Maass form invariants
Level: | \( 21 = 3 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 21.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(8.45064079787709261875461823034 \pm 2 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.92799433 \pm 2.8 \cdot 10^{-6} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= -0.13882652 \pm 3.2 \cdot 10^{-6} \) | \(a_{5}= +0.23410446 \pm 2.2 \cdot 10^{-6} \) | \(a_{6}= +0.53577778 \pm 2.8 \cdot 10^{-6} \) |
\(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= -1.05682456 \pm 3.2 \cdot 10^{-6} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= +0.21724761 \pm 2.7 \cdot 10^{-6} \) | \(a_{11}= +1.74846782 \pm 2.1 \cdot 10^{-6} \) | \(a_{12}= -0.08015153 \pm 3.2 \cdot 10^{-6} \) |
\(a_{13}= +0.90643397 \pm 2.5 \cdot 10^{-6} \) | \(a_{14}= -0.35074889 \pm 2.8 \cdot 10^{-6} \) | \(a_{15}= +0.13516027 \pm 2.2 \cdot 10^{-6} \) |
\(a_{16}= -0.84190068 \pm 2.7 \cdot 10^{-6} \) | \(a_{17}= +0.05612656 \pm 2.4 \cdot 10^{-6} \) | \(a_{18}= +0.30933144 \pm 2.8 \cdot 10^{-6} \) |
\(a_{19}= +0.97500210 \pm 2.3 \cdot 10^{-6} \) | \(a_{20}= -0.03249991 \pm 3.1 \cdot 10^{-6} \) | \(a_{21}= -0.21821789 \pm 1.0 \cdot 10^{-8} \) |
\(a_{22}= +1.62256823 \pm 2.8 \cdot 10^{-6} \) | \(a_{23}= +0.57238150 \pm 2.3 \cdot 10^{-6} \) | \(a_{24}= -0.61015794 \pm 3.2 \cdot 10^{-6} \) |
\(a_{25}= -0.94519510 \pm 2.2 \cdot 10^{-6} \) | \(a_{26}= +0.84116558 \pm 2.7 \cdot 10^{-6} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= +0.05247149 \pm 3.2 \cdot 10^{-6} \) | \(a_{29}= +0.91313285 \pm 2.5 \cdot 10^{-6} \) | \(a_{30}= +0.12542797 \pm 5.0 \cdot 10^{-6} \) |
\(a_{31}= +0.86897075 \pm 2.6 \cdot 10^{-6} \) | \(a_{32}= +0.27554550 \pm 2.5 \cdot 10^{-6} \) | \(a_{33}= +1.00947837 \pm 2.1 \cdot 10^{-6} \) |
\(a_{34}= +0.05208513 \pm 2.3 \cdot 10^{-6} \) | \(a_{35}= -0.08848317 \pm 2.2 \cdot 10^{-6} \) | \(a_{36}= -0.04627551 \pm 3.2 \cdot 10^{-6} \) |
\(a_{37}= +0.79629886 \pm 2.2 \cdot 10^{-6} \) | \(a_{38}= +0.90479643 \pm 2.7 \cdot 10^{-6} \) | \(a_{39}= +0.52332989 \pm 2.5 \cdot 10^{-6} \) |
\(a_{40}= -0.24740734 \pm 3.0 \cdot 10^{-6} \) | \(a_{41}= -1.15208149 \pm 1.8 \cdot 10^{-6} \) | \(a_{42}= -0.20250497 \pm 2.8 \cdot 10^{-6} \) |
\(a_{43}= +1.90883842 \pm 2.5 \cdot 10^{-6} \) | \(a_{44}= -0.24273370 \pm 3.2 \cdot 10^{-6} \) | \(a_{45}= +0.07803482 \pm 2.2 \cdot 10^{-6} \) |
\(a_{46}= +0.53116679 \pm 2.7 \cdot 10^{-6} \) | \(a_{47}= +0.60839088 \pm 2.3 \cdot 10^{-6} \) | \(a_{48}= -0.48607158 \pm 2.7 \cdot 10^{-6} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= -0.87713570 \pm 2.1 \cdot 10^{-6} \) | \(a_{51}= +0.03240468 \pm 2.4 \cdot 10^{-6} \) |
\(a_{52}= -0.12583707 \pm 3.1 \cdot 10^{-6} \) | \(a_{53}= -0.68748089 \pm 2.5 \cdot 10^{-6} \) | \(a_{54}= +0.17859259 \pm 2.8 \cdot 10^{-6} \) |
\(a_{55}= +0.40932412 \pm 1.9 \cdot 10^{-6} \) | \(a_{56}= +0.39944214 \pm 3.2 \cdot 10^{-6} \) | \(a_{57}= +0.56291773 \pm 2.4 \cdot 10^{-6} \) |
\(a_{58}= +0.84738211 \pm 2.4 \cdot 10^{-6} \) | \(a_{59}= -1.59867646 \pm 1.7 \cdot 10^{-6} \) | \(a_{60}= -0.01876383 \pm 5.5 \cdot 10^{-6} \) |
\(a_{61}= -0.87820205 \pm 2.3 \cdot 10^{-6} \) | \(a_{62}= +0.80639993 \pm 2.9 \cdot 10^{-6} \) | \(a_{63}= -0.12598816 \pm 1.8 \cdot 10^{-7} \) |
\(a_{64}= +1.09760534 \pm 2.1 \cdot 10^{-6} \) | \(a_{65}= +0.21220024 \pm 2.3 \cdot 10^{-6} \) | \(a_{66}= +0.93679020 \pm 5.0 \cdot 10^{-6} \) |
\(a_{67}= +1.06015967 \pm 2.4 \cdot 10^{-6} \) | \(a_{68}= -0.00779185 \pm 2.2 \cdot 10^{-6} \) | \(a_{69}= +0.33046462 \pm 2.3 \cdot 10^{-6} \) |
\(a_{70}= -0.08211188 \pm 5.0 \cdot 10^{-6} \) | \(a_{71}= -1.48537674 \pm 3.0 \cdot 10^{-6} \) | \(a_{72}= -0.35227485 \pm 3.2 \cdot 10^{-6} \) |
\(a_{73}= -0.67736801 \pm 2.2 \cdot 10^{-6} \) | \(a_{74}= +0.73896083 \pm 2.5 \cdot 10^{-6} \) | \(a_{75}= -0.54570865 \pm 2.2 \cdot 10^{-6} \) |
\(a_{76}= -0.13535615 \pm 2.7 \cdot 10^{-6} \) | \(a_{77}= -0.66085872 \pm 2.1 \cdot 10^{-6} \) | \(a_{78}= +0.48564718 \pm 5.3 \cdot 10^{-6} \) |
\(a_{79}= -0.81042827 \pm 1.5 \cdot 10^{-6} \) | \(a_{80}= -0.19709270 \pm 2.8 \cdot 10^{-6} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -1.06912509 \pm 2.1 \cdot 10^{-6} \) | \(a_{83}= +0.20811850 \pm 2.1 \cdot 10^{-6} \) | \(a_{84}= +0.03029443 \pm 3.2 \cdot 10^{-6} \) |
\(a_{85}= +0.01313948 \pm 1.7 \cdot 10^{-6} \) | \(a_{86}= +1.77139124 \pm 3.3 \cdot 10^{-6} \) | \(a_{87}= +0.52719750 \pm 2.5 \cdot 10^{-6} \) |
\(a_{88}= -1.84782373 \pm 3.1 \cdot 10^{-6} \) | \(a_{89}= +1.05222555 \pm 2.0 \cdot 10^{-6} \) | \(a_{90}= +0.07241587 \pm 5.0 \cdot 10^{-6} \) |
\(a_{91}= -0.34259984 \pm 2.5 \cdot 10^{-6} \) | \(a_{92}= -0.07946173 \pm 3.4 \cdot 10^{-6} \) | \(a_{93}= +0.50170050 \pm 2.6 \cdot 10^{-6} \) |
\(a_{94}= +0.56458329 \pm 2.8 \cdot 10^{-6} \) | \(a_{95}= +0.22825234 \pm 1.7 \cdot 10^{-6} \) | \(a_{96}= +0.15908627 \pm 2.5 \cdot 10^{-6} \) |
\(a_{97}= +0.12038135 \pm 1.5 \cdot 10^{-6} \) | \(a_{98}= +0.13257062 \pm 2.8 \cdot 10^{-6} \) | \(a_{99}= +0.58282261 \pm 2.1 \cdot 10^{-6} \) |
\(a_{100}= +0.13121815 \pm 2.3 \cdot 10^{-6} \) | \(a_{101}= +1.09666554 \pm 2.6 \cdot 10^{-6} \) | \(a_{102}= +0.03007136 \pm 5.2 \cdot 10^{-6} \) |
\(a_{103}= -0.32105046 \pm 2.1 \cdot 10^{-6} \) | \(a_{104}= -0.95794167 \pm 3.1 \cdot 10^{-6} \) | \(a_{105}= -0.05108578 \pm 2.2 \cdot 10^{-6} \) |
\(a_{106}= -0.63797837 \pm 3.2 \cdot 10^{-6} \) | \(a_{107}= +0.14258403 \pm 2.7 \cdot 10^{-6} \) | \(a_{108}= -0.02671718 \pm 3.2 \cdot 10^{-6} \) |
\(a_{109}= -1.80198391 \pm 2.5 \cdot 10^{-6} \) | \(a_{110}= +0.37985046 \pm 2.3 \cdot 10^{-6} \) | \(a_{111}= +0.45974336 \pm 2.2 \cdot 10^{-6} \) |
\(a_{112}= +0.31820855 \pm 2.7 \cdot 10^{-6} \) | \(a_{113}= -1.51832307 \pm 1.6 \cdot 10^{-6} \) | \(a_{114}= +0.52238446 \pm 5.2 \cdot 10^{-6} \) |
\(a_{115}= +0.13399706 \pm 2.3 \cdot 10^{-6} \) | \(a_{116}= -0.12676706 \pm 2.9 \cdot 10^{-6} \) | \(a_{117}= +0.30214466 \pm 2.5 \cdot 10^{-6} \) |
\(a_{118}= -1.48356270 \pm 2.1 \cdot 10^{-6} \) | \(a_{119}= -0.02121384 \pm 2.4 \cdot 10^{-6} \) | \(a_{120}= -0.14284070 \pm 5.5 \cdot 10^{-6} \) |
\(a_{121}= +2.05713972 \pm 2.0 \cdot 10^{-6} \) | \(a_{122}= -0.81496652 \pm 2.5 \cdot 10^{-6} \) | \(a_{123}= -0.66515456 \pm 1.8 \cdot 10^{-6} \) |
\(a_{124}= -0.12063619 \pm 3.3 \cdot 10^{-6} \) | \(a_{125}= -0.45537885 \pm 2.0 \cdot 10^{-6} \) | \(a_{126}= -0.11691630 \pm 2.8 \cdot 10^{-6} \) |
