}= -0.29001175 \pm 1.0 \cdot 10^{-6} \) | \(a_{549}= +1.07786400 \pm 6.5 \cdot 10^{-7} \) |
\(a_{550}= +0.27001636 \pm 9.6 \cdot 10^{-7} \) | \(a_{551}= -0.65920731 \pm 7.5 \cdot 10^{-7} \) | \(a_{552}= -1.43351147 \pm 1.0 \cdot 10^{-6} \) |
\(a_{553}= +1.34577350 \pm 8.8 \cdot 10^{-7} \) | \(a_{554}= -0.68745404 \pm 7.7 \cdot 10^{-7} \) | \(a_{555}= -0.63504505 \pm 6.3 \cdot 10^{-7} \) |
\(a_{556}= -0.05901312 \pm 8.2 \cdot 10^{-7} \) | \(a_{557}= -1.10271920 \pm 6.5 \cdot 10^{-7} \) | \(a_{558}= -0.09851795 \pm 1.7 \cdot 10^{-6} \) |
\(a_{559}= +0.28408531 \pm 8.3 \cdot 10^{-7} \) | \(a_{560}= +0.26686284 \pm 5.5 \cdot 10^{-7} \) | \(a_{561}= -0.79170765 \pm 6.9 \cdot 10^{-7} \) |
\(a_{562}= +1.35405470 \pm 8.3 \cdot 10^{-7} \) | \(a_{563}= +0.25486119 \pm 7.1 \cdot 10^{-7} \) | \(a_{564}= +0.12233278 \pm 1.4 \cdot 10^{-6} \) |
\(a_{565}= +0.43197069 \pm 6.9 \cdot 10^{-7} \) | \(a_{566}= +0.42694492 \pm 9.8 \cdot 10^{-7} \) | \(a_{567}= +1.28330129 \pm 8.5 \cdot 10^{-7} \) |
\(a_{568}= +1.96295677 \pm 5.8 \cdot 10^{-7} \) | \(a_{569}= +0.25209960 \pm 6.9 \cdot 10^{-7} \) | \(a_{570}= +1.15235143 \pm 1.0 \cdot 10^{-6} \) |
\(a_{571}= -0.53037520 \pm 7.6 \cdot 10^{-7} \) | \(a_{572}= +0.84386765 \pm 7.5 \cdot 10^{-7} \) | \(a_{573}= -1.40571522 \pm 8.2 \cdot 10^{-7} \) |
\(a_{574}= +0.00873224 \pm 7.7 \cdot 10^{-7} \) | \(a_{575}= -0.36670532 \pm 6.0 \cdot 10^{-7} \) | \(a_{576}= +0.69640378 \pm 1.0 \cdot 10^{-6} \) |
\(a_{577}= -0.87619086 \pm 7.0 \cdot 10^{-7} \) | \(a_{578}= +0.47942989 \pm 1.1 \cdot 10^{-6} \) | \(a_{579}= +1.87201716 \pm 6.6 \cdot 10^{-7} \) |
\(a_{580}= +0.16526657 \pm 9.3 \cdot 10^{-7} \) | \(a_{581}= +0.18798812 \pm 6.1 \cdot 10^{-7} \) | \(a_{582}= -0.23240330 \pm 1.1 \cdot 10^{-6} \) |
\(a_{583}= +0.58314645 \pm 5.4 \cdot 10^{-7} \) | \(a_{584}= -1.25544338 \pm 9.3 \cdot 10^{-7} \) | \(a_{585}= -1.05535866 \pm 7.6 \cdot 10^{-7} \) |
\(a_{586}= +0.80417152 \pm 7.4 \cdot 10^{-7} \) | \(a_{587}= -0.08552435 \pm 7.5 \cdot 10^{-7} \) | \(a_{588}= +0.10670556 \pm 1.1 \cdot 10^{-6} \) |
\(a_{589}= +0.26892288 \pm 8.2 \cdot 10^{-7} \) | \(a_{590}= -0.78944324 \pm 9.1 \cdot 10^{-7} \) | \(a_{591}= +0.87443595 \pm 6.7 \cdot 10^{-7} \) |
\(a_{592}= -0.18548323 \pm 8.7 \cdot 10^{-7} \) | \(a_{593}= +0.39449096 \pm 8.5 \cdot 10^{-7} \) | \(a_{594}= -0.24307760 \pm 6.8 \cdot 10^{-7} \) |
\(a_{595}= -0.50488969 \pm 5.3 \cdot 10^{-7} \) | \(a_{596}= +0.32817782 \pm 8.8 \cdot 10^{-7} \) | \(a_{597}= -1.23104174 \pm 7.8 \cdot 10^{-7} \) |
\(a_{598}= +1.29158668 \pm 7.1 \cdot 10^{-7} \) | \(a_{599}= -0.85879681 \pm 8.4 \cdot 10^{-7} \) | \(a_{600}= +0.51370511 \pm 7.2 \cdot 10^{-7} \) |
\(a_{601}= -0.87993474 \pm 8.3 \cdot 10^{-7} \) | \(a_{602}= -0.12759521 \pm 7.1 \cdot 10^{-7} \) | \(a_{603}= +0.43437151 \pm 6.1 \cdot 10^{-7} \) |
