Maass form invariants
Level: | \( 21 = 3 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 21.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(8.34543779151581858717861114593 \pm 2 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.05198079 \pm 5.0 \cdot 10^{-6} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= -0.99729800 \pm 5.9 \cdot 10^{-6} \) | \(a_{5}= +0.36911106 \pm 4.0 \cdot 10^{-6} \) | \(a_{6}= -0.03001112 \pm 5.1 \cdot 10^{-6} \) |
\(a_{7}= +0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.10382112 \pm 5.9 \cdot 10^{-6} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= -0.01918668 \pm 4.9 \cdot 10^{-6} \) | \(a_{11}= -1.34518328 \pm 3.9 \cdot 10^{-6} \) | \(a_{12}= -0.57579027 \pm 5.9 \cdot 10^{-6} \) |
\(a_{13}= +0.76668785 \pm 4.5 \cdot 10^{-6} \) | \(a_{14}= -0.01964689 \pm 5.1 \cdot 10^{-6} \) | \(a_{15}= +0.21310637 \pm 4.0 \cdot 10^{-6} \) |
\(a_{16}= +0.99190129 \pm 4.9 \cdot 10^{-6} \) | \(a_{17}= +1.44160041 \pm 4.4 \cdot 10^{-6} \) | \(a_{18}= -0.01732693 \pm 5.1 \cdot 10^{-6} \) |
\(a_{19}= -1.82249494 \pm 4.3 \cdot 10^{-6} \) | \(a_{20}= -0.36811372 \pm 5.7 \cdot 10^{-6} \) | \(a_{21}= +0.21821789 \pm 1.0 \cdot 10^{-8} \) |
\(a_{22}= +0.06992369 \pm 5.2 \cdot 10^{-6} \) | \(a_{23}= +0.12807244 \pm 4.3 \cdot 10^{-6} \) | \(a_{24}= +0.05994115 \pm 5.9 \cdot 10^{-6} \) |
\(a_{25}= -0.86375703 \pm 4.0 \cdot 10^{-6} \) | \(a_{26}= -0.03985304 \pm 4.9 \cdot 10^{-6} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.37694321 \pm 5.9 \cdot 10^{-6} \) | \(a_{29}= -0.90128663 \pm 4.5 \cdot 10^{-6} \) | \(a_{30}= -0.01107744 \pm 9.1 \cdot 10^{-6} \) |
\(a_{31}= -0.25620466 \pm 4.7 \cdot 10^{-6} \) | \(a_{32}= -0.15538093 \pm 4.5 \cdot 10^{-6} \) | \(a_{33}= -0.77664193 \pm 3.9 \cdot 10^{-6} \) |
\(a_{34}= -0.07493552 \pm 4.1 \cdot 10^{-6} \) | \(a_{35}= +0.13951087 \pm 4.0 \cdot 10^{-6} \) | \(a_{36}= -0.33243267 \pm 5.9 \cdot 10^{-6} \) |
\(a_{37}= -1.85921479 \pm 4.0 \cdot 10^{-6} \) | \(a_{38}= +0.09473472 \pm 5.0 \cdot 10^{-6} \) | \(a_{39}= +0.44264744 \pm 4.5 \cdot 10^{-6} \) |
\(a_{40}= +0.03832152 \pm 5.4 \cdot 10^{-6} \) | \(a_{41}= -1.93951865 \pm 3.3 \cdot 10^{-6} \) | \(a_{42}= -0.01134314 \pm 5.1 \cdot 10^{-6} \) |
\(a_{43}= -0.21804173 \pm 4.5 \cdot 10^{-6} \) | \(a_{44}= +1.34154859 \pm 5.8 \cdot 10^{-6} \) | \(a_{45}= +0.12303702 \pm 4.0 \cdot 10^{-6} \) |