\(a_{127}= -0.26558541 \pm 2.8 \cdot 10^{-6} \) | \(a_{128}= +0.74302603 \pm 2.5 \cdot 10^{-6} \) | \(a_{129}= +1.10206838 \pm 2.5 \cdot 10^{-6} \) |
\(a_{130}= +0.19692062 \pm 3.1 \cdot 10^{-6} \) | \(a_{131}= +1.19131200 \pm 2.0 \cdot 10^{-6} \) | \(a_{132}= -0.14014237 \pm 5.4 \cdot 10^{-6} \) |
\(a_{133}= -0.36851616 \pm 2.4 \cdot 10^{-6} \) | \(a_{134}= +0.98382217 \pm 2.4 \cdot 10^{-6} \) | \(a_{135}= +0.04505342 \pm 2.2 \cdot 10^{-6} \) |
\(a_{136}= -0.05931592 \pm 2.4 \cdot 10^{-6} \) | \(a_{137}= +0.37020007 \pm 2.0 \cdot 10^{-6} \) | \(a_{138}= +0.30666929 \pm 5.2 \cdot 10^{-6} \) |
\(a_{139}= -0.96782721 \pm 2.5 \cdot 10^{-6} \) | \(a_{140}= +0.01228381 \pm 5.5 \cdot 10^{-6} \) | \(a_{141}= +0.35125464 \pm 2.3 \cdot 10^{-6} \) |
\(a_{142}= -1.37842119 \pm 2.8 \cdot 10^{-6} \) | \(a_{143}= +1.58487062 \pm 2.3 \cdot 10^{-6} \) | \(a_{144}= -0.28063356 \pm 2.7 \cdot 10^{-6} \) |
\(a_{145}= +0.21376847 \pm 1.8 \cdot 10^{-6} \) | \(a_{146}= -0.62859368 \pm 2.6 \cdot 10^{-6} \) | \(a_{147}= +0.08247861 \pm 3.5 \cdot 10^{-7} \) |
\(a_{148}= -0.11054740 \pm 2.9 \cdot 10^{-6} \) | \(a_{149}= +0.87574507 \pm 2.1 \cdot 10^{-6} \) | \(a_{150}= -0.50641453 \pm 5.1 \cdot 10^{-6} \) |
\(a_{151}= +0.04910430 \pm 2.4 \cdot 10^{-6} \) | \(a_{152}= -1.03040616 \pm 2.9 \cdot 10^{-6} \) | \(a_{153}= +0.01870885 \pm 2.4 \cdot 10^{-6} \) |
\(a_{154}= -0.61327314 \pm 5.0 \cdot 10^{-6} \) | \(a_{155}= +0.20342993 \pm 2.4 \cdot 10^{-6} \) | \(a_{156}= -0.07265207 \pm 5.8 \cdot 10^{-6} \) |
\(a_{157}= +0.22073421 \pm 2.3 \cdot 10^{-6} \) | \(a_{158}= -0.75207284 \pm 1.9 \cdot 10^{-6} \) | \(a_{159}= -0.39691728 \pm 2.5 \cdot 10^{-6} \) |
\(a_{160}= +0.06450643 \pm 2.3 \cdot 10^{-6} \) | \(a_{161}= -0.21633987 \pm 2.3 \cdot 10^{-6} \) | \(a_{162}= +0.10311048 \pm 2.8 \cdot 10^{-6} \) |
\(a_{163}= -0.26613764 \pm 2.3 \cdot 10^{-6} \) | \(a_{164}= +0.15993946 \pm 2.5 \cdot 10^{-6} \) | \(a_{165}= +0.23632339 \pm 4.4 \cdot 10^{-6} \) |
\(a_{166}= +0.19313279 \pm 2.3 \cdot 10^{-6} \) | \(a_{167}= +1.50819984 \pm 1.8 \cdot 10^{-6} \) | \(a_{168}= +0.23061802 \pm 3.2 \cdot 10^{-6} \) |
\(a_{169}= -0.17837747 \pm 2.8 \cdot 10^{-6} \) | \(a_{170}= +0.01219336 \pm 1.4 \cdot 10^{-6} \) | \(a_{171}= +0.32500070 \pm 2.4 \cdot 10^{-6} \) |
\(a_{172}= -0.26499740 \pm 3.9 \cdot 10^{-6} \) | \(a_{173}= -0.97849182 \pm 2.7 \cdot 10^{-6} \) | \(a_{174}= +0.48923629 \pm 5.3 \cdot 10^{-6} \) |
\(a_{175}= +0.35725017 \pm 2.2 \cdot 10^{-6} \) | \(a_{176}= -1.47203624 \pm 2.6 \cdot 10^{-6} \) | \(a_{177}= -0.92299629 \pm 1.7 \cdot 10^{-6} \) |
\(a_{178}= +0.97645935 \pm 2.5 \cdot 10^{-6} \) | \(a_{179}= -0.27003690 \pm 2.1 \cdot 10^{-6} \) | \(a_{180}= -0.01083330 \pm 5.5 \cdot 10^{-6} \) |
\(a_{181}= +0.71114396 \pm 1.9 \cdot 10^{-6} \) | \(a_{182}= -0.31793071 \pm 5.3 \cdot 10^{-6} \) | \(a_{183}= -0.50703019 \pm 2.3 \cdot 10^{-6} \) |
\(a_{184}= -0.60490683 \pm 3.3 \cdot 10^{-6} \) | \(a_{185}= +0.18641712 \pm 2.5 \cdot 10^{-6} \) | \(a_{186}= +0.46557522 \pm 5.4 \cdot 10^{-6} \) |
\(a_{187}= +0.09813548 \pm 2.2 \cdot 10^{-6} \) | \(a_{188}= -0.08446079 \pm 3.4 \cdot 10^{-6} \) | \(a_{189}= -0.07273930 \pm 4.4 \cdot 10^{-7} \) |
\(a_{190}= +0.21181688 \pm 1.7 \cdot 10^{-6} \) | \(a_{191}= +0.53999474 \pm 2.6 \cdot 10^{-6} \) | \(a_{192}= +0.63370274 \pm 2.1 \cdot 10^{-6} \) |
\(a_{193}= +0.28086541 \pm 2.6 \cdot 10^{-6} \) | \(a_{194}= +0.11171321 \pm 1.4 \cdot 10^{-6} \) | \(a_{195}= +0.12251386 \pm 4.7 \cdot 10^{-6} \) |
\(a_{196}= -0.01983236 \pm 3.2 \cdot 10^{-6} \) | \(a_{197}= -0.54467058 \pm 1.9 \cdot 10^{-6} \) | \(a_{198}= +0.54085608 \pm 5.0 \cdot 10^{-6} \) |
\(a_{199}= -0.34290521 \pm 1.6 \cdot 10^{-6} \) | \(a_{200}= +0.99890539 \pm 1.9 \cdot 10^{-6} \) | \(a_{201}= +0.61208347 \pm 2.4 \cdot 10^{-6} \) |
\(a_{202}= +1.01769941 \pm 2.6 \cdot 10^{-6} \) | \(a_{203}= -0.34513178 \pm 2.5 \cdot 10^{-6} \) | \(a_{204}= -0.00449863 \pm 5.7 \cdot 10^{-6} \) |
\(a_{205}= -0.26970742 \pm 1.5 \cdot 10^{-6} \) | \(a_{206}= -0.29793300 \pm 2.7 \cdot 10^{-6} \) | \(a_{207}= +0.19079383 \pm 2.3 \cdot 10^{-6} \) |
\(a_{208}= -0.76312737 \pm 2.2 \cdot 10^{-6} \) | \(a_{209}= +1.70475980 \pm 2.4 \cdot 10^{-6} \) | \(a_{210}= -0.04740732 \pm 5.0 \cdot 10^{-6} \) |
\(a_{211}= -1.47132810 \pm 2.4 \cdot 10^{-6} \) | \(a_{212}= +0.09544058 \pm 3.6 \cdot 10^{-6} \) | \(a_{213}= -0.85758266 \pm 3.0 \cdot 10^{-6} \) |
\(a_{214}= +0.13231717 \pm 3.2 \cdot 10^{-6} \) | \(a_{215}= +0.44686759 \pm 2.0 \cdot 10^{-6} \) | \(a_{216}= -0.20338598 \pm 3.2 \cdot 10^{-6} \) |
\(a_{217}= -0.32844007 \pm 2.6 \cdot 10^{-6} \) | \(a_{218}= -1.67223085 \pm 2.6 \cdot 10^{-6} \) | \(a_{219}= -0.39107860 \pm 2.2 \cdot 10^{-6} \) |
\(a_{220}= -0.05682504 \pm 2.6 \cdot 10^{-6} \) | \(a_{221}= +0.05087502 \pm 2.0 \cdot 10^{-6} \) | \(a_{222}= +0.42663923 \pm 5.0 \cdot 10^{-6} \) |
\(a_{223}= +1.57970154 \pm 2.8 \cdot 10^{-6} \) | \(a_{224}= -0.10414641 \pm 2.5 \cdot 10^{-6} \) | \(a_{225}= -0.31506503 \pm 2.2 \cdot 10^{-6} \) |
\(a_{226}= -1.40899520 \pm 2.4 \cdot 10^{-6} \) | \(a_{227}= -0.12141403 \pm 2.5 \cdot 10^{-6} \) | \(a_{228}= -0.07814791 \pm 5.6 \cdot 10^{-6} \) |
\(a_{229}= -0.85938858 \pm 3.1 \cdot 10^{-6} \) | \(a_{230}= +0.12434852 \pm 2.7 \cdot 10^{-6} \) | \(a_{231}= -0.38154696 \pm 2.1 \cdot 10^{-6} \) |
\(a_{232}= -0.96502122 \pm 2.7 \cdot 10^{-6} \) | \(a_{233}= -1.61741695 \pm 2.2 \cdot 10^{-6} \) | \(a_{234}= +0.28038853 \pm 5.3 \cdot 10^{-6} \) |
\(a_{235}= +0.14242702 \pm 2.2 \cdot 10^{-6} \) | \(a_{236}= +0.22193869 \pm 2.4 \cdot 10^{-6} \) | \(a_{237}= -0.46790098 \pm 1.6 \cdot 10^{-6} \) |
\(a_{238}= -0.01968633 \pm 5.2 \cdot 10^{-6} \) | \(a_{239}= +1.89285733 \pm 2.0 \cdot 10^{-6} \) | \(a_{240}= -0.11379153 \pm 4.9 \cdot 10^{-6} \) |
\(a_{241}= +1.86376560 \pm 2.4 \cdot 10^{-6} \) | \(a_{242}= +1.90901400 \pm 2.6 \cdot 10^{-6} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +0.12191773 \pm 2.8 \cdot 10^{-6} \) | \(a_{245}= +0.03344349 \pm 2.2 \cdot 10^{-6} \) | \(a_{246}= -0.61725966 \pm 4.7 \cdot 10^{-6} \) |
\(a_{247}= +0.88377502 \pm 1.9 \cdot 10^{-6} \) | \(a_{248}= -0.91834963 \pm 3.3 \cdot 10^{-6} \) | \(a_{249}= +0.12015727 \pm 2.1 \cdot 10^{-6} \) |