\(a_{604}= -0.81111034 \pm 7.5 \cdot 10^{-7} \) | \(a_{605}= +0.03761868 \pm 9.0 \cdot 10^{-7} \) | \(a_{606}= +0.70494603 \pm 1.0 \cdot 10^{-6} \) |
\(a_{607}= +0.24869421 \pm 7.3 \cdot 10^{-7} \) | \(a_{608}= -1.26573451 \pm 8.1 \cdot 10^{-7} \) | \(a_{609}= -0.63099392 \pm 8.4 \cdot 10^{-7} \) |
\(a_{610}= -0.83130701 \pm 9.6 \cdot 10^{-7} \) | \(a_{611}= -0.34466125 \pm 5.9 \cdot 10^{-7} \) | \(a_{612}= -0.20699458 \pm 8.9 \cdot 10^{-7} \) |
\(a_{613}= +0.14995791 \pm 8.1 \cdot 10^{-7} \) | \(a_{614}= -0.61424407 \pm 1.1 \cdot 10^{-6} \) | \(a_{615}= -0.01171913 \pm 7.8 \cdot 10^{-7} \) |
\(a_{616}= -1.18518769 \pm 6.0 \cdot 10^{-7} \) | \(a_{617}= -0.01326875 \pm 7.7 \cdot 10^{-7} \) | \(a_{618}= -1.14355190 \pm 9.3 \cdot 10^{-7} \) |
\(a_{619}= -0.38854345 \pm 7.6 \cdot 10^{-7} \) | \(a_{620}= -0.06742031 \pm 1.8 \cdot 10^{-6} \) | \(a_{621}= +0.33012018 \pm 4.9 \cdot 10^{-7} \) |
\(a_{622}= +0.41391523 \pm 6.4 \cdot 10^{-7} \) | \(a_{623}= -1.28323229 \pm 6.2 \cdot 10^{-7} \) | \(a_{624}= -0.71730299 \pm 7.7 \cdot 10^{-7} \) |
\(a_{625}= -0.50608374 \pm 7.1 \cdot 10^{-7} \) | \(a_{626}= -0.13154648 \pm 1.0 \cdot 10^{-6} \) | \(a_{627}= -2.02892677 \pm 8.7 \cdot 10^{-7} \) |
\(a_{628}= -0.44602626 \pm 8.9 \cdot 10^{-7} \) | \(a_{629}= +0.35092398 \pm 6.8 \cdot 10^{-7} \) | \(a_{630}= +0.47400798 \pm 1.0 \cdot 10^{-6} \) |
\(a_{631}= +1.94771800 \pm 8.0 \cdot 10^{-7} \) | \(a_{632}= -1.33063560 \pm 1.2 \cdot 10^{-6} \) | \(a_{633}= +0.61399618 \pm 5.9 \cdot 10^{-7} \) |
\(a_{634}= -0.40746090 \pm 8.9 \cdot 10^{-7} \) | \(a_{635}= +0.93606656 \pm 7.9 \cdot 10^{-7} \) | \(a_{636}= +0.35479233 \pm 1.1 \cdot 10^{-6} \) |
\(a_{637}= -0.30063302 \pm 7.3 \cdot 10^{-7} \) | \(a_{638}= +0.32793557 \pm 8.6 \cdot 10^{-7} \) | \(a_{639}= +1.38226299 \pm 7.9 \cdot 10^{-7} \) |
\(a_{640}= +0.13784659 \pm 9.2 \cdot 10^{-7} \) | \(a_{641}= -0.95416613 \pm 8.5 \cdot 10^{-7} \) | \(a_{642}= -0.49547938 \pm 6.3 \cdot 10^{-7} \) |
\(a_{643}= +1.14488238 \pm 7.5 \cdot 10^{-7} \) | \(a_{644}= +0.51473896 \pm 6.7 \cdot 10^{-7} \) | \(a_{645}= +0.17123945 \pm 5.9 \cdot 10^{-7} \) |
\(a_{646}= -0.63678592 \pm 7.7 \cdot 10^{-7} \) | \(a_{647}= +1.74185614 \pm 8.7 \cdot 10^{-7} \) | \(a_{648}= -1.26886611 \pm 1.1 \cdot 10^{-6} \) |
\(a_{649}= +1.38996011 \pm 7.5 \cdot 10^{-7} \) | \(a_{650}= -0.46284574 \pm 7.5 \cdot 10^{-7} \) | \(a_{651}= +0.25741326 \pm 1.6 \cdot 10^{-6} \) |
\(a_{652}= +0.62702920 \pm 9.5 \cdot 10^{-7} \) | \(a_{653}= +0.48404411 \pm 7.6 \cdot 10^{-7} \) | \(a_{654}= +0.94713705 \pm 9.3 \cdot 10^{-7} \) |
\(a_{655}= -0.67170299 \pm 8.2 \cdot 10^{-7} \) | \(a_{656}= -0.00342291 \pm 1.2 \cdot 10^{-6} \) | \(a_{657}= -0.88405050 \pm 6.9 \cdot 10^{-7} \) |
\(a_{658}= +0.15480252 \pm 6.9 \cdot 10^{-7} \) | \(a_{659}= +0.68846105 \pm 8.1 \cdot 10^{-7} \) | \(a_{660}= +0.50866209 \pm 7.6 \cdot 10^{-7} \) |