\(a_{46}= -0.00665731 \pm 5.0 \cdot 10^{-6} \) | \(a_{47}= -0.83100276 \pm 4.1 \cdot 10^{-6} \) | \(a_{48}= +0.57267448 \pm 4.9 \cdot 10^{-6} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= +0.04489877 \pm 3.9 \cdot 10^{-6} \) | \(a_{51}= +0.83230838 \pm 4.4 \cdot 10^{-6} \) |
\(a_{52}= -0.76461626 \pm 5.6 \cdot 10^{-6} \) | \(a_{53}= +0.38903843 \pm 4.6 \cdot 10^{-6} \) | \(a_{54}= -0.01000371 \pm 5.1 \cdot 10^{-6} \) |
\(a_{55}= -0.49652202 \pm 3.5 \cdot 10^{-6} \) | \(a_{56}= +0.03924070 \pm 5.9 \cdot 10^{-6} \) | \(a_{57}= -1.05221794 \pm 4.3 \cdot 10^{-6} \) |
\(a_{58}= +0.04684959 \pm 4.3 \cdot 10^{-6} \) | \(a_{59}= +0.37899847 \pm 3.1 \cdot 10^{-6} \) | \(a_{60}= -0.21253056 \pm 9.9 \cdot 10^{-6} \) |
\(a_{61}= -0.62203247 \pm 4.1 \cdot 10^{-6} \) | \(a_{62}= +0.01331772 \pm 5.3 \cdot 10^{-6} \) | \(a_{63}= +0.12598816 \pm 1.8 \cdot 10^{-7} \) |
\(a_{64}= -0.98382447 \pm 3.9 \cdot 10^{-6} \) | \(a_{65}= +0.28299296 \pm 4.2 \cdot 10^{-6} \) | \(a_{66}= +0.04037046 \pm 9.0 \cdot 10^{-6} \) |
\(a_{67}= +1.20387254 \pm 4.4 \cdot 10^{-6} \) | \(a_{68}= -1.43770520 \pm 4.0 \cdot 10^{-6} \) | \(a_{69}= +0.07394266 \pm 4.3 \cdot 10^{-6} \) |
\(a_{70}= -0.00725188 \pm 9.1 \cdot 10^{-6} \) | \(a_{71}= +0.73853645 \pm 5.5 \cdot 10^{-6} \) | \(a_{72}= +0.03460704 \pm 5.9 \cdot 10^{-6} \) |
\(a_{73}= -0.05284248 \pm 4.0 \cdot 10^{-6} \) | \(a_{74}= +0.09664345 \pm 4.5 \cdot 10^{-6} \) | \(a_{75}= -0.49869035 \pm 4.1 \cdot 10^{-6} \) |
\(a_{76}= +1.81757055 \pm 5.0 \cdot 10^{-6} \) | \(a_{77}= -0.50843149 \pm 3.9 \cdot 10^{-6} \) | \(a_{78}= -0.02300916 \pm 9.6 \cdot 10^{-6} \) |
\(a_{79}= +0.83865013 \pm 2.8 \cdot 10^{-6} \) | \(a_{80}= +0.36612174 \pm 5.1 \cdot 10^{-6} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= +0.10081771 \pm 3.7 \cdot 10^{-6} \) | \(a_{83}= -1.09250808 \pm 3.9 \cdot 10^{-6} \) | \(a_{84}= -0.21762827 \pm 5.9 \cdot 10^{-6} \) |
\(a_{85}= +0.53211065 \pm 3.0 \cdot 10^{-6} \) | \(a_{86}= +0.01133398 \pm 5.9 \cdot 10^{-6} \) | \(a_{87}= -0.52035808 \pm 4.5 \cdot 10^{-6} \) |
\(a_{88}= -0.13965844 \pm 5.7 \cdot 10^{-6} \) | \(a_{89}= -0.81676372 \pm 3.7 \cdot 10^{-6} \) | \(a_{90}= -0.00639556 \pm 9.1 \cdot 10^{-6} \) |
\(a_{91}= +0.28978077 \pm 4.5 \cdot 10^{-6} \) | \(a_{92}= -0.12772639 \pm 6.2 \cdot 10^{-6} \) | \(a_{93}= -0.14791983 \pm 4.7 \cdot 10^{-6} \) |