\(a_{250}= -0.42258899 \pm 2.3 \cdot 10^{-6} \) | \(a_{251}= +0.94640351 \pm 1.9 \cdot 10^{-6} \) | \(a_{252}= +0.01749050 \pm 3.2 \cdot 10^{-6} \) |
\(a_{253}= +1.00079064 \pm 1.9 \cdot 10^{-6} \) | \(a_{254}= -0.24646175 \pm 3.7 \cdot 10^{-6} \) | \(a_{255}= +0.00758608 \pm 4.7 \cdot 10^{-6} \) |
\(a_{256}= -0.40808139 \pm 2.6 \cdot 10^{-6} \) | \(a_{257}= -0.77061840 \pm 2.1 \cdot 10^{-6} \) | \(a_{258}= +1.02271321 \pm 5.3 \cdot 10^{-6} \) |
\(a_{259}= -0.30097268 \pm 2.2 \cdot 10^{-6} \) | \(a_{260}= -0.02945902 \pm 3.3 \cdot 10^{-6} \) | \(a_{261}= +0.30437762 \pm 2.5 \cdot 10^{-6} \) |
\(a_{262}= +1.10553079 \pm 2.8 \cdot 10^{-6} \) | \(a_{263}= +0.01320227 \pm 2.3 \cdot 10^{-6} \) | \(a_{264}= -1.06684153 \pm 5.4 \cdot 10^{-6} \) |
\(a_{265}= -0.16094234 \pm 1.9 \cdot 10^{-6} \) | \(a_{266}= -0.34198090 \pm 5.2 \cdot 10^{-6} \) | \(a_{267}= +0.60750271 \pm 2.0 \cdot 10^{-6} \) |
\(a_{268}= -0.14717828 \pm 2.7 \cdot 10^{-6} \) | \(a_{269}= +1.88267147 \pm 2.1 \cdot 10^{-6} \) | \(a_{270}= +0.04180932 \pm 5.0 \cdot 10^{-6} \) |
\(a_{271}= -0.77562312 \pm 2.0 \cdot 10^{-6} \) | \(a_{272}= -0.04725299 \pm 1.6 \cdot 10^{-6} \) | \(a_{273}= -0.19780011 \pm 2.5 \cdot 10^{-6} \) |
\(a_{274}= +0.34354357 \pm 2.5 \cdot 10^{-6} \) | \(a_{275}= -1.65264322 \pm 2.0 \cdot 10^{-6} \) | \(a_{276}= -0.04587725 \pm 5.6 \cdot 10^{-6} \) |
\(a_{277}= -0.63590792 \pm 2.0 \cdot 10^{-6} \) | \(a_{278}= -0.89813816 \pm 2.9 \cdot 10^{-6} \) | \(a_{279}= +0.28965692 \pm 2.6 \cdot 10^{-6} \) |
\(a_{280}= +0.09351119 \pm 5.5 \cdot 10^{-6} \) | \(a_{281}= -1.82903551 \pm 2.8 \cdot 10^{-6} \) | \(a_{282}= +0.32596232 \pm 5.1 \cdot 10^{-6} \) |
\(a_{283}= -1.26610672 \pm 1.9 \cdot 10^{-6} \) | \(a_{284}= +0.20620968 \pm 3.6 \cdot 10^{-6} \) | \(a_{285}= +0.13178155 \pm 4.6 \cdot 10^{-6} \) |
\(a_{286}= +1.47075095 \pm 2.2 \cdot 10^{-6} \) | \(a_{287}= +0.43544587 \pm 1.8 \cdot 10^{-6} \) | \(a_{288}= +0.09184850 \pm 2.5 \cdot 10^{-6} \) |
\(a_{289}= -0.99684981 \pm 2.2 \cdot 10^{-6} \) | \(a_{290}= +0.19837593 \pm 2.2 \cdot 10^{-6} \) | \(a_{291}= +0.06950220 \pm 1.5 \cdot 10^{-6} \) |
\(a_{292}= +0.09403664 \pm 3.2 \cdot 10^{-6} \) | \(a_{293}= -0.36178219 \pm 2.1 \cdot 10^{-6} \) | \(a_{294}= +0.07653968 \pm 2.8 \cdot 10^{-6} \) |
\(a_{295}= -0.37425729 \pm 1.4 \cdot 10^{-6} \) | \(a_{296}= -0.84154819 \pm 2.8 \cdot 10^{-6} \) | \(a_{297}= +0.33649279 \pm 2.1 \cdot 10^{-6} \) |
\(a_{298}= +0.81268646 \pm 3.1 \cdot 10^{-6} \) | \(a_{299}= +0.51882604 \pm 2.7 \cdot 10^{-6} \) | \(a_{300}= +0.07575883 \pm 5.5 \cdot 10^{-6} \) |
\(a_{301}= -0.72147311 \pm 2.5 \cdot 10^{-6} \) | \(a_{302}= +0.04556851 \pm 3.2 \cdot 10^{-6} \) | \(a_{303}= +0.63316015 \pm 2.6 \cdot 10^{-6} \) |
\(a_{304}= -0.82085493 \pm 1.9 \cdot 10^{-6} \) | \(a_{305}= -0.20559102 \pm 1.7 \cdot 10^{-6} \) | \(a_{306}= +0.01736171 \pm 5.2 \cdot 10^{-6} \) |
\(a_{307}= +0.30618638 \pm 3.0 \cdot 10^{-6} \) | \(a_{308}= +0.09174472 \pm 5.4 \cdot 10^{-6} \) | \(a_{309}= -0.18535857 \pm 2.1 \cdot 10^{-6} \) |
\(a_{310}= +0.18878182 \pm 2.9 \cdot 10^{-6} \) | \(a_{311}= +1.26989242 \pm 2.7 \cdot 10^{-6} \) | \(a_{312}= -0.55306788 \pm 5.8 \cdot 10^{-6} \) |
\(a_{313}= +0.23459869 \pm 2.9 \cdot 10^{-6} \) | \(a_{314}= +0.20484010 \pm 2.5 \cdot 10^{-6} \) | \(a_{315}= -0.02949439 \pm 2.2 \cdot 10^{-6} \) |
\(a_{316}= +0.11250894 \pm 2.3 \cdot 10^{-6} \) | \(a_{317}= +0.00026545 \pm 2.7 \cdot 10^{-6} \) | \(a_{318}= -0.36833698 \pm 5.3 \cdot 10^{-6} \) |
\(a_{319}= +1.59658340 \pm 1.8 \cdot 10^{-6} \) | \(a_{320}= +0.25695431 \pm 1.8 \cdot 10^{-6} \) | \(a_{321}= +0.08232093 \pm 2.7 \cdot 10^{-6} \) |
\(a_{322}= -0.20076218 \pm 5.2 \cdot 10^{-6} \) | \(a_{323}= +0.05472351 \pm 3.0 \cdot 10^{-6} \) | \(a_{324}= -0.01542517 \pm 3.2 \cdot 10^{-6} \) |
\(a_{325}= -0.85675694 \pm 2.2 \cdot 10^{-6} \) | \(a_{326}= -0.24697422 \pm 1.8 \cdot 10^{-6} \) | \(a_{327}= -1.04037589 \pm 2.5 \cdot 10^{-6} \) |
\(a_{328}= +1.21754801 \pm 2.3 \cdot 10^{-6} \) | \(a_{329}= -0.22995014 \pm 2.3 \cdot 10^{-6} \) | \(a_{330}= +0.21930677 \pm 7.2 \cdot 10^{-6} \) |
\(a_{331}= +0.63154507 \pm 2.1 \cdot 10^{-6} \) | \(a_{332}= -0.02889237 \pm 2.5 \cdot 10^{-6} \) | \(a_{333}= +0.26543295 \pm 2.2 \cdot 10^{-6} \) |
\(a_{334}= +1.39960090 \pm 2.6 \cdot 10^{-6} \) | \(a_{335}= +0.24818811 \pm 2.4 \cdot 10^{-6} \) | \(a_{336}= +0.18371779 \pm 2.7 \cdot 10^{-6} \) |
\(a_{337}= -0.96692487 \pm 2.8 \cdot 10^{-6} \) | \(a_{338}= -0.16553328 \pm 2.7 \cdot 10^{-6} \) | \(a_{339}= -0.87660423 \pm 1.6 \cdot 10^{-6} \) |
\(a_{340}= -0.00182411 \pm 1.5 \cdot 10^{-6} \) | \(a_{341}= +1.51936740 \pm 1.9 \cdot 10^{-6} \) | \(a_{342}= +0.30159881 \pm 5.2 \cdot 10^{-6} \) |
\(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= -2.01730732 \pm 3.9 \cdot 10^{-6} \) | \(a_{345}= +0.07736324 \pm 4.6 \cdot 10^{-6} \) |
\(a_{346}= -0.90803486 \pm 3.3 \cdot 10^{-6} \) | \(a_{347}= +1.05740637 \pm 2.5 \cdot 10^{-6} \) | \(a_{348}= -0.07318899 \pm 5.8 \cdot 10^{-6} \) |
\(a_{349}= -1.68784972 \pm 2.3 \cdot 10^{-6} \) | \(a_{350}= +0.33152613 \pm 5.1 \cdot 10^{-6} \) | \(a_{351}= +0.17444330 \pm 2.5 \cdot 10^{-6} \) |
\(a_{352}= +0.48178244 \pm 2.4 \cdot 10^{-6} \) | \(a_{353}= +1.81610183 \pm 1.9 \cdot 10^{-6} \) | \(a_{354}= -0.85653532 \pm 4.5 \cdot 10^{-6} \) |
\(a_{355}= -0.34773332 \pm 2.8 \cdot 10^{-6} \) | \(a_{356}= -0.14607681 \pm 2.4 \cdot 10^{-6} \) | \(a_{357}= -0.01224782 \pm 2.4 \cdot 10^{-6} \) |
\(a_{358}= -0.25059271 \pm 2.4 \cdot 10^{-6} \) | \(a_{359}= -1.43452003 \pm 1.6 \cdot 10^{-6} \) | \(a_{360}= -0.08246911 \pm 5.5 \cdot 10^{-6} \) |
\(a_{361}= -0.04937090 \pm 2.7 \cdot 10^{-6} \) | \(a_{362}= +0.65993756 \pm 2.4 \cdot 10^{-6} \) | \(a_{363}= +1.18769017 \pm 2.0 \cdot 10^{-6} \) |
\(a_{364}= +0.04756194 \pm 5.8 \cdot 10^{-6} \) | \(a_{365}= -0.15857487 \pm 2.2 \cdot 10^{-6} \) | \(a_{366}= -0.47052114 \pm 5.1 \cdot 10^{-6} \) |
\(a_{367}= -0.46971761 \pm 1.9 \cdot 10^{-6} \) | \(a_{368}= -0.48188838 \pm 2.7 \cdot 10^{-6} \) | \(a_{369}= -0.38402716 \pm 1.8 \cdot 10^{-6} \) |
\(a_{370}= +0.17299403 \pm 2.8 \cdot 10^{-6} \) | \(a_{371}= +0.25984335 \pm 2.5 \cdot 10^{-6} \) | \(a_{372}= -0.06964933 \pm 5.9 \cdot 10^{-6} \) |
\(a_{373}= +1.33854677 \pm 3.0 \cdot 10^{-6} \) | \(a_{374}= +0.09106917 \pm 2.7 \cdot 10^{-6} \) | \(a_{375}= -0.26291310 \pm 2.0 \cdot 10^{-6} \) |