\(a_{661}= -0.13394299 \pm 8.1 \cdot 10^{-7} \) | \(a_{662}= +0.40896361 \pm 7.7 \cdot 10^{-7} \) | \(a_{663}= +1.35709746 \pm 7.3 \cdot 10^{-7} \) |
\(a_{664}= -0.18587354 \pm 9.8 \cdot 10^{-7} \) | \(a_{665}= -1.29389202 \pm 7.3 \cdot 10^{-7} \) | \(a_{666}= -0.32945961 \pm 8.6 \cdot 10^{-7} \) |
\(a_{667}= -0.44536456 \pm 7.1 \cdot 10^{-7} \) | \(a_{668}= -0.68348007 \pm 9.3 \cdot 10^{-7} \) | \(a_{669}= +1.51570249 \pm 9.9 \cdot 10^{-7} \) |
\(a_{670}= -0.33501080 \pm 7.5 \cdot 10^{-7} \) | \(a_{671}= +1.46366899 \pm 6.7 \cdot 10^{-7} \) | \(a_{672}= -1.21156239 \pm 8.2 \cdot 10^{-7} \) |
\(a_{673}= -1.09289444 \pm 6.6 \cdot 10^{-7} \) | \(a_{674}= -0.23242050 \pm 9.5 \cdot 10^{-7} \) | \(a_{675}= -0.11830001 \pm 6.3 \cdot 10^{-7} \) |
\(a_{676}= -0.97636019 \pm 8.3 \cdot 10^{-7} \) | \(a_{677}= -0.88932473 \pm 7.1 \cdot 10^{-7} \) | \(a_{678}= +0.52150009 \pm 9.5 \cdot 10^{-7} \) |
\(a_{679}= +0.26094885 \pm 7.1 \cdot 10^{-7} \) | \(a_{680}= +0.49921045 \pm 1.1 \cdot 10^{-6} \) | \(a_{681}= +0.49864768 \pm 7.6 \cdot 10^{-7} \) |
\(a_{682}= -0.13378095 \pm 1.7 \cdot 10^{-6} \) | \(a_{683}= +1.40029805 \pm 7.2 \cdot 10^{-7} \) | \(a_{684}= -0.53046961 \pm 9.7 \cdot 10^{-7} \) |
\(a_{685}= +0.49251587 \pm 6.8 \cdot 10^{-7} \) | \(a_{686}= -0.65279630 \pm 7.0 \cdot 10^{-7} \) | \(a_{687}= +1.48252332 \pm 8.6 \cdot 10^{-7} \) |
\(a_{688}= +0.05001542 \pm 7.8 \cdot 10^{-7} \) | \(a_{689}= -0.99959445 \pm 7.7 \cdot 10^{-7} \) | \(a_{690}= +0.77853580 \pm 6.0 \cdot 10^{-7} \) |
\(a_{691}= +0.11871844 \pm 7.3 \cdot 10^{-7} \) | \(a_{692}= -0.34985098 \pm 1.2 \cdot 10^{-6} \) | \(a_{693}= -0.83457828 \pm 7.1 \cdot 10^{-7} \) |
\(a_{694}= -0.38082753 \pm 9.8 \cdot 10^{-7} \) | \(a_{695}= +0.10021974 \pm 5.2 \cdot 10^{-7} \) | \(a_{696}= +0.62389620 \pm 1.0 \cdot 10^{-6} \) |
\(a_{697}= +0.00647596 \pm 6.1 \cdot 10^{-7} \) | \(a_{698}= +0.33988013 \pm 8.5 \cdot 10^{-7} \) | \(a_{699}= +0.62772873 \pm 7.2 \cdot 10^{-7} \) |
\(a_{700}= -0.18445896 \pm 8.0 \cdot 10^{-7} \) | \(a_{701}= -0.20146303 \pm 8.2 \cdot 10^{-7} \) | \(a_{702}= +0.41666896 \pm 7.0 \cdot 10^{-7} \) |
\(a_{703}= +0.89932066 \pm 7.2 \cdot 10^{-7} \) | \(a_{704}= +0.94567089 \pm 8.7 \cdot 10^{-7} \) | \(a_{705}= -0.20775309 \pm 8.5 \cdot 10^{-7} \) |
\(a_{706}= -0.02812094 \pm 1.0 \cdot 10^{-6} \) | \(a_{707}= -0.79153288 \pm 7.1 \cdot 10^{-7} \) | \(a_{708}= +0.84566611 \pm 1.2 \cdot 10^{-6} \) |
\(a_{709}= -0.45895338 \pm 6.3 \cdot 10^{-7} \) | \(a_{710}= -1.06607596 \pm 5.1 \cdot 10^{-7} \) | \(a_{711}= -0.93699890 \pm 8.8 \cdot 10^{-7} \) |
\(a_{712}= +1.26879788 \pm 9.7 \cdot 10^{-7} \) | \(a_{713}= +0.18168597 \pm 7.4 \cdot 10^{-7} \) | \(a_{714}= -0.60953214 \pm 6.7 \cdot 10^{-7} \) |
\(a_{715}= -1.43310819 \pm 8.6 \cdot 10^{-7} \) | \(a_{716}= +0.24859803 \pm 1.1 \cdot 10^{-6} \) | \(a_{717}= -1.98986134 \pm 8.7 \cdot 10^{-7} \) |