\(a_{94}= +0.04319618 \pm 5.1 \cdot 10^{-6} \) | \(a_{95}= -0.67270304 \pm 3.0 \cdot 10^{-6} \) | \(a_{96}= -0.08970922 \pm 4.5 \cdot 10^{-6} \) |
\(a_{97}= +0.08232655 \pm 2.7 \cdot 10^{-6} \) | \(a_{98}= -0.00742583 \pm 5.1 \cdot 10^{-6} \) | \(a_{99}= -0.44839443 \pm 3.9 \cdot 10^{-6} \) |
\(a_{100}= +0.86142315 \pm 4.3 \cdot 10^{-6} \) | \(a_{101}= -0.79141082 \pm 4.7 \cdot 10^{-6} \) | \(a_{102}= -0.04326404 \pm 9.5 \cdot 10^{-6} \) |
\(a_{103}= +0.92529808 \pm 3.8 \cdot 10^{-6} \) | \(a_{104}= +0.07959839 \pm 5.6 \cdot 10^{-6} \) | \(a_{105}= +0.08054664 \pm 4.0 \cdot 10^{-6} \) |
\(a_{106}= -0.02022252 \pm 5.8 \cdot 10^{-6} \) | \(a_{107}= +0.49266301 \pm 4.8 \cdot 10^{-6} \) | \(a_{108}= -0.19193009 \pm 5.9 \cdot 10^{-6} \) |
\(a_{109}= -0.02649613 \pm 4.6 \cdot 10^{-6} \) | \(a_{110}= +0.02580961 \pm 4.2 \cdot 10^{-6} \) | \(a_{111}= -1.07341816 \pm 4.0 \cdot 10^{-6} \) |
\(a_{112}= +0.37490345 \pm 4.9 \cdot 10^{-6} \) | \(a_{113}= +0.13928608 \pm 3.0 \cdot 10^{-6} \) | \(a_{114}= +0.05469512 \pm 9.4 \cdot 10^{-6} \) |
\(a_{115}= +0.04727296 \pm 4.2 \cdot 10^{-6} \) | \(a_{116}= +0.89885136 \pm 5.2 \cdot 10^{-6} \) | \(a_{117}= +0.25556262 \pm 4.5 \cdot 10^{-6} \) |
\(a_{118}= -0.01970064 \pm 3.8 \cdot 10^{-6} \) | \(a_{119}= +0.54487374 \pm 4.4 \cdot 10^{-6} \) | \(a_{120}= +0.02212494 \pm 9.9 \cdot 10^{-6} \) |
\(a_{121}= +0.80951806 \pm 3.6 \cdot 10^{-6} \) | \(a_{122}= +0.03233374 \pm 4.5 \cdot 10^{-6} \) | \(a_{123}= -1.11978161 \pm 3.3 \cdot 10^{-6} \) |
\(a_{124}= +0.25551239 \pm 6.0 \cdot 10^{-6} \) | \(a_{125}= -0.68793333 \pm 3.6 \cdot 10^{-6} \) | \(a_{126}= -0.00654896 \pm 5.1 \cdot 10^{-6} \) |
\(a_{127}= +0.82810856 \pm 5.0 \cdot 10^{-6} \) | \(a_{128}= +0.20652090 \pm 4.5 \cdot 10^{-6} \) | \(a_{129}= -0.12588645 \pm 4.6 \cdot 10^{-6} \) |
\(a_{130}= -0.01471020 \pm 5.6 \cdot 10^{-6} \) | \(a_{131}= -0.64780665 \pm 3.6 \cdot 10^{-6} \) | \(a_{132}= +0.77454344 \pm 9.8 \cdot 10^{-6} \) |
\(a_{133}= -0.68883834 \pm 4.3 \cdot 10^{-6} \) | \(a_{134}= -0.06257824 \pm 4.3 \cdot 10^{-6} \) | \(a_{135}= +0.07103546 \pm 4.0 \cdot 10^{-6} \) |
\(a_{136}= +0.14966857 \pm 4.4 \cdot 10^{-6} \) | \(a_{137}= -1.43424788 \pm 3.6 \cdot 10^{-6} \) | \(a_{138}= -0.00384360 \pm 9.4 \cdot 10^{-6} \) |