\(a_{376}= -0.64296243 \pm 3.7 \cdot 10^{-6} \) | \(a_{377}= +0.82769463 \pm 1.8 \cdot 10^{-6} \) | \(a_{378}= -0.06750166 \pm 2.8 \cdot 10^{-6} \) |
\(a_{379}= -1.33507987 \pm 2.1 \cdot 10^{-6} \) | \(a_{380}= -0.03168748 \pm 2.1 \cdot 10^{-6} \) | \(a_{381}= -0.15333581 \pm 2.8 \cdot 10^{-6} \) |
\(a_{382}= +0.50111206 \pm 3.5 \cdot 10^{-6} \) | \(a_{383}= -1.23385680 \pm 2.9 \cdot 10^{-6} \) | \(a_{384}= +0.42898628 \pm 2.5 \cdot 10^{-6} \) |
\(a_{385}= -0.15470997 \pm 4.4 \cdot 10^{-6} \) | \(a_{386}= +0.26064151 \pm 2.8 \cdot 10^{-6} \) | \(a_{387}= +0.63627947 \pm 2.5 \cdot 10^{-6} \) |
\(a_{388}= -0.01671212 \pm 1.9 \cdot 10^{-6} \) | \(a_{389}= -0.28649907 \pm 2.0 \cdot 10^{-6} \) | \(a_{390}= +0.11369217 \pm 7.5 \cdot 10^{-6} \) |
\(a_{391}= +0.03212580 \pm 1.7 \cdot 10^{-6} \) | \(a_{392}= -0.15097494 \pm 3.2 \cdot 10^{-6} \) | \(a_{393}= +0.68780430 \pm 2.0 \cdot 10^{-6} \) |
\(a_{394}= -0.50545121 \pm 2.0 \cdot 10^{-6} \) | \(a_{395}= -0.18972487 \pm 1.6 \cdot 10^{-6} \) | \(a_{396}= -0.08091123 \pm 5.4 \cdot 10^{-6} \) |
\(a_{397}= -1.67649677 \pm 1.9 \cdot 10^{-6} \) | \(a_{398}= -0.31821409 \pm 2.1 \cdot 10^{-6} \) | \(a_{399}= -0.21276290 \pm 2.4 \cdot 10^{-6} \) |
\(a_{400}= +0.79576040 \pm 1.8 \cdot 10^{-6} \) | \(a_{401}= -0.82765727 \pm 2.3 \cdot 10^{-6} \) | \(a_{402}= +0.56800999 \pm 5.2 \cdot 10^{-6} \) |
\(a_{403}= +0.78766461 \pm 2.2 \cdot 10^{-6} \) | \(a_{404}= -0.15224626 \pm 3.3 \cdot 10^{-6} \) | \(a_{405}= +0.02601161 \pm 2.2 \cdot 10^{-6} \) |
\(a_{406}= -0.32028033 \pm 5.3 \cdot 10^{-6} \) | \(a_{407}= +1.39230293 \pm 1.9 \cdot 10^{-6} \) | \(a_{408}= -0.03424606 \pm 5.7 \cdot 10^{-6} \) |
\(a_{409}= +1.28187571 \pm 2.1 \cdot 10^{-6} \) | \(a_{410}= -0.25028695 \pm 2.0 \cdot 10^{-6} \) | \(a_{411}= +0.21373511 \pm 2.0 \cdot 10^{-6} \) |
\(a_{412}= +0.04457032 \pm 3.0 \cdot 10^{-6} \) | \(a_{413}= +0.60424291 \pm 1.7 \cdot 10^{-6} \) | \(a_{414}= +0.17705560 \pm 5.2 \cdot 10^{-6} \) |
\(a_{415}= +0.04872147 \pm 2.2 \cdot 10^{-6} \) | \(a_{416}= +0.24976380 \pm 2.3 \cdot 10^{-6} \) | \(a_{417}= -0.55877530 \pm 2.6 \cdot 10^{-6} \) |
\(a_{418}= +1.58200743 \pm 3.3 \cdot 10^{-6} \) | \(a_{419}= -0.11323793 \pm 2.5 \cdot 10^{-6} \) | \(a_{420}= +0.00709206 \pm 5.5 \cdot 10^{-6} \) |
\(a_{421}= +0.82811375 \pm 2.1 \cdot 10^{-6} \) | \(a_{422}= -1.36538413 \pm 2.4 \cdot 10^{-6} \) | \(a_{423}= +0.20279696 \pm 2.3 \cdot 10^{-6} \) |
\(a_{424}= +0.72654668 \pm 3.8 \cdot 10^{-6} \) | \(a_{425}= -0.05305055 \pm 2.1 \cdot 10^{-6} \) | \(a_{426}= -0.79583185 \pm 5.9 \cdot 10^{-6} \) |
\(a_{427}= +0.33192917 \pm 2.3 \cdot 10^{-6} \) | \(a_{428}= -0.01979444 \pm 4.0 \cdot 10^{-6} \) | \(a_{429}= +0.91502548 \pm 4.7 \cdot 10^{-6} \) |
\(a_{430}= +0.41469059 \pm 3.1 \cdot 10^{-6} \) | \(a_{431}= -0.89592645 \pm 2.4 \cdot 10^{-6} \) | \(a_{432}= -0.16202386 \pm 2.7 \cdot 10^{-6} \) |
\(a_{433}= +0.73485730 \pm 1.7 \cdot 10^{-6} \) | \(a_{434}= -0.30479053 \pm 5.4 \cdot 10^{-6} \) | \(a_{435}= +0.12341929 \pm 4.7 \cdot 10^{-6} \) |
\(a_{436}= +0.25016316 \pm 2.8 \cdot 10^{-6} \) | \(a_{437}= +0.55807317 \pm 2.0 \cdot 10^{-6} \) | \(a_{438}= -0.36291873 \pm 5.0 \cdot 10^{-6} \) |
\(a_{439}= -1.53948469 \pm 2.3 \cdot 10^{-6} \) | \(a_{440}= -0.43258378 \pm 2.5 \cdot 10^{-6} \) | \(a_{441}= +0.04761905 \pm 8.8 \cdot 10^{-7} \) |
\(a_{442}= +0.04721173 \pm 1.7 \cdot 10^{-6} \) | \(a_{443}= -0.38807311 \pm 2.3 \cdot 10^{-6} \) | \(a_{444}= -0.06382457 \pm 5.5 \cdot 10^{-6} \) |
\(a_{445}= +0.24633070 \pm 2.4 \cdot 10^{-6} \) | \(a_{446}= +1.46595407 \pm 2.7 \cdot 10^{-6} \) | \(a_{447}= +0.50561165 \pm 2.1 \cdot 10^{-6} \) |
\(a_{448}= -0.41485582 \pm 2.1 \cdot 10^{-6} \) | \(a_{449}= +0.13453814 \pm 2.1 \cdot 10^{-6} \) | \(a_{450}= -0.29237857 \pm 5.1 \cdot 10^{-6} \) |
\(a_{451}= -2.01437741 \pm 1.5 \cdot 10^{-6} \) | \(a_{452}= +0.21078351 \pm 2.8 \cdot 10^{-6} \) | \(a_{453}= +0.02835038 \pm 2.4 \cdot 10^{-6} \) |
\(a_{454}= -0.11267153 \pm 2.3 \cdot 10^{-6} \) | \(a_{455}= -0.08020415 \pm 4.7 \cdot 10^{-6} \) | \(a_{456}= -0.59490528 \pm 5.6 \cdot 10^{-6} \) |
\(a_{457}= -0.58534619 \pm 2.6 \cdot 10^{-6} \) | \(a_{458}= -0.79750773 \pm 2.8 \cdot 10^{-6} \) | \(a_{459}= +0.01080156 \pm 2.4 \cdot 10^{-6} \) |
\(a_{460}= -0.01860235 \pm 3.6 \cdot 10^{-6} \) | \(a_{461}= -1.38358203 \pm 2.9 \cdot 10^{-6} \) | \(a_{462}= -0.35407342 \pm 5.0 \cdot 10^{-6} \) |
\(a_{463}= -0.05001512 \pm 2.2 \cdot 10^{-6} \) | \(a_{464}= -0.76876716 \pm 2.3 \cdot 10^{-6} \) | \(a_{465}= +0.11745033 \pm 4.8 \cdot 10^{-6} \) |
\(a_{466}= -1.50095376 \pm 2.3 \cdot 10^{-6} \) | \(a_{467}= -1.64891027 \pm 2.5 \cdot 10^{-6} \) | \(a_{468}= -0.04194569 \pm 5.8 \cdot 10^{-6} \) |
\(a_{469}= -0.40070269 \pm 2.4 \cdot 10^{-6} \) | \(a_{470}= +0.13217147 \pm 3.0 \cdot 10^{-6} \) | \(a_{471}= +0.12744096 \pm 2.3 \cdot 10^{-6} \) |
\(a_{472}= +1.68952054 \pm 2.5 \cdot 10^{-6} \) | \(a_{473}= +3.33754256 \pm 2.1 \cdot 10^{-6} \) | \(a_{474}= -0.43420946 \pm 4.4 \cdot 10^{-6} \) |
\(a_{475}= -0.92156721 \pm 2.2 \cdot 10^{-6} \) | \(a_{476}= +0.00294504 \pm 5.7 \cdot 10^{-6} \) | \(a_{477}= -0.22916030 \pm 2.5 \cdot 10^{-6} \) |
\(a_{478}= +1.75656087 \pm 2.5 \cdot 10^{-6} \) | \(a_{479}= -0.51325942 \pm 2.4 \cdot 10^{-6} \) | \(a_{480}= +0.03724281 \pm 4.7 \cdot 10^{-6} \) |
\(a_{481}= +0.72179233 \pm 2.3 \cdot 10^{-6} \) | \(a_{482}= +1.72956391 \pm 2.3 \cdot 10^{-6} \) | \(a_{483}= -0.12490388 \pm 2.3 \cdot 10^{-6} \) |
\(a_{484}= -0.28558555 \pm 3.0 \cdot 10^{-6} \) | \(a_{485}= +0.02818181 \pm 1.3 \cdot 10^{-6} \) | \(a_{486}= +0.05953086 \pm 2.8 \cdot 10^{-6} \) |
\(a_{487}= -0.96161138 \pm 2.1 \cdot 10^{-6} \) | \(a_{488}= +0.92810549 \pm 2.7 \cdot 10^{-6} \) | \(a_{489}= -0.15365464 \pm 2.3 \cdot 10^{-6} \) |
\(a_{490}= +0.03103537 \pm 5.0 \cdot 10^{-6} \) | \(a_{491}= +0.59953908 \pm 1.8 \cdot 10^{-6} \) | \(a_{492}= +0.09234109 \pm 5.1 \cdot 10^{-6} \) |
\(a_{493}= +0.05125100 \pm 2.6 \cdot 10^{-6} \) | \(a_{494}= +0.82013821 \pm 2.2 \cdot 10^{-6} \) | \(a_{495}= +0.13644137 \pm 4.4 \cdot 10^{-6} \) |
\(a_{496}= -0.73158707 \pm 2.7 \cdot 10^{-6} \) | \(a_{497}= +0.56141964 \pm 3.0 \cdot 10^{-6} \) | \(a_{498}= +0.11150527 \pm 5.0 \cdot 10^{-6} \) |
\(a_{499}= -1.29399524 \pm 2.3 \cdot 10^{-6} \) | \(a_{500}= +0.06321866 \pm 2.9 \cdot 10^{-6} \) | \(a_{501}= +0.87075958 \pm 1.8 \cdot 10^{-6} \) |