\(a_{718}= +1.22010981 \pm 9.1 \cdot 10^{-7} \) | \(a_{719}= -1.17831085 \pm 6.4 \cdot 10^{-7} \) | \(a_{720}= -0.18580407 \pm 9.0 \cdot 10^{-7} \) |
\(a_{721}= +1.28401166 \pm 7.0 \cdot 10^{-7} \) | \(a_{722}= -0.90399524 \pm 1.0 \cdot 10^{-6} \) | \(a_{723}= -0.53754239 \pm 6.5 \cdot 10^{-7} \) |
\(a_{724}= -0.36183748 \pm 1.0 \cdot 10^{-6} \) | \(a_{725}= +0.15959834 \pm 6.9 \cdot 10^{-7} \) | \(a_{726}= +0.04541546 \pm 9.8 \cdot 10^{-7} \) |
\(a_{727}= +1.58565168 \pm 5.6 \cdot 10^{-7} \) | \(a_{728}= +2.03157720 \pm 7.9 \cdot 10^{-7} \) | \(a_{729}= -0.46135666 \pm 7.3 \cdot 10^{-7} \) |
\(a_{730}= +0.68182755 \pm 1.0 \cdot 10^{-6} \) | \(a_{731}= -0.09462640 \pm 5.7 \cdot 10^{-7} \) | \(a_{732}= +0.89051135 \pm 1.4 \cdot 10^{-6} \) |
\(a_{733}= -0.21319309 \pm 8.5 \cdot 10^{-7} \) | \(a_{734}= -0.18967990 \pm 1.0 \cdot 10^{-6} \) | \(a_{735}= -0.18121398 \pm 6.3 \cdot 10^{-7} \) |
\(a_{736}= -0.85513812 \pm 9.6 \cdot 10^{-7} \) | \(a_{737}= +0.58984817 \pm 7.4 \cdot 10^{-7} \) | \(a_{738}= -0.00607985 \pm 1.2 \cdot 10^{-6} \) |
\(a_{739}= +0.47178183 \pm 7.5 \cdot 10^{-7} \) | \(a_{740}= -0.22546419 \pm 8.5 \cdot 10^{-7} \) | \(a_{741}= +3.47786380 \pm 7.3 \cdot 10^{-7} \) |
\(a_{742}= +0.44896182 \pm 8.2 \cdot 10^{-7} \) | \(a_{743}= -0.45821286 \pm 7.7 \cdot 10^{-7} \) | \(a_{744}= -0.25451775 \pm 1.9 \cdot 10^{-6} \) |
\(a_{745}= -0.55733186 \pm 7.4 \cdot 10^{-7} \) | \(a_{746}= -0.98943607 \pm 8.6 \cdot 10^{-7} \) | \(a_{747}= -0.13088730 \pm 7.3 \cdot 10^{-7} \) |
\(a_{748}= -0.28108513 \pm 7.5 \cdot 10^{-7} \) | \(a_{749}= +0.55633794 \pm 5.7 \cdot 10^{-7} \) | \(a_{750}= -1.04861171 \pm 1.2 \cdot 10^{-6} \) |
\(a_{751}= -0.94206975 \pm 6.9 \cdot 10^{-7} \) | \(a_{752}= -0.06068028 \pm 1.2 \cdot 10^{-6} \) | \(a_{753}= -1.44112632 \pm 8.3 \cdot 10^{-7} \) |
\(a_{754}= -0.56212736 \pm 6.9 \cdot 10^{-7} \) | \(a_{755}= +1.37747771 \pm 8.1 \cdot 10^{-7} \) | \(a_{756}= +0.16605602 \pm 1.0 \cdot 10^{-6} \) |
\(a_{757}= -0.63721940 \pm 7.5 \cdot 10^{-7} \) | \(a_{758}= +0.60177157 \pm 7.2 \cdot 10^{-7} \) | \(a_{759}= -1.37075557 \pm 8.4 \cdot 10^{-7} \) |
\(a_{760}= +1.27933771 \pm 8.6 \cdot 10^{-7} \) | \(a_{761}= +1.13661367 \pm 8.9 \cdot 10^{-7} \) | \(a_{762}= +1.13007388 \pm 9.8 \cdot 10^{-7} \) |
\(a_{763}= -1.06347165 \pm 8.5 \cdot 10^{-7} \) | \(a_{764}= -0.49908025 \pm 1.1 \cdot 10^{-6} \) | \(a_{765}= +0.35153099 \pm 6.3 \cdot 10^{-7} \) |
\(a_{766}= -0.10926909 \pm 8.4 \cdot 10^{-7} \) | \(a_{767}= -2.38258572 \pm 8.0 \cdot 10^{-7} \) | \(a_{768}= +1.39019578 \pm 1.1 \cdot 10^{-6} \) |
\(a_{769}= +0.36927029 \pm 6.7 \cdot 10^{-7} \) | \(a_{770}= +0.64367190 \pm 6.6 \cdot 10^{-7} \) | \(a_{771}= -2.19039462 \pm 8.7 \cdot 10^{-7} \) |
\(a_{772}= +0.66463447 \pm 7.5 \cdot 10^{-7} \) | \(a_{773}= -0.67705914 \pm 6.3 \cdot 10^{-7} \) | \(a_{774}= +0.08883855 \pm 9.2 \cdot 10^{-7} \) |