\(a_{139}= -1.12594941 \pm 4.6 \cdot 10^{-6} \) | \(a_{140}= -0.13913391 \pm 9.9 \cdot 10^{-6} \) | \(a_{141}= -0.47977966 \pm 4.1 \cdot 10^{-6} \) |
\(a_{142}= -0.03838971 \pm 5.1 \cdot 10^{-6} \) | \(a_{143}= -1.03133568 \pm 4.1 \cdot 10^{-6} \) | \(a_{144}= +0.33063376 \pm 4.9 \cdot 10^{-6} \) |
\(a_{145}= -0.33267486 \pm 3.3 \cdot 10^{-6} \) | \(a_{146}= +0.00274679 \pm 4.8 \cdot 10^{-6} \) | \(a_{147}= +0.08247861 \pm 3.5 \cdot 10^{-7} \) |
\(a_{148}= +1.85419119 \pm 5.3 \cdot 10^{-6} \) | \(a_{149}= -0.01745820 \pm 3.9 \cdot 10^{-6} \) | \(a_{150}= +0.02592232 \pm 9.1 \cdot 10^{-6} \) |
\(a_{151}= +1.67032039 \pm 4.4 \cdot 10^{-6} \) | \(a_{152}= -0.18921347 \pm 5.3 \cdot 10^{-6} \) | \(a_{153}= +0.48053347 \pm 4.4 \cdot 10^{-6} \) |
\(a_{154}= +0.02642867 \pm 9.0 \cdot 10^{-6} \) | \(a_{155}= -0.09456797 \pm 4.4 \cdot 10^{-6} \) | \(a_{156}= -0.44145140 \pm 1.0 \cdot 10^{-5} \) |
\(a_{157}= +0.53100887 \pm 4.2 \cdot 10^{-6} \) | \(a_{158}= -0.04359369 \pm 3.5 \cdot 10^{-6} \) | \(a_{159}= +0.22461144 \pm 4.6 \cdot 10^{-6} \) |
\(a_{160}= -0.05735282 \pm 4.2 \cdot 10^{-6} \) | \(a_{161}= +0.04840683 \pm 4.3 \cdot 10^{-6} \) | \(a_{162}= -0.00577564 \pm 5.1 \cdot 10^{-6} \) |
\(a_{163}= -1.44355417 \pm 4.1 \cdot 10^{-6} \) | \(a_{164}= +1.93427806 \pm 4.5 \cdot 10^{-6} \) | \(a_{165}= -0.28666712 \pm 7.9 \cdot 10^{-6} \) |
\(a_{166}= +0.05678943 \pm 4.3 \cdot 10^{-6} \) | \(a_{167}= +0.40674385 \pm 3.3 \cdot 10^{-6} \) | \(a_{168}= +0.02265563 \pm 5.9 \cdot 10^{-6} \) |
\(a_{169}= -0.41218974 \pm 5.1 \cdot 10^{-6} \) | \(a_{170}= -0.02765953 \pm 2.6 \cdot 10^{-6} \) | \(a_{171}= -0.60749831 \pm 4.3 \cdot 10^{-6} \) |
\(a_{172}= +0.21745259 \pm 7.1 \cdot 10^{-6} \) | \(a_{173}= +0.14279938 \pm 4.9 \cdot 10^{-6} \) | \(a_{174}= +0.02704862 \pm 9.6 \cdot 10^{-6} \) |
\(a_{175}= -0.32646947 \pm 4.1 \cdot 10^{-6} \) | \(a_{176}= -1.33428904 \pm 4.7 \cdot 10^{-6} \) | \(a_{177}= +0.21881487 \pm 3.1 \cdot 10^{-6} \) |
\(a_{178}= +0.04245602 \pm 4.5 \cdot 10^{-6} \) | \(a_{179}= +1.22184327 \pm 3.8 \cdot 10^{-6} \) | \(a_{180}= -0.12270457 \pm 9.9 \cdot 10^{-6} \) |
\(a_{181}= +1.64470609 \pm 3.4 \cdot 10^{-6} \) | \(a_{182}= -0.01506303 \pm 9.6 \cdot 10^{-6} \) | \(a_{183}= -0.35913062 \pm 4.1 \cdot 10^{-6} \) |