\(a_{502}= +0.87825710 \pm 2.4 \cdot 10^{-6} \) | \(a_{503}= +0.04914170 \pm 2.5 \cdot 10^{-6} \) | \(a_{504}= +0.13314738 \pm 3.2 \cdot 10^{-6} \) |
\(a_{505}= +0.25673430 \pm 1.7 \cdot 10^{-6} \) | \(a_{506}= +0.92872804 \pm 2.3 \cdot 10^{-6} \) | \(a_{507}= -0.10298628 \pm 2.8 \cdot 10^{-6} \) |
\(a_{508}= +0.03687030 \pm 4.6 \cdot 10^{-6} \) | \(a_{509}= +0.14482744 \pm 2.4 \cdot 10^{-6} \) | \(a_{510}= +0.00703984 \pm 7.5 \cdot 10^{-6} \) |
\(a_{511}= +0.25602104 \pm 2.2 \cdot 10^{-6} \) | \(a_{512}= -1.12172325 \pm 3.0 \cdot 10^{-6} \) | \(a_{513}= +0.18763924 \pm 2.4 \cdot 10^{-6} \) |
\(a_{514}= -0.71512951 \pm 2.1 \cdot 10^{-6} \) | \(a_{515}= -0.07515934 \pm 2.1 \cdot 10^{-6} \) | \(a_{516}= -0.15299632 \pm 5.8 \cdot 10^{-6} \) |
\(a_{517}= +1.06375188 \pm 1.8 \cdot 10^{-6} \) | \(a_{518}= -0.27930094 \pm 5.0 \cdot 10^{-6} \) | \(a_{519}= -0.56493252 \pm 2.7 \cdot 10^{-6} \) |
\(a_{520}= -0.22425842 \pm 3.1 \cdot 10^{-6} \) | \(a_{521}= +0.74406197 \pm 2.6 \cdot 10^{-6} \) | \(a_{522}= +0.28246070 \pm 5.3 \cdot 10^{-6} \) |
\(a_{523}= -0.62818939 \pm 2.3 \cdot 10^{-6} \) | \(a_{524}= -0.16538570 \pm 3.4 \cdot 10^{-6} \) | \(a_{525}= +0.20625848 \pm 2.2 \cdot 10^{-6} \) |
\(a_{526}= +0.01225163 \pm 2.6 \cdot 10^{-6} \) | \(a_{527}= +0.04877234 \pm 2.9 \cdot 10^{-6} \) | \(a_{528}= -0.84988052 \pm 4.9 \cdot 10^{-6} \) |
\(a_{529}= -0.67237941 \pm 2.3 \cdot 10^{-6} \) | \(a_{530}= -0.14935358 \pm 2.7 \cdot 10^{-6} \) | \(a_{531}= -0.53289215 \pm 1.7 \cdot 10^{-6} \) |
\(a_{532}= +0.05115982 \pm 5.6 \cdot 10^{-6} \) | \(a_{533}= -1.04428579 \pm 2.5 \cdot 10^{-6} \) | \(a_{534}= +0.56375907 \pm 4.9 \cdot 10^{-6} \) |
\(a_{535}= +0.03337956 \pm 2.1 \cdot 10^{-6} \) | \(a_{536}= -1.12040277 \pm 3.0 \cdot 10^{-6} \) | \(a_{537}= -0.15590588 \pm 2.1 \cdot 10^{-6} \) |
\(a_{538}= +1.74710845 \pm 2.4 \cdot 10^{-6} \) | \(a_{539}= +0.24978112 \pm 2.1 \cdot 10^{-6} \) | \(a_{540}= -0.00625461 \pm 5.5 \cdot 10^{-6} \) |
\(a_{541}= +1.70730569 \pm 2.3 \cdot 10^{-6} \) | \(a_{542}= -0.71977386 \pm 2.6 \cdot 10^{-6} \) | \(a_{543}= +0.41057916 \pm 1.9 \cdot 10^{-6} \) |
\(a_{544}= +0.01546542 \pm 1.9 \cdot 10^{-6} \) | \(a_{545}= -0.42185247 \pm 1.8 \cdot 10^{-6} \) | \(a_{546}= -0.18355738 \pm 5.3 \cdot 10^{-6} \) |
\(a_{547}= -1.18008128 \pm 1.9 \cdot 10^{-6} \) | \(a_{548}= -0.05139359 \pm 2.9 \cdot 10^{-6} \) | \(a_{549}= -0.29273402 \pm 2.3 \cdot 10^{-6} \) |
\(a_{550}= -1.53364354 \pm 2.4 \cdot 10^{-6} \) | \(a_{551}= +0.89030645 \pm 2.0 \cdot 10^{-6} \) | \(a_{552}= -0.34924312 \pm 5.6 \cdot 10^{-6} \) |
\(a_{553}= +0.30631309 \pm 1.6 \cdot 10^{-6} \) | \(a_{554}= -0.59011895 \pm 2.5 \cdot 10^{-6} \) | \(a_{555}= +0.10762797 \pm 4.4 \cdot 10^{-6} \) |
\(a_{556}= +0.13436008 \pm 3.4 \cdot 10^{-6} \) | \(a_{557}= -0.15957666 \pm 2.4 \cdot 10^{-6} \) | \(a_{558}= +0.26879998 \pm 5.4 \cdot 10^{-6} \) |
\(a_{559}= +1.73023598 \pm 2.7 \cdot 10^{-6} \) | \(a_{560}= +0.07449404 \pm 4.9 \cdot 10^{-6} \) | \(a_{561}= +0.05665854 \pm 4.6 \cdot 10^{-6} \) |
\(a_{562}= -1.69733458 \pm 3.1 \cdot 10^{-6} \) | \(a_{563}= -0.20811919 \pm 1.7 \cdot 10^{-6} \) | \(a_{564}= -0.04876346 \pm 5.6 \cdot 10^{-6} \) |
\(a_{565}= -0.35544621 \pm 1.5 \cdot 10^{-6} \) | \(a_{566}= -1.17493986 \pm 2.3 \cdot 10^{-6} \) | \(a_{567}= -0.04199605 \pm 1.0 \cdot 10^{-6} \) |
\(a_{568}= +1.56978261 \pm 3.4 \cdot 10^{-6} \) | \(a_{569}= -0.08707324 \pm 2.2 \cdot 10^{-6} \) | \(a_{570}= +0.12229253 \pm 7.4 \cdot 10^{-6} \) |
\(a_{571}= +0.31802985 \pm 2.3 \cdot 10^{-6} \) | \(a_{572}= -0.22002207 \pm 2.3 \cdot 10^{-6} \) | \(a_{573}= +0.31176611 \pm 2.6 \cdot 10^{-6} \) |
\(a_{574}= +0.40409130 \pm 4.7 \cdot 10^{-6} \) | \(a_{575}= -0.54101219 \pm 2.5 \cdot 10^{-6} \) | \(a_{576}= +0.36586845 \pm 2.1 \cdot 10^{-6} \) |
\(a_{577}= +0.88555397 \pm 2.8 \cdot 10^{-6} \) | \(a_{578}= -0.92507097 \pm 2.8 \cdot 10^{-6} \) | \(a_{579}= +0.16215772 \pm 2.6 \cdot 10^{-6} \) |
\(a_{580}= -0.02967673 \pm 2.4 \cdot 10^{-6} \) | \(a_{581}= -0.07866140 \pm 2.1 \cdot 10^{-6} \) | \(a_{582}= +0.06449765 \pm 4.3 \cdot 10^{-6} \) |
\(a_{583}= -1.20203821 \pm 2.7 \cdot 10^{-6} \) | \(a_{584}= +0.71585915 \pm 3.2 \cdot 10^{-6} \) | \(a_{585}= +0.07073341 \pm 4.7 \cdot 10^{-6} \) |
\(a_{586}= -0.33573182 \pm 2.7 \cdot 10^{-6} \) | \(a_{587}= -0.16216989 \pm 3.0 \cdot 10^{-6} \) | \(a_{588}= -0.01145022 \pm 3.2 \cdot 10^{-6} \) |
\(a_{589}= +0.84724831 \pm 2.4 \cdot 10^{-6} \) | \(a_{590}= -0.34730865 \pm 2.1 \cdot 10^{-6} \) | \(a_{591}= -0.31446570 \pm 1.9 \cdot 10^{-6} \) |
\(a_{592}= -0.67040455 \pm 2.6 \cdot 10^{-6} \) | \(a_{593}= +0.57804347 \pm 1.7 \cdot 10^{-6} \) | \(a_{594}= +0.31226340 \pm 5.0 \cdot 10^{-6} \) |
\(a_{595}= -0.00496626 \pm 4.7 \cdot 10^{-6} \) | \(a_{596}= -0.12157664 \pm 3.5 \cdot 10^{-6} \) | \(a_{597}= -0.19797642 \pm 1.6 \cdot 10^{-6} \) |
\(a_{598}= +0.48146762 \pm 2.5 \cdot 10^{-6} \) | \(a_{599}= +1.35575632 \pm 2.8 \cdot 10^{-6} \) | \(a_{600}= +0.57671830 \pm 5.5 \cdot 10^{-6} \) |
\(a_{601}= +0.21094549 \pm 2.6 \cdot 10^{-6} \) | \(a_{602}= -0.66952295 \pm 5.3 \cdot 10^{-6} \) | \(a_{603}= +0.35338656 \pm 2.4 \cdot 10^{-6} \) |
\(a_{604}= -0.00681698 \pm 3.8 \cdot 10^{-6} \) | \(a_{605}= +0.48158559 \pm 1.3 \cdot 10^{-6} \) | \(a_{606}= +0.58756903 \pm 5.4 \cdot 10^{-6} \) |
\(a_{607}= -0.56042630 \pm 2.7 \cdot 10^{-6} \) | \(a_{608}= +0.26865744 \pm 1.7 \cdot 10^{-6} \) | \(a_{609}= -0.19926192 \pm 2.5 \cdot 10^{-6} \) |
\(a_{610}= -0.19078730 \pm 2.1 \cdot 10^{-6} \) | \(a_{611}= +0.55146616 \pm 2.0 \cdot 10^{-6} \) | \(a_{612}= -0.00259728 \pm 5.7 \cdot 10^{-6} \) |
\(a_{613}= -1.69878690 \pm 2.2 \cdot 10^{-6} \) | \(a_{614}= +0.28413922 \pm 3.3 \cdot 10^{-6} \) | \(a_{615}= -0.15571565 \pm 4.1 \cdot 10^{-6} \) |
\(a_{616}= +0.69841172 \pm 5.4 \cdot 10^{-6} \) | \(a_{617}= -0.69606612 \pm 2.4 \cdot 10^{-6} \) | \(a_{618}= -0.17201170 \pm 4.9 \cdot 10^{-6} \) |
\(a_{619}= -0.97934236 \pm 2.0 \cdot 10^{-6} \) | \(a_{620}= -0.02824147 \pm 3.2 \cdot 10^{-6} \) | \(a_{621}= +0.11015487 \pm 2.3 \cdot 10^{-6} \) |
\(a_{622}= +1.17845297 \pm 2.7 \cdot 10^{-6} \) | \(a_{623}= -0.39770388 \pm 2.0 \cdot 10^{-6} \) | \(a_{624}= -0.44059179 \pm 5.2 \cdot 10^{-6} \) |