\(a_{775}= -0.06510796 \pm 7.5 \cdot 10^{-7} \) | \(a_{776}= -0.25801358 \pm 1.1 \cdot 10^{-6} \) | \(a_{777}= +0.86083067 \pm 6.5 \cdot 10^{-7} \) |
\(a_{778}= +0.04313280 \pm 7.2 \cdot 10^{-7} \) | \(a_{779}= +0.01659607 \pm 7.2 \cdot 10^{-7} \) | \(a_{780}= -0.87191785 \pm 7.1 \cdot 10^{-7} \) |
\(a_{781}= +1.87702294 \pm 6.6 \cdot 10^{-7} \) | \(a_{782}= -0.43021653 \pm 5.8 \cdot 10^{-7} \) | \(a_{783}= -0.14367568 \pm 6.1 \cdot 10^{-7} \) |
\(a_{784}= -0.05292877 \pm 8.8 \cdot 10^{-7} \) | \(a_{785}= +0.75746935 \pm 6.2 \cdot 10^{-7} \) | \(a_{786}= -0.81091884 \pm 1.0 \cdot 10^{-6} \) |
\(a_{787}= -1.04457983 \pm 7.7 \cdot 10^{-7} \) | \(a_{788}= +0.31045670 \pm 7.3 \cdot 10^{-7} \) | \(a_{789}= -0.56351480 \pm 8.3 \cdot 10^{-7} \) |
\(a_{790}= +0.72266422 \pm 8.4 \cdot 10^{-7} \) | \(a_{791}= -0.58555471 \pm 5.9 \cdot 10^{-7} \) | \(a_{792}= +0.82519055 \pm 6.2 \cdot 10^{-7} \) |
\(a_{793}= -2.50893303 \pm 7.3 \cdot 10^{-7} \) | \(a_{794}= +0.89304749 \pm 9.4 \cdot 10^{-7} \) | \(a_{795}= -0.60253027 \pm 6.6 \cdot 10^{-7} \) |
\(a_{796}= -0.43706478 \pm 8.8 \cdot 10^{-7} \) | \(a_{797}= +0.08992261 \pm 7.9 \cdot 10^{-7} \) | \(a_{798}= -1.56206155 \pm 8.5 \cdot 10^{-7} \) |
\(a_{799}= +0.11480373 \pm 6.4 \cdot 10^{-7} \) | \(a_{800}= +0.30644249 \pm 7.4 \cdot 10^{-7} \) | \(a_{801}= +0.89345440 \pm 6.4 \cdot 10^{-7} \) |
\(a_{802}= +0.01759001 \pm 7.7 \cdot 10^{-7} \) | \(a_{803}= -1.20048290 \pm 6.0 \cdot 10^{-7} \) | \(a_{804}= +0.35886973 \pm 8.6 \cdot 10^{-7} \) |
\(a_{805}= -0.87416151 \pm 5.4 \cdot 10^{-7} \) | \(a_{806}= +0.22931923 \pm 1.7 \cdot 10^{-6} \) | \(a_{807}= -0.30500551 \pm 6.6 \cdot 10^{-7} \) |
\(a_{808}= +0.78262934 \pm 1.0 \cdot 10^{-6} \) | \(a_{809}= +0.29352693 \pm 7.8 \cdot 10^{-7} \) | \(a_{810}= +0.68911740 \pm 1.0 \cdot 10^{-6} \) |
\(a_{811}= -0.82181652 \pm 8.4 \cdot 10^{-7} \) | \(a_{812}= -0.22402589 \pm 7.8 \cdot 10^{-7} \) | \(a_{813}= -2.14521587 \pm 1.0 \cdot 10^{-6} \) |
\(a_{814}= -0.44738466 \pm 8.0 \cdot 10^{-7} \) | \(a_{815}= -1.06485973 \pm 7.2 \cdot 10^{-7} \) | \(a_{816}= +0.23892752 \pm 1.4 \cdot 10^{-6} \) |
\(a_{817}= -0.24250118 \pm 5.7 \cdot 10^{-7} \) | \(a_{818}= -0.88524633 \pm 7.7 \cdot 10^{-7} \) | \(a_{819}= +1.43058371 \pm 8.9 \cdot 10^{-7} \) |
\(a_{820}= -0.00416072 \pm 1.0 \cdot 10^{-6} \) | \(a_{821}= +1.47854297 \pm 8.5 \cdot 10^{-7} \) | \(a_{822}= +0.59459375 \pm 1.0 \cdot 10^{-6} \) |
\(a_{823}= +1.09893128 \pm 7.1 \cdot 10^{-7} \) | \(a_{824}= -1.26956849 \pm 8.5 \cdot 10^{-7} \) | \(a_{825}= +0.49121626 \pm 7.9 \cdot 10^{-7} \) |
\(a_{826}= +1.07012401 \pm 8.6 \cdot 10^{-7} \) | \(a_{827}= +0.48159560 \pm 7.9 \cdot 10^{-7} \) | \(a_{828}= -0.35838857 \pm 8.0 \cdot 10^{-7} \) |
\(a_{829}= +1.71913139 \pm 8.0 \cdot 10^{-7} \) | \(a_{830}= +0.10094737 \pm 9.7 \cdot 10^{-7} \) | \(a_{831}= -1.25062276 \pm 7.1 \cdot 10^{-7} \) |