\(a_{184}= +0.01329662 \pm 5.9 \cdot 10^{-6} \) | \(a_{185}= -0.68625674 \pm 4.6 \cdot 10^{-6} \) | \(a_{186}= +0.00768899 \pm 9.8 \cdot 10^{-6} \) |
\(a_{187}= -1.93921676 \pm 4.0 \cdot 10^{-6} \) | \(a_{188}= +0.82875738 \pm 6.2 \cdot 10^{-6} \) | \(a_{189}= +0.07273930 \pm 4.4 \cdot 10^{-7} \) |
\(a_{190}= +0.03496763 \pm 3.1 \cdot 10^{-6} \) | \(a_{191}= +0.05376612 \pm 4.7 \cdot 10^{-6} \) | \(a_{192}= -0.56801132 \pm 3.9 \cdot 10^{-6} \) |
\(a_{193}= -0.52341978 \pm 4.7 \cdot 10^{-6} \) | \(a_{194}= -0.00427940 \pm 2.5 \cdot 10^{-6} \) | \(a_{195}= +0.16338606 \pm 8.5 \cdot 10^{-6} \) |
\(a_{196}= -0.14247114 \pm 5.9 \cdot 10^{-6} \) | \(a_{197}= -1.79354879 \pm 3.4 \cdot 10^{-6} \) | \(a_{198}= +0.02330790 \pm 9.0 \cdot 10^{-6} \) |
\(a_{199}= +0.51170746 \pm 2.9 \cdot 10^{-6} \) | \(a_{200}= -0.08967622 \pm 3.5 \cdot 10^{-6} \) | \(a_{201}= +0.69505614 \pm 4.4 \cdot 10^{-6} \) |
\(a_{202}= +0.04113816 \pm 4.7 \cdot 10^{-6} \) | \(a_{203}= -0.34065433 \pm 4.5 \cdot 10^{-6} \) | \(a_{204}= -0.83005948 \pm 1.0 \cdot 10^{-5} \) |
\(a_{205}= -0.71589778 \pm 2.8 \cdot 10^{-6} \) | \(a_{206}= -0.04809772 \pm 4.9 \cdot 10^{-6} \) | \(a_{207}= +0.04269081 \pm 4.3 \cdot 10^{-6} \) |
\(a_{208}= +0.76047867 \pm 4.1 \cdot 10^{-6} \) | \(a_{209}= +2.45158972 \pm 4.3 \cdot 10^{-6} \) | \(a_{210}= -0.00418688 \pm 9.1 \cdot 10^{-6} \) |
\(a_{211}= +0.36881661 \pm 4.3 \cdot 10^{-6} \) | \(a_{212}= -0.38798724 \pm 6.6 \cdot 10^{-6} \) | \(a_{213}= +0.42639422 \pm 5.5 \cdot 10^{-6} \) |
\(a_{214}= -0.02560901 \pm 5.8 \cdot 10^{-6} \) | \(a_{215}= -0.08048162 \pm 3.6 \cdot 10^{-6} \) | \(a_{216}= +0.01998038 \pm 5.9 \cdot 10^{-6} \) |
\(a_{217}= -0.09683626 \pm 4.7 \cdot 10^{-6} \) | \(a_{218}= +0.00137729 \pm 4.8 \cdot 10^{-6} \) | \(a_{219}= -0.03050862 \pm 4.0 \cdot 10^{-6} \) |
\(a_{220}= +0.49518042 \pm 4.8 \cdot 10^{-6} \) | \(a_{221}= +1.10525751 \pm 3.6 \cdot 10^{-6} \) | \(a_{222}= +0.05579712 \pm 9.1 \cdot 10^{-6} \) |
\(a_{223}= +1.41191871 \pm 5.0 \cdot 10^{-6} \) | \(a_{224}= -0.05872847 \pm 4.5 \cdot 10^{-6} \) | \(a_{225}= -0.28791901 \pm 4.1 \cdot 10^{-6} \) |
\(a_{226}= -0.00724020 \pm 4.4 \cdot 10^{-6} \) | \(a_{227}= -0.83778777 \pm 4.5 \cdot 10^{-6} \) | \(a_{228}= +1.04937485 \pm 1.0 \cdot 10^{-5} \) |
\(a_{229}= -0.98834654 \pm 5.6 \cdot 10^{-6} \) | \(a_{230}= -0.00245729 \pm 4.9 \cdot 10^{-6} \) | \(a_{231}= -0.29354306 \pm 3.9 \cdot 10^{-6} \) |