\(a_{625}= +0.83858888 \pm 2.0 \cdot 10^{-6} \) | \(a_{626}= +0.21770625 \pm 3.2 \cdot 10^{-6} \) | \(a_{627}= +0.98424353 \pm 4.5 \cdot 10^{-6} \) |
\(a_{628}= -0.03064376 \pm 2.9 \cdot 10^{-6} \) | \(a_{629}= +0.04469351 \pm 1.9 \cdot 10^{-6} \) | \(a_{630}= -0.02737063 \pm 5.0 \cdot 10^{-6} \) |
\(a_{631}= +1.25230109 \pm 2.4 \cdot 10^{-6} \) | \(a_{632}= +0.85648050 \pm 2.1 \cdot 10^{-6} \) | \(a_{633}= -0.84947167 \pm 2.4 \cdot 10^{-6} \) |
\(a_{634}= +0.00024634 \pm 3.2 \cdot 10^{-6} \) | \(a_{635}= -0.06217473 \pm 2.3 \cdot 10^{-6} \) | \(a_{636}= +0.05510264 \pm 5.8 \cdot 10^{-6} \) |
\(a_{637}= +0.12949057 \pm 2.5 \cdot 10^{-6} \) | \(a_{638}= +1.48162035 \pm 2.6 \cdot 10^{-6} \) | \(a_{639}= -0.49512558 \pm 3.0 \cdot 10^{-6} \) |
\(a_{640}= +0.17394571 \pm 2.1 \cdot 10^{-6} \) | \(a_{641}= +0.53144508 \pm 2.3 \cdot 10^{-6} \) | \(a_{642}= +0.07639335 \pm 5.5 \cdot 10^{-6} \) |
\(a_{643}= -1.84118707 \pm 2.2 \cdot 10^{-6} \) | \(a_{644}= +0.03003371 \pm 5.6 \cdot 10^{-6} \) | \(a_{645}= +0.25799912 \pm 4.7 \cdot 10^{-6} \) |
\(a_{646}= +0.05078311 \pm 3.0 \cdot 10^{-6} \) | \(a_{647}= +0.30160465 \pm 3.1 \cdot 10^{-6} \) | \(a_{648}= -0.11742495 \pm 3.2 \cdot 10^{-6} \) |
\(a_{649}= -2.79523435 \pm 1.6 \cdot 10^{-6} \) | \(a_{650}= -0.79506559 \pm 2.3 \cdot 10^{-6} \) | \(a_{651}= -0.18962496 \pm 2.6 \cdot 10^{-6} \) |
\(a_{652}= +0.03694696 \pm 2.1 \cdot 10^{-6} \) | \(a_{653}= -0.18911382 \pm 2.4 \cdot 10^{-6} \) | \(a_{654}= -0.96546293 \pm 5.4 \cdot 10^{-6} \) |
\(a_{655}= +0.27889146 \pm 1.7 \cdot 10^{-6} \) | \(a_{656}= +0.96993819 \pm 1.9 \cdot 10^{-6} \) | \(a_{657}= -0.22578934 \pm 2.2 \cdot 10^{-6} \) |
\(a_{658}= -0.21339243 \pm 5.1 \cdot 10^{-6} \) | \(a_{659}= -0.43430131 \pm 2.7 \cdot 10^{-6} \) | \(a_{660}= -0.03280795 \pm 7.7 \cdot 10^{-6} \) |
\(a_{661}= +1.08185592 \pm 2.3 \cdot 10^{-6} \) | \(a_{662}= +0.58607024 \pm 2.2 \cdot 10^{-6} \) | \(a_{663}= +0.02937270 \pm 5.0 \cdot 10^{-6} \) |
\(a_{664}= -0.21994474 \pm 2.4 \cdot 10^{-6} \) | \(a_{665}= -0.08627128 \pm 4.6 \cdot 10^{-6} \) | \(a_{666}= +0.24632028 \pm 5.0 \cdot 10^{-6} \) |
\(a_{667}= +0.52266035 \pm 1.4 \cdot 10^{-6} \) | \(a_{668}= -0.20937814 \pm 3.3 \cdot 10^{-6} \) | \(a_{669}= +0.91204111 \pm 2.8 \cdot 10^{-6} \) |
\(a_{670}= +0.23031716 \pm 2.5 \cdot 10^{-6} \) | \(a_{671}= -1.53550802 \pm 2.0 \cdot 10^{-6} \) | \(a_{672}= -0.06012896 \pm 2.5 \cdot 10^{-6} \) |
\(a_{673}= -0.97957800 \pm 1.9 \cdot 10^{-6} \) | \(a_{674}= -0.89730080 \pm 3.1 \cdot 10^{-6} \) | \(a_{675}= -0.18190288 \pm 2.2 \cdot 10^{-6} \) |
\(a_{676}= +0.02476352 \pm 3.4 \cdot 10^{-6} \) | \(a_{677}= +0.94539998 \pm 2.9 \cdot 10^{-6} \) | \(a_{678}= -0.81348376 \pm 4.5 \cdot 10^{-6} \) |
\(a_{679}= -0.04549987 \pm 1.5 \cdot 10^{-6} \) | \(a_{680}= -0.01388612 \pm 1.4 \cdot 10^{-6} \) | \(a_{681}= -0.07009842 \pm 2.5 \cdot 10^{-6} \) |
\(a_{682}= +1.40996434 \pm 2.5 \cdot 10^{-6} \) | \(a_{683}= +0.28380952 \pm 2.0 \cdot 10^{-6} \) | \(a_{684}= -0.04511872 \pm 5.6 \cdot 10^{-6} \) |
\(a_{685}= +0.08666549 \pm 1.2 \cdot 10^{-6} \) | \(a_{686}= -0.05010698 \pm 2.8 \cdot 10^{-6} \) | \(a_{687}= -0.49616823 \pm 3.1 \cdot 10^{-6} \) |
\(a_{688}= -1.60705236 \pm 3.0 \cdot 10^{-6} \) | \(a_{689}= -0.62315603 \pm 2.8 \cdot 10^{-6} \) | \(a_{690}= +0.07179265 \pm 7.4 \cdot 10^{-6} \) |
\(a_{691}= -0.98414689 \pm 2.9 \cdot 10^{-6} \) | \(a_{692}= +0.13584061 \pm 3.7 \cdot 10^{-6} \) | \(a_{693}= -0.22028624 \pm 2.1 \cdot 10^{-6} \) |
\(a_{694}= +0.98126712 \pm 2.5 \cdot 10^{-6} \) | \(a_{695}= -0.22657267 \pm 2.6 \cdot 10^{-6} \) | \(a_{696}= -0.55715526 \pm 5.7 \cdot 10^{-6} \) |
\(a_{697}= -0.06466237 \pm 1.1 \cdot 10^{-6} \) | \(a_{698}= -1.56631497 \pm 2.4 \cdot 10^{-6} \) | \(a_{699}= -0.93381611 \pm 2.2 \cdot 10^{-6} \) |
\(a_{700}= -0.04959580 \pm 5.5 \cdot 10^{-6} \) | \(a_{701}= +1.19622179 \pm 2.3 \cdot 10^{-6} \) | \(a_{702}= +0.16188239 \pm 5.3 \cdot 10^{-6} \) |
\(a_{703}= +0.77639306 \pm 1.6 \cdot 10^{-6} \) | \(a_{704}= +1.91912761 \pm 2.4 \cdot 10^{-6} \) | \(a_{705}= +0.08223028 \pm 4.5 \cdot 10^{-6} \) |
\(a_{706}= +1.68533220 \pm 2.0 \cdot 10^{-6} \) | \(a_{707}= -0.41450061 \pm 2.6 \cdot 10^{-6} \) | \(a_{708}= +0.12813636 \pm 5.0 \cdot 10^{-6} \) |
\(a_{709}= +0.79688217 \pm 2.3 \cdot 10^{-6} \) | \(a_{710}= -0.32269455 \pm 2.9 \cdot 10^{-6} \) | \(a_{711}= -0.27014276 \pm 1.6 \cdot 10^{-6} \) |
\(a_{712}= -1.11201780 \pm 2.3 \cdot 10^{-6} \) | \(a_{713}= +0.49738279 \pm 2.2 \cdot 10^{-6} \) | \(a_{714}= -0.01136591 \pm 5.2 \cdot 10^{-6} \) |
\(a_{715}= +0.37102528 \pm 2.2 \cdot 10^{-6} \) | \(a_{716}= +0.03748828 \pm 2.8 \cdot 10^{-6} \) | \(a_{717}= +1.09284169 \pm 2.0 \cdot 10^{-6} \) |
\(a_{718}= -1.33122646 \pm 2.3 \cdot 10^{-6} \) | \(a_{719}= +0.42968317 \pm 1.9 \cdot 10^{-6} \) | \(a_{720}= -0.06569757 \pm 4.9 \cdot 10^{-6} \) |
\(a_{721}= +0.12134567 \pm 2.1 \cdot 10^{-6} \) | \(a_{722}= -0.04581591 \pm 3.1 \cdot 10^{-6} \) | \(a_{723}= +1.07604557 \pm 2.4 \cdot 10^{-6} \) |
\(a_{724}= -0.09872564 \pm 3.0 \cdot 10^{-6} \) | \(a_{725}= -0.86308870 \pm 1.9 \cdot 10^{-6} \) | \(a_{726}= +1.10216975 \pm 4.8 \cdot 10^{-6} \) |
\(a_{727}= +1.30108422 \pm 2.7 \cdot 10^{-6} \) | \(a_{728}= +0.36206792 \pm 5.8 \cdot 10^{-6} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.14715658 \pm 2.7 \cdot 10^{-6} \) | \(a_{731}= +0.10713653 \pm 2.2 \cdot 10^{-6} \) | \(a_{732}= +0.07038924 \pm 5.6 \cdot 10^{-6} \) |
\(a_{733}= +1.22318741 \pm 2.2 \cdot 10^{-6} \) | \(a_{734}= -0.43589528 \pm 2.3 \cdot 10^{-6} \) | \(a_{735}= +0.01930861 \pm 2.2 \cdot 10^{-6} \) |
\(a_{736}= +0.15771715 \pm 2.4 \cdot 10^{-6} \) | \(a_{737}= +1.85365507 \pm 2.1 \cdot 10^{-6} \) | \(a_{738}= -0.35637503 \pm 4.7 \cdot 10^{-6} \) |
\(a_{739}= -1.22546810 \pm 2.6 \cdot 10^{-6} \) | \(a_{740}= -0.02587964 \pm 3.2 \cdot 10^{-6} \) | \(a_{741}= +0.51024775 \pm 4.9 \cdot 10^{-6} \) |
\(a_{742}= +0.24113316 \pm 5.3 \cdot 10^{-6} \) | \(a_{743}= -1.66900037 \pm 2.3 \cdot 10^{-6} \) | \(a_{744}= -0.53020941 \pm 5.8 \cdot 10^{-6} \) |
\(a_{745}= +0.20501583 \pm 2.1 \cdot 10^{-6} \) | \(a_{746}= +1.24216381 \pm 3.8 \cdot 10^{-6} \) | \(a_{747}= +0.06937283 \pm 2.1 \cdot 10^{-6} \) |
\(a_{748}= -0.01362381 \pm 2.7 \cdot 10^{-6} \) | \(a_{749}= -0.05389170 \pm 2.7 \cdot 10^{-6} \) | \(a_{750}= -0.24398187 \pm 4.8 \cdot 10^{-6} \) |