\(a_{832}= -1.62101196 \pm 8.3 \cdot 10^{-7} \) | \(a_{833}= +0.10013830 \pm 6.8 \cdot 10^{-7} \) | \(a_{834}= +0.12099108 \pm 9.3 \cdot 10^{-7} \) |
\(a_{835}= +1.16072809 \pm 7.3 \cdot 10^{-7} \) | \(a_{836}= -0.72034311 \pm 9.7 \cdot 10^{-7} \) | \(a_{837}= +0.05861233 \pm 7.1 \cdot 10^{-7} \) |
\(a_{838}= -0.21551703 \pm 9.1 \cdot 10^{-7} \) | \(a_{839}= -0.41751215 \pm 6.7 \cdot 10^{-7} \) | \(a_{840}= +1.22458338 \pm 8.8 \cdot 10^{-7} \) |
\(a_{841}= -0.80616740 \pm 5.2 \cdot 10^{-7} \) | \(a_{842}= +0.84508167 \pm 1.0 \cdot 10^{-6} \) | \(a_{843}= +2.46330886 \pm 7.4 \cdot 10^{-7} \) |
\(a_{844}= +0.21799107 \pm 7.2 \cdot 10^{-7} \) | \(a_{845}= +1.65811522 \pm 7.8 \cdot 10^{-7} \) | \(a_{846}= -0.10778173 \pm 1.0 \cdot 10^{-6} \) |
\(a_{847}= -0.05099373 \pm 7.5 \cdot 10^{-7} \) | \(a_{848}= -0.17598635 \pm 6.8 \cdot 10^{-7} \) | \(a_{849}= +0.77670215 \pm 7.4 \cdot 10^{-7} \) |
\(a_{850}= +0.15416998 \pm 6.0 \cdot 10^{-7} \) | \(a_{851}= +0.60758664 \pm 7.2 \cdot 10^{-7} \) | \(a_{852}= +1.14200017 \pm 7.4 \cdot 10^{-7} \) |
\(a_{853}= +0.44879781 \pm 7.3 \cdot 10^{-7} \) | \(a_{854}= +1.12687214 \pm 5.9 \cdot 10^{-7} \) | \(a_{855}= +0.90087627 \pm 7.9 \cdot 10^{-7} \) |
\(a_{856}= -0.55007999 \pm 7.7 \cdot 10^{-7} \) | \(a_{857}= -0.03694425 \pm 6.9 \cdot 10^{-7} \) | \(a_{858}= -1.73013139 \pm 8.3 \cdot 10^{-7} \) |
\(a_{859}= +0.28789587 \pm 7.6 \cdot 10^{-7} \) | \(a_{860}= +0.06079626 \pm 7.0 \cdot 10^{-7} \) | \(a_{861}= +0.01588578 \pm 8.0 \cdot 10^{-7} \) |
\(a_{862}= -0.21712753 \pm 8.9 \cdot 10^{-7} \) | \(a_{863}= +1.38513069 \pm 7.6 \cdot 10^{-7} \) | \(a_{864}= -0.27586961 \pm 7.3 \cdot 10^{-7} \) |
\(a_{865}= +0.59413855 \pm 9.8 \cdot 10^{-7} \) | \(a_{866}= -0.46346270 \pm 9.7 \cdot 10^{-7} \) | \(a_{867}= +0.87218330 \pm 9.0 \cdot 10^{-7} \) |
\(a_{868}= +0.09139111 \pm 1.8 \cdot 10^{-6} \) | \(a_{869}= -1.27238337 \pm 8.2 \cdot 10^{-7} \) | \(a_{870}= -0.33883617 \pm 1.0 \cdot 10^{-6} \) |
\(a_{871}= -1.01108213 \pm 6.2 \cdot 10^{-7} \) | \(a_{872}= +1.05150921 \pm 9.5 \cdot 10^{-7} \) | \(a_{873}= -0.18168643 \pm 8.3 \cdot 10^{-7} \) |
\(a_{874}= -1.10252546 \pm 7.5 \cdot 10^{-7} \) | \(a_{875}= +1.17741021 \pm 8.0 \cdot 10^{-7} \) | \(a_{876}= -0.73038621 \pm 1.0 \cdot 10^{-6} \) |
\(a_{877}= -0.06810046 \pm 8.2 \cdot 10^{-7} \) | \(a_{878}= -0.66044502 \pm 9.4 \cdot 10^{-7} \) | \(a_{879}= +1.46295628 \pm 6.8 \cdot 10^{-7} \) |
\(a_{880}= -0.25230980 \pm 5.4 \cdot 10^{-7} \) | \(a_{881}= -0.38680240 \pm 7.7 \cdot 10^{-7} \) | \(a_{882}= -0.09401331 \pm 8.7 \cdot 10^{-7} \) |
\(a_{883}= -1.87940000 \pm 7.8 \cdot 10^{-7} \) | \(a_{884}= +0.48181917 \pm 8.2 \cdot 10^{-7} \) | \(a_{885}= -1.43616245 \pm 8.1 \cdot 10^{-7} \) |
\(a_{886}= +0.66959151 \pm 1.0 \cdot 10^{-6} \) | \(a_{887}= +0.10171599 \pm 6.9 \cdot 10^{-7} \) | \(a_{888}= -0.85114764 \pm 1.0 \cdot 10^{-6} \) |