\(a_{232}= -0.09357259 \pm 4.9 \cdot 10^{-6} \) | \(a_{233}= -1.65147947 \pm 3.9 \cdot 10^{-6} \) | \(a_{234}= -0.01328435 \pm 9.6 \cdot 10^{-6} \) |
\(a_{235}= -0.30673231 \pm 4.0 \cdot 10^{-6} \) | \(a_{236}= -0.37797442 \pm 4.4 \cdot 10^{-6} \) | \(a_{237}= +0.48419488 \pm 2.8 \cdot 10^{-6} \) |
\(a_{238}= -0.02832297 \pm 9.5 \cdot 10^{-6} \) | \(a_{239}= +0.03479676 \pm 3.7 \cdot 10^{-6} \) | \(a_{240}= +0.21138048 \pm 8.9 \cdot 10^{-6} \) |
\(a_{241}= +1.41709816 \pm 4.3 \cdot 10^{-6} \) | \(a_{242}= -0.04207939 \pm 4.8 \cdot 10^{-6} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +0.62035174 \pm 5.2 \cdot 10^{-6} \) | \(a_{245}= +0.05273015 \pm 4.0 \cdot 10^{-6} \) | \(a_{246}= +0.05820713 \pm 8.4 \cdot 10^{-6} \) |
\(a_{247}= -1.39728472 \pm 3.5 \cdot 10^{-6} \) | \(a_{248}= -0.02659946 \pm 6.0 \cdot 10^{-6} \) | \(a_{249}= -0.63075983 \pm 3.9 \cdot 10^{-6} \) |
\(a_{250}= +0.03575932 \pm 4.2 \cdot 10^{-6} \) | \(a_{251}= -1.23799892 \pm 3.5 \cdot 10^{-6} \) | \(a_{252}= -0.12564774 \pm 5.9 \cdot 10^{-6} \) |
\(a_{253}= -0.17228091 \pm 3.4 \cdot 10^{-6} \) | \(a_{254}= -0.04304573 \pm 6.8 \cdot 10^{-6} \) | \(a_{255}= +0.30721423 \pm 8.4 \cdot 10^{-6} \) |
\(a_{256}= +0.97308935 \pm 4.7 \cdot 10^{-6} \) | \(a_{257}= -0.73424100 \pm 3.9 \cdot 10^{-6} \) | \(a_{258}= +0.00654368 \pm 9.6 \cdot 10^{-6} \) |
\(a_{259}= -0.70271714 \pm 4.0 \cdot 10^{-6} \) | \(a_{260}= -0.28222832 \pm 6.0 \cdot 10^{-6} \) | \(a_{261}= -0.30042888 \pm 4.5 \cdot 10^{-6} \) |
\(a_{262}= +0.03367350 \pm 5.1 \cdot 10^{-6} \) | \(a_{263}= +1.29394906 \pm 4.2 \cdot 10^{-6} \) | \(a_{264}= -0.08063184 \pm 9.8 \cdot 10^{-6} \) |
\(a_{265}= +0.14359839 \pm 3.5 \cdot 10^{-6} \) | \(a_{266}= +0.03580636 \pm 9.4 \cdot 10^{-6} \) | \(a_{267}= -0.47155876 \pm 3.7 \cdot 10^{-6} \) |
\(a_{268}= -1.20061968 \pm 5.0 \cdot 10^{-6} \) | \(a_{269}= +0.52693124 \pm 3.9 \cdot 10^{-6} \) | \(a_{270}= -0.00369248 \pm 9.1 \cdot 10^{-6} \) |
\(a_{271}= -1.69611221 \pm 3.7 \cdot 10^{-6} \) | \(a_{272}= +1.42992531 \pm 2.8 \cdot 10^{-6} \) | \(a_{273}= +0.16730500 \pm 4.5 \cdot 10^{-6} \) |
\(a_{274}= +0.07455333 \pm 4.6 \cdot 10^{-6} \) | \(a_{275}= +1.16191151 \pm 3.7 \cdot 10^{-6} \) | \(a_{276}= -0.07374287 \pm 1.0 \cdot 10^{-5} \) |