\(a_{751}= -0.74222592 \pm 2.5 \cdot 10^{-6} \) | \(a_{752}= -0.51220470 \pm 3.6 \cdot 10^{-6} \) | \(a_{753}= +0.54640632 \pm 1.9 \cdot 10^{-6} \) |
\(a_{754}= +0.76809592 \pm 2.3 \cdot 10^{-6} \) | \(a_{755}= +0.01149554 \pm 2.5 \cdot 10^{-6} \) | \(a_{756}= +0.01009814 \pm 3.2 \cdot 10^{-6} \) |
\(a_{757}= +0.64953897 \pm 2.3 \cdot 10^{-6} \) | \(a_{758}= -1.23894655 \pm 2.0 \cdot 10^{-6} \) | \(a_{759}= +0.57780675 \pm 4.5 \cdot 10^{-6} \) |
\(a_{760}= -0.24122268 \pm 2.0 \cdot 10^{-6} \) | \(a_{761}= +0.59693219 \pm 2.8 \cdot 10^{-6} \) | \(a_{762}= -0.14229476 \pm 5.6 \cdot 10^{-6} \) |
\(a_{763}= +0.68108590 \pm 2.5 \cdot 10^{-6} \) | \(a_{764}= -0.07496559 \pm 4.3 \cdot 10^{-6} \) | \(a_{765}= +0.00437983 \pm 4.7 \cdot 10^{-6} \) |
\(a_{766}= -1.14501212 \pm 3.4 \cdot 10^{-6} \) | \(a_{767}= -1.44909465 \pm 2.1 \cdot 10^{-6} \) | \(a_{768}= -0.23560590 \pm 2.6 \cdot 10^{-6} \) |
\(a_{769}= +0.00238516 \pm 2.7 \cdot 10^{-6} \) | \(a_{770}= -0.14356998 \pm 7.2 \cdot 10^{-6} \) | \(a_{771}= -0.44491674 \pm 2.1 \cdot 10^{-6} \) |
\(a_{772}= -0.03899157 \pm 3.4 \cdot 10^{-6} \) | \(a_{773}= -0.68007238 \pm 2.2 \cdot 10^{-6} \) | \(a_{774}= +0.59046375 \pm 5.3 \cdot 10^{-6} \) |
\(a_{775}= -0.82134690 \pm 2.2 \cdot 10^{-6} \) | \(a_{776}= -0.12722196 \pm 1.9 \cdot 10^{-6} \) | \(a_{777}= -0.17376666 \pm 2.2 \cdot 10^{-6} \) |
\(a_{778}= -0.26586951 \pm 2.3 \cdot 10^{-6} \) | \(a_{779}= -1.12328188 \pm 1.5 \cdot 10^{-6} \) | \(a_{780}= -0.01700817 \pm 8.0 \cdot 10^{-6} \) |
\(a_{781}= -2.59713343 \pm 2.0 \cdot 10^{-6} \) | \(a_{782}= +0.02981256 \pm 1.7 \cdot 10^{-6} \) | \(a_{783}= +0.17573250 \pm 2.5 \cdot 10^{-6} \) |
\(a_{784}= -0.12027153 \pm 2.7 \cdot 10^{-6} \) | \(a_{785}= +0.05167486 \pm 2.7 \cdot 10^{-6} \) | \(a_{786}= +0.63827850 \pm 4.8 \cdot 10^{-6} \) |
\(a_{787}= +1.97487797 \pm 1.8 \cdot 10^{-6} \) | \(a_{788}= +0.07561472 \pm 2.0 \cdot 10^{-6} \) | \(a_{789}= +0.00762233 \pm 2.3 \cdot 10^{-6} \) |
\(a_{790}= -0.17606361 \pm 1.9 \cdot 10^{-6} \) | \(a_{791}= +0.57387218 \pm 1.6 \cdot 10^{-6} \) | \(a_{792}= -0.61594124 \pm 5.4 \cdot 10^{-6} \) |
\(a_{793}= -0.79603216 \pm 2.6 \cdot 10^{-6} \) | \(a_{794}= -1.55577950 \pm 3.1 \cdot 10^{-6} \) | \(a_{795}= -0.09292011 \pm 4.8 \cdot 10^{-6} \) |
\(a_{796}= +0.04760434 \pm 2.7 \cdot 10^{-6} \) | \(a_{797}= +0.72185397 \pm 2.1 \cdot 10^{-6} \) | \(a_{798}= -0.19744277 \pm 5.2 \cdot 10^{-6} \) |
\(a_{799}= +0.03414688 \pm 2.1 \cdot 10^{-6} \) | \(a_{800}= -0.26044426 \pm 1.9 \cdot 10^{-6} \) | \(a_{801}= +0.35074185 \pm 2.0 \cdot 10^{-6} \) |
\(a_{802}= -0.76806125 \pm 2.7 \cdot 10^{-6} \) | \(a_{803}= -1.18435617 \pm 1.8 \cdot 10^{-6} \) | \(a_{804}= -0.08497342 \pm 5.7 \cdot 10^{-6} \) |
\(a_{805}= -0.05064613 \pm 4.6 \cdot 10^{-6} \) | \(a_{806}= +0.73094829 \pm 2.7 \cdot 10^{-6} \) | \(a_{807}= +1.08696088 \pm 2.2 \cdot 10^{-6} \) |
\(a_{808}= -1.15898307 \pm 3.1 \cdot 10^{-6} \) | \(a_{809}= +1.23825188 \pm 2.5 \cdot 10^{-6} \) | \(a_{810}= +0.02413862 \pm 5.0 \cdot 10^{-6} \) |
\(a_{811}= +0.91825609 \pm 2.4 \cdot 10^{-6} \) | \(a_{812}= +0.04791344 \pm 5.8 \cdot 10^{-6} \) | \(a_{813}= -0.44780622 \pm 2.0 \cdot 10^{-6} \) |
\(a_{814}= +1.29204923 \pm 2.2 \cdot 10^{-6} \) | \(a_{815}= -0.06230401 \pm 1.9 \cdot 10^{-6} \) | \(a_{816}= -0.02728152 \pm 5.1 \cdot 10^{-6} \) |
\(a_{817}= +1.86112148 \pm 2.5 \cdot 10^{-6} \) | \(a_{818}= +1.18957339 \pm 2.0 \cdot 10^{-6} \) | \(a_{819}= -0.11419995 \pm 2.5 \cdot 10^{-6} \) |
\(a_{820}= +0.03744254 \pm 2.4 \cdot 10^{-6} \) | \(a_{821}= +0.52709201 \pm 1.9 \cdot 10^{-6} \) | \(a_{822}= +0.19834497 \pm 4.8 \cdot 10^{-6} \) |
\(a_{823}= -0.42480073 \pm 1.9 \cdot 10^{-6} \) | \(a_{824}= +0.33929401 \pm 3.0 \cdot 10^{-6} \) | \(a_{825}= -0.95415401 \pm 4.4 \cdot 10^{-6} \) |
\(a_{826}= +0.56073399 \pm 4.5 \cdot 10^{-6} \) | \(a_{827}= -0.97159388 \pm 2.8 \cdot 10^{-6} \) | \(a_{828}= -0.02648724 \pm 5.6 \cdot 10^{-6} \) |
\(a_{829}= +1.31943864 \pm 1.9 \cdot 10^{-6} \) | \(a_{830}= +0.04521325 \pm 2.7 \cdot 10^{-6} \) | \(a_{831}= -0.36714161 \pm 2.0 \cdot 10^{-6} \) |
\(a_{832}= +0.99490676 \pm 1.5 \cdot 10^{-6} \) | \(a_{833}= +0.00801808 \pm 2.4 \cdot 10^{-6} \) | \(a_{834}= -0.51854031 \pm 5.4 \cdot 10^{-6} \) |
\(a_{835}= +0.35307631 \pm 1.7 \cdot 10^{-6} \) | \(a_{836}= -0.23666587 \pm 3.6 \cdot 10^{-6} \) | \(a_{837}= +0.16723350 \pm 2.6 \cdot 10^{-6} \) |
\(a_{838}= -0.10508416 \pm 2.6 \cdot 10^{-6} \) | \(a_{839}= -0.86416524 \pm 2.6 \cdot 10^{-6} \) | \(a_{840}= +0.05398871 \pm 5.5 \cdot 10^{-6} \) |
\(a_{841}= -0.16618840 \pm 2.9 \cdot 10^{-6} \) | \(a_{842}= +0.76848487 \pm 2.2 \cdot 10^{-6} \) | \(a_{843}= -1.05599414 \pm 2.8 \cdot 10^{-6} \) |
\(a_{844}= +0.20425936 \pm 2.7 \cdot 10^{-6} \) | \(a_{845}= -0.04175896 \pm 2.4 \cdot 10^{-6} \) | \(a_{846}= +0.18819443 \pm 5.1 \cdot 10^{-6} \) |
\(a_{847}= -0.77752573 \pm 2.0 \cdot 10^{-6} \) | \(a_{848}= +0.57879063 \pm 3.3 \cdot 10^{-6} \) | \(a_{849}= -0.73098706 \pm 1.9 \cdot 10^{-6} \) |
\(a_{850}= -0.04923061 \pm 2.1 \cdot 10^{-6} \) | \(a_{851}= +0.45578674 \pm 2.3 \cdot 10^{-6} \) | \(a_{852}= +0.11905522 \pm 6.3 \cdot 10^{-6} \) |
\(a_{853}= -0.19720956 \pm 2.5 \cdot 10^{-6} \) | \(a_{854}= +0.30802839 \pm 5.1 \cdot 10^{-6} \) | \(a_{855}= +0.07608411 \pm 4.6 \cdot 10^{-6} \) |
\(a_{856}= -0.15068630 \pm 3.8 \cdot 10^{-6} \) | \(a_{857}= +0.43309028 \pm 2.1 \cdot 10^{-6} \) | \(a_{858}= +0.84913846 \pm 7.5 \cdot 10^{-6} \) |
\(a_{859}= -0.40604727 \pm 2.4 \cdot 10^{-6} \) | \(a_{860}= -0.06203707 \pm 3.8 \cdot 10^{-6} \) | \(a_{861}= +0.25140479 \pm 1.8 \cdot 10^{-6} \) |
\(a_{862}= -0.83141467 \pm 2.5 \cdot 10^{-6} \) | \(a_{863}= +0.95944687 \pm 2.5 \cdot 10^{-6} \) | \(a_{864}= +0.05302876 \pm 2.5 \cdot 10^{-6} \) |
\(a_{865}= -0.22906930 \pm 2.6 \cdot 10^{-6} \) | \(a_{866}= +0.68194341 \pm 2.2 \cdot 10^{-6} \) | \(a_{867}= -0.57553151 \pm 2.2 \cdot 10^{-6} \) |
\(a_{868}= +0.04559619 \pm 5.9 \cdot 10^{-6} \) | \(a_{869}= -1.41700776 \pm 1.5 \cdot 10^{-6} \) | \(a_{870}= +0.11453240 \pm 7.5 \cdot 10^{-6} \) |
\(a_{871}= +0.96096474 \pm 2.8 \cdot 10^{-6} \) | \(a_{872}= +1.90438084 \pm 3.4 \cdot 10^{-6} \) | \(a_{873}= +0.04012712 \pm 1.5 \cdot 10^{-6} \) |
\(a_{874}= +0.51788874 \pm 2.4 \cdot 10^{-6} \) | \(a_{875}= +0.17211703 \pm 2.0 \cdot 10^{-6} \) | \(a_{876}= +0.05429208 \pm 5.5 \cdot 10^{-6} \) |