\(a_{889}= -1.26887818 \pm 7.2 \cdot 10^{-7} \) | \(a_{890}= -0.68908035 \pm 7.6 \cdot 10^{-7} \) | \(a_{891}= -1.21331801 \pm 6.2 \cdot 10^{-7} \) |
\(a_{892}= +0.53812975 \pm 1.0 \cdot 10^{-6} \) | \(a_{893}= +0.29421006 \pm 5.2 \cdot 10^{-7} \) | \(a_{894}= -0.67284337 \pm 9.0 \cdot 10^{-7} \) |
\(a_{895}= -0.42218453 \pm 8.7 \cdot 10^{-7} \) | \(a_{896}= -0.18685693 \pm 7.3 \cdot 10^{-7} \) | \(a_{897}= +2.34966645 \pm 8.4 \cdot 10^{-7} \) |
\(a_{898}= -0.10186338 \pm 9.0 \cdot 10^{-7} \) | \(a_{899}= -0.07907379 \pm 7.3 \cdot 10^{-7} \) | \(a_{900}= +0.12843011 \pm 8.5 \cdot 10^{-7} \) |
\(a_{901}= +0.33295641 \pm 5.8 \cdot 10^{-7} \) | \(a_{902}= -0.00825604 \pm 6.3 \cdot 10^{-7} \) | \(a_{903}= -0.23212238 \pm 6.9 \cdot 10^{-7} \) |
\(a_{904}= +0.57896812 \pm 9.2 \cdot 10^{-7} \) | \(a_{905}= +0.61449477 \pm 6.1 \cdot 10^{-7} \) | \(a_{906}= +1.66297104 \pm 8.6 \cdot 10^{-7} \) |
\(a_{907}= +1.13905911 \pm 6.4 \cdot 10^{-7} \) | \(a_{908}= +0.17703814 \pm 1.0 \cdot 10^{-6} \) | \(a_{909}= +0.55110718 \pm 7.7 \cdot 10^{-7} \) |
\(a_{910}= -1.10334352 \pm 6.9 \cdot 10^{-7} \) | \(a_{911}= -0.57329955 \pm 7.4 \cdot 10^{-7} \) | \(a_{912}= +0.61230487 \pm 6.2 \cdot 10^{-7} \) |
\(a_{913}= -0.17773642 \pm 5.3 \cdot 10^{-7} \) | \(a_{914}= -0.60254704 \pm 9.0 \cdot 10^{-7} \) | \(a_{915}= -1.51232141 \pm 6.9 \cdot 10^{-7} \) |
\(a_{916}= +0.52634993 \pm 1.1 \cdot 10^{-6} \) | \(a_{917}= +0.91052208 \pm 9.1 \cdot 10^{-7} \) | \(a_{918}= -0.13878888 \pm 8.7 \cdot 10^{-7} \) |
\(a_{919}= -0.54637372 \pm 7.9 \cdot 10^{-7} \) | \(a_{920}= +0.86432853 \pm 7.9 \cdot 10^{-7} \) | \(a_{921}= -1.11743851 \pm 8.5 \cdot 10^{-7} \) |
\(a_{922}= +0.18370803 \pm 7.1 \cdot 10^{-7} \) | \(a_{923}= -3.21747943 \pm 7.3 \cdot 10^{-7} \) | \(a_{924}= -0.68951317 \pm 8.9 \cdot 10^{-7} \) |
\(a_{925}= -0.21773133 \pm 5.9 \cdot 10^{-7} \) | \(a_{926}= +1.06356417 \pm 1.0 \cdot 10^{-6} \) | \(a_{927}= -0.89399704 \pm 8.0 \cdot 10^{-7} \) |
\(a_{928}= +0.37217521 \pm 7.8 \cdot 10^{-7} \) | \(a_{929}= +0.18197378 \pm 7.4 \cdot 10^{-7} \) | \(a_{930}= +0.13822783 \pm 2.5 \cdot 10^{-6} \) |
\(a_{931}= +0.25662665 \pm 5.7 \cdot 10^{-7} \) | \(a_{932}= +0.22286663 \pm 1.0 \cdot 10^{-6} \) | \(a_{933}= +0.75299842 \pm 5.6 \cdot 10^{-7} \) |
\(a_{934}= -0.59802843 \pm 9.4 \cdot 10^{-7} \) | \(a_{935}= +0.47735614 \pm 5.2 \cdot 10^{-7} \) | \(a_{936}= -1.41449183 \pm 8.4 \cdot 10^{-7} \) |
\(a_{937}= -1.10002315 \pm 7.6 \cdot 10^{-7} \) | \(a_{938}= +0.45412144 \pm 6.9 \cdot 10^{-7} \) | \(a_{939}= -0.23931057 \pm 8.8 \cdot 10^{-7} \) |
\(a_{940}= -0.07375993 \pm 1.0 \cdot 10^{-6} \) | \(a_{941}= +1.05594232 \pm 7.4 \cdot 10^{-7} \) | \(a_{942}= +0.91446097 \pm 9.6 \cdot 10^{-7} \) |
\(a_{943}= +0.01121241 \pm 6.7 \cdot 10^{-7} \) | \(a_{944}= -0.41947268 \pm 9.1 \cdot 10^{-7} \) | \(a_{945}= -0.28200660 \pm 7.4 \cdot 10^{-7} \) |
\(a_{946}= +0.12063696 \pm 7.3 \cdot 10^{-7} \) | \(a_{947}= -1.23994316 \pm 7.9 \cdot 10^{-7} \) | \(a_{948}= -0.77413120 \pm 1.4 \cdot 10^{-6} \) |
\(a_{949}= +2.05779532 \pm 7.8 \cdot 10^{-7} \) | \(a_{950}= +0.39509483 \pm 1.1 \cdot 10^{-6} \) | \(a_{951}= -0.74125665 \pm 7.5 \cdot 10^{-7} \) |
\(a_{952}= -0.67670108 \pm 5.7 \cdot 10^{-7} \) | \(a_{953}= +1.60065040 \pm 8.7 \cdot 10^{-7} \) | \(a_{954}= -0.31259104 \pm 1.1 \cdot 10^{-6} \) |
\(a_{955}= +0.84756892 \pm 8.7 \cdot 10^{-7} \) | \(a_{956}= -0.70647346 \pm 9.6 \cdot 10^{-7} \) | \(a_{957}= +0.59658343 \pm 9.6 \cdot 10^{-7} \) |
\(a_{958}= +0.93115777 \pm 1.0 \cdot 10^{-6} \) | \(a_{959}= -0.66762629 \pm 7.9 \cdot 10^{-7} \) | \(a_{960}= -0.97710503 \pm 1.1 \cdot 10^{-6} \) |
\(a_{961}= +0.03225806 \pm 1.7 \cdot 10^{-6} \) | \(a_{962}= +0.76687978 \pm 7.9 \cdot 10^{-7} \) | \(a_{963}= -0.38735199 \pm 6.4 \cdot 10^{-7} \) |
\(a_{964}= -0.19084718 \pm 6.2 \cdot 10^{-7} \) | \(a_{965}= -1.12872333 \pm 6.7 \cdot 10^{-7} \) | \(a_{966}= -1.05533851 \pm 5.4 \cdot 10^{-7} \) |
\(a_{967}= +0.20835927 \pm 7.1 \cdot 10^{-7} \) | \(a_{968}= +0.05042013 \pm 1.0 \cdot 10^{-6} \) | \(a_{969}= -1.15844684 \pm 6.1 \cdot 10^{-7} \) |
\(a_{970}= +0.14012640 \pm 8.4 \cdot 10^{-7} \) | \(a_{971}= +0.80357868 \pm 7.8 \cdot 10^{-7} \) | \(a_{972}= -0.58476769 \pm 1.1 \cdot 10^{-6} \) |
\(a_{973}= -0.13585213 \pm 6.1 \cdot 10^{-7} \) | \(a_{974}= -1.31070064 \pm 1.0 \cdot 10^{-6} \) | \(a_{975}= -0.84201327 \pm 5.4 \cdot 10^{-7} \) |
\(a_{976}= -0.44171710 \pm 1.2 \cdot 10^{-6} \) | \(a_{977}= -1.28788647 \pm 8.8 \cdot 10^{-7} \) | \(a_{978}= -1.28556048 \pm 9.7 \cdot 10^{-7} \) |
\(a_{979}= +1.21325277 \pm 7.2 \cdot 10^{-7} \) | \(a_{980}= -0.06433758 \pm 8.4 \cdot 10^{-7} \) | \(a_{981}= +0.74044538 \pm 8.2 \cdot 10^{-7} \) |
\(a_{982}= +0.64982238 \pm 7.5 \cdot 10^{-7} \) | \(a_{983}= +1.45380576 \pm 5.8 \cdot 10^{-7} \) | \(a_{984}= -0.01570709 \pm 1.8 \cdot 10^{-6} \) |
\(a_{985}= -0.52723675 \pm 5.9 \cdot 10^{-7} \) | \(a_{986}= +0.18723984 \pm 9.6 \cdot 10^{-7} \) | \(a_{987}= +0.28161818 \pm 7.0 \cdot 10^{-7} \) |
\(a_{988}= +1.23476868 \pm 7.7 \cdot 10^{-7} \) | \(a_{989}= -0.16383531 \pm 5.9 \cdot 10^{-7} \) | \(a_{990}= -0.44815853 \pm 6.4 \cdot 10^{-7} \) |
\(a_{991}= -0.05116850 \pm 7.4 \cdot 10^{-7} \) | \(a_{992}= -0.15182846 \pm 1.0 \cdot 10^{-6} \) | \(a_{993}= +0.74399039 \pm 8.5 \cdot 10^{-7} \) |
\(a_{994}= +1.44511148 \pm 7.0 \cdot 10^{-7} \) | \(a_{995}= +0.74225042 \pm 6.7 \cdot 10^{-7} \) | \(a_{996}= -0.10813667 \pm 1.1 \cdot 10^{-6} \) |
\(a_{997}= -0.80722746 \pm 8.0 \cdot 10^{-7} \) | \(a_{998}= +0.67284332 \pm 9.5 \cdot 10^{-7} \) | \(a_{999}= +0.19600891 \pm 5.4 \cdot 10^{-7} \) |
\(a_{1000}= -1.16416614 \pm 1.1 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000