\(a_{877}= -1.85285865 \pm 2.5 \cdot 10^{-6} \) | \(a_{878}= -1.42863307 \pm 3.2 \cdot 10^{-6} \) | \(a_{879}= -0.20887504 \pm 2.1 \cdot 10^{-6} \) |
\(a_{880}= -0.34461025 \pm 2.6 \cdot 10^{-6} \) | \(a_{881}= +0.45309716 \pm 2.2 \cdot 10^{-6} \) | \(a_{882}= +0.04419021 \pm 2.8 \cdot 10^{-6} \) |
\(a_{883}= -1.31285694 \pm 2.5 \cdot 10^{-6} \) | \(a_{884}= -0.00706280 \pm 1.4 \cdot 10^{-6} \) | \(a_{885}= -0.21607755 \pm 3.9 \cdot 10^{-6} \) |
\(a_{886}= -0.36012965 \pm 3.0 \cdot 10^{-6} \) | \(a_{887}= +0.77755268 \pm 1.9 \cdot 10^{-6} \) | \(a_{888}= -0.48586807 \pm 5.5 \cdot 10^{-6} \) |
\(a_{889}= +0.10038185 \pm 2.8 \cdot 10^{-6} \) | \(a_{890}= +0.22859349 \pm 3.1 \cdot 10^{-6} \) | \(a_{891}= +0.19427420 \pm 2.1 \cdot 10^{-6} \) |
\(a_{892}= -0.21930447 \pm 3.4 \cdot 10^{-6} \) | \(a_{893}= +0.59318239 \pm 1.7 \cdot 10^{-6} \) | \(a_{894}= +0.46920475 \pm 5.0 \cdot 10^{-6} \) |
\(a_{895}= -0.06321684 \pm 1.7 \cdot 10^{-6} \) | \(a_{896}= -0.28083744 \pm 2.5 \cdot 10^{-6} \) | \(a_{897}= +0.29954435 \pm 4.9 \cdot 10^{-6} \) |
\(a_{898}= +0.12485063 \pm 2.5 \cdot 10^{-6} \) | \(a_{899}= +0.79348574 \pm 2.8 \cdot 10^{-6} \) | \(a_{900}= +0.04373938 \pm 5.5 \cdot 10^{-6} \) |
\(a_{901}= -0.03858593 \pm 2.5 \cdot 10^{-6} \) | \(a_{902}= -1.86933082 \pm 1.8 \cdot 10^{-6} \) | \(a_{903}= -0.41654269 \pm 2.5 \cdot 10^{-6} \) |
\(a_{904}= +1.60460110 \pm 2.7 \cdot 10^{-6} \) | \(a_{905}= +0.16648197 \pm 1.5 \cdot 10^{-6} \) | \(a_{906}= +0.02630899 \pm 5.3 \cdot 10^{-6} \) |
\(a_{907}= -0.12117327 \pm 2.0 \cdot 10^{-6} \) | \(a_{908}= +0.01685549 \pm 2.8 \cdot 10^{-6} \) | \(a_{909}= +0.36555518 \pm 2.6 \cdot 10^{-6} \) |
\(a_{910}= -0.07442900 \pm 7.5 \cdot 10^{-6} \) | \(a_{911}= +1.39697339 \pm 1.8 \cdot 10^{-6} \) | \(a_{912}= -0.47392082 \pm 5.1 \cdot 10^{-6} \) |
\(a_{913}= +0.36388850 \pm 2.1 \cdot 10^{-6} \) | \(a_{914}= -0.54319795 \pm 3.4 \cdot 10^{-6} \) | \(a_{915}= -0.11869803 \pm 4.5 \cdot 10^{-6} \) |
\(a_{916}= +0.11930593 \pm 3.8 \cdot 10^{-6} \) | \(a_{917}= -0.45027361 \pm 2.0 \cdot 10^{-6} \) | \(a_{918}= +0.01002379 \pm 5.2 \cdot 10^{-6} \) |
\(a_{919}= +0.64729636 \pm 2.9 \cdot 10^{-6} \) | \(a_{920}= -0.14161139 \pm 3.2 \cdot 10^{-6} \) | \(a_{921}= +0.17677679 \pm 3.0 \cdot 10^{-6} \) |
\(a_{922}= -1.28395628 \pm 2.9 \cdot 10^{-6} \) | \(a_{923}= -1.34639593 \pm 2.5 \cdot 10^{-6} \) | \(a_{924}= +0.05296884 \pm 5.4 \cdot 10^{-6} \) |
\(a_{925}= -0.75265778 \pm 2.4 \cdot 10^{-6} \) | \(a_{926}= -0.04641375 \pm 2.4 \cdot 10^{-6} \) | \(a_{927}= -0.10701682 \pm 2.1 \cdot 10^{-6} \) |
\(a_{928}= +0.25160965 \pm 2.5 \cdot 10^{-6} \) | \(a_{929}= -0.29585436 \pm 3.0 \cdot 10^{-6} \) | \(a_{930}= +0.10899324 \pm 7.6 \cdot 10^{-6} \) |
\(a_{931}= +0.13928601 \pm 2.4 \cdot 10^{-6} \) | \(a_{932}= +0.22454037 \pm 2.5 \cdot 10^{-6} \) | \(a_{933}= +0.73317273 \pm 2.8 \cdot 10^{-6} \) |
\(a_{934}= -1.53017939 \pm 2.2 \cdot 10^{-6} \) | \(a_{935}= +0.02297395 \pm 1.6 \cdot 10^{-6} \) | \(a_{936}= -0.31931389 \pm 5.8 \cdot 10^{-6} \) |
\(a_{937}= -1.50841370 \pm 2.3 \cdot 10^{-6} \) | \(a_{938}= -0.37184983 \pm 5.2 \cdot 10^{-6} \) | \(a_{939}= +0.13544561 \pm 3.0 \cdot 10^{-6} \) |
\(a_{940}= -0.01977265 \pm 3.4 \cdot 10^{-6} \) | \(a_{941}= +0.02177830 \pm 2.5 \cdot 10^{-6} \) | \(a_{942}= +0.11826449 \pm 5.1 \cdot 10^{-6} \) |
\(a_{943}= -0.65943014 \pm 2.5 \cdot 10^{-6} \) | \(a_{944}= +1.34592680 \pm 2.0 \cdot 10^{-6} \) | \(a_{945}= -0.01702859 \pm 2.2 \cdot 10^{-6} \) |
\(a_{946}= +3.09722057 \pm 2.9 \cdot 10^{-6} \) | \(a_{947}= -0.76356810 \pm 2.2 \cdot 10^{-6} \) | \(a_{948}= +0.06495707 \pm 4.8 \cdot 10^{-6} \) |
\(a_{949}= -0.61398937 \pm 2.5 \cdot 10^{-6} \) | \(a_{950}= -0.85520915 \pm 2.3 \cdot 10^{-6} \) | \(a_{951}= +0.00015326 \pm 2.7 \cdot 10^{-6} \) |
\(a_{952}= +0.02241931 \pm 5.7 \cdot 10^{-6} \) | \(a_{953}= +0.04785960 \pm 2.6 \cdot 10^{-6} \) | \(a_{954}= -0.21265946 \pm 5.3 \cdot 10^{-6} \) |
\(a_{955}= +0.12641518 \pm 2.8 \cdot 10^{-6} \) | \(a_{956}= -0.26277880 \pm 2.6 \cdot 10^{-6} \) | \(a_{957}= +0.92178786 \pm 4.6 \cdot 10^{-6} \) |
\(a_{958}= -0.47630184 \pm 2.6 \cdot 10^{-6} \) | \(a_{959}= -0.13992247 \pm 2.0 \cdot 10^{-6} \) | \(a_{960}= +0.14835264 \pm 4.4 \cdot 10^{-6} \) |
\(a_{961}= -0.24488983 \pm 1.9 \cdot 10^{-6} \) | \(a_{962}= +0.66981919 \pm 2.5 \cdot 10^{-6} \) | \(a_{963}= +0.04752801 \pm 2.7 \cdot 10^{-6} \) |
\(a_{964}= -0.25874009 \pm 2.9 \cdot 10^{-6} \) | \(a_{965}= +0.06575184 \pm 2.1 \cdot 10^{-6} \) | \(a_{966}= -0.11591010 \pm 5.2 \cdot 10^{-6} \) |
\(a_{967}= +0.39385359 \pm 1.9 \cdot 10^{-6} \) | \(a_{968}= -2.17403577 \pm 2.7 \cdot 10^{-6} \) | \(a_{969}= +0.03159463 \pm 4.8 \cdot 10^{-6} \) |
\(a_{970}= +0.02615256 \pm 1.5 \cdot 10^{-6} \) | \(a_{971}= +1.28214658 \pm 1.6 \cdot 10^{-6} \) | \(a_{972}= -0.00890573 \pm 3.2 \cdot 10^{-6} \) |
\(a_{973}= +0.36580430 \pm 2.6 \cdot 10^{-6} \) | \(a_{974}= -0.89236991 \pm 2.2 \cdot 10^{-6} \) | \(a_{975}= -0.49464885 \pm 4.8 \cdot 10^{-6} \) |
\(a_{976}= +0.73935890 \pm 1.9 \cdot 10^{-6} \) | \(a_{977}= -0.57265821 \pm 2.2 \cdot 10^{-6} \) | \(a_{978}= -0.14259063 \pm 5.1 \cdot 10^{-6} \) |
\(a_{979}= +1.83978252 \pm 1.7 \cdot 10^{-6} \) | \(a_{980}= -0.00464284 \pm 5.5 \cdot 10^{-6} \) | \(a_{981}= -0.60066130 \pm 2.5 \cdot 10^{-6} \) |
\(a_{982}= +0.55636886 \pm 1.8 \cdot 10^{-6} \) | \(a_{983}= +1.40919582 \pm 2.3 \cdot 10^{-6} \) | \(a_{984}= +0.70295167 \pm 5.1 \cdot 10^{-6} \) |
\(a_{985}= -0.12750981 \pm 1.7 \cdot 10^{-6} \) | \(a_{986}= +0.04756064 \pm 1.9 \cdot 10^{-6} \) | \(a_{987}= -0.13276178 \pm 2.3 \cdot 10^{-6} \) |
\(a_{988}= -0.12269141 \pm 2.3 \cdot 10^{-6} \) | \(a_{989}= +1.09258381 \pm 2.9 \cdot 10^{-6} \) | \(a_{990}= +0.12661682 \pm 7.2 \cdot 10^{-6} \) |
\(a_{991}= +0.85371099 \pm 2.5 \cdot 10^{-6} \) | \(a_{992}= +0.23944098 \pm 2.4 \cdot 10^{-6} \) | \(a_{993}= +0.36462271 \pm 2.1 \cdot 10^{-6} \) |
\(a_{994}= +0.52099424 \pm 5.9 \cdot 10^{-6} \) | \(a_{995}= -0.08027564 \pm 1.7 \cdot 10^{-6} \) | \(a_{996}= -0.01668102 \pm 5.4 \cdot 10^{-6} \) |
\(a_{997}= +1.03153220 \pm 2.5 \cdot 10^{-6} \) | \(a_{998}= -1.20082025 \pm 2.7 \cdot 10^{-6} \) | \(a_{999}= +0.15324779 \pm 2.2 \cdot 10^{-6} \) |
\(a_{1000}= +0.48125555 \pm 2.8 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000