\(a_{277}= +0.59958556 \pm 3.6 \cdot 10^{-6} \) | \(a_{278}= +0.05852774 \pm 5.3 \cdot 10^{-6} \) | \(a_{279}= -0.08540155 \pm 4.7 \cdot 10^{-6} \) |
\(a_{280}= +0.01448417 \pm 9.9 \cdot 10^{-6} \) | \(a_{281}= +0.81181646 \pm 5.1 \cdot 10^{-6} \) | \(a_{282}= +0.02493932 \pm 9.2 \cdot 10^{-6} \) |
\(a_{283}= +0.81607916 \pm 3.5 \cdot 10^{-6} \) | \(a_{284}= -0.73654092 \pm 6.6 \cdot 10^{-6} \) | \(a_{285}= -0.38838528 \pm 8.3 \cdot 10^{-6} \) |
\(a_{286}= +0.05360964 \pm 4.0 \cdot 10^{-6} \) | \(a_{287}= -0.73306914 \pm 3.3 \cdot 10^{-6} \) | \(a_{288}= -0.05179364 \pm 4.5 \cdot 10^{-6} \) |
\(a_{289}= +1.07821173 \pm 4.0 \cdot 10^{-6} \) | \(a_{290}= +0.01729270 \pm 4.1 \cdot 10^{-6} \) | \(a_{291}= +0.04753126 \pm 2.7 \cdot 10^{-6} \) |
\(a_{292}= +0.05269970 \pm 5.8 \cdot 10^{-6} \) | \(a_{293}= +1.38140089 \pm 3.8 \cdot 10^{-6} \) | \(a_{294}= -0.00428730 \pm 5.1 \cdot 10^{-6} \) |
\(a_{295}= +0.13989253 \pm 2.6 \cdot 10^{-6} \) | \(a_{296}= -0.19302577 \pm 5.1 \cdot 10^{-6} \) | \(a_{297}= -0.25888064 \pm 3.9 \cdot 10^{-6} \) |
\(a_{298}= +0.00090749 \pm 5.6 \cdot 10^{-6} \) | \(a_{299}= +0.09819159 \pm 4.8 \cdot 10^{-6} \) | \(a_{300}= +0.49734289 \pm 1.0 \cdot 10^{-5} \) |
\(a_{301}= -0.08241203 \pm 4.6 \cdot 10^{-6} \) | \(a_{302}= -0.08682457 \pm 5.9 \cdot 10^{-6} \) | \(a_{303}= -0.45692125 \pm 4.7 \cdot 10^{-6} \) |
\(a_{304}= -1.80773509 \pm 3.5 \cdot 10^{-6} \) | \(a_{305}= -0.22959906 \pm 3.1 \cdot 10^{-6} \) | \(a_{306}= -0.02497851 \pm 9.5 \cdot 10^{-6} \) |
\(a_{307}= -0.11728923 \pm 5.4 \cdot 10^{-6} \) | \(a_{308}= +0.50705771 \pm 9.8 \cdot 10^{-6} \) | \(a_{309}= +0.53422109 \pm 3.8 \cdot 10^{-6} \) |
\(a_{310}= +0.00491572 \pm 5.3 \cdot 10^{-6} \) | \(a_{311}= +0.92518943 \pm 5.0 \cdot 10^{-6} \) | \(a_{312}= +0.04595615 \pm 1.0 \cdot 10^{-5} \) |
\(a_{313}= +1.62616062 \pm 5.4 \cdot 10^{-6} \) | \(a_{314}= -0.02760226 \pm 4.6 \cdot 10^{-6} \) | \(a_{315}= +0.04650362 \pm 4.0 \cdot 10^{-6} \) |
\(a_{316}= -0.83638410 \pm 4.1 \cdot 10^{-6} \) | \(a_{317}= -1.74899922 \pm 5.0 \cdot 10^{-6} \) | \(a_{318}= -0.01167548 \pm 9.7 \cdot 10^{-6} \) |
\(a_{319}= +1.21239571 \pm 3.2 \cdot 10^{-6} \) | \(a_{320}= -0.36314049 \pm 3.2 \cdot 10^{-6} \) | \(a_{321}= +0.28443912 \pm 4.8 \cdot 10^{-6} \) |
\(a_{322}= -0.00251623 \pm 9.4 \cdot 10^{-6} \) | \(a_{323}= -2.62730944 \pm 5.5 \cdot 10^{-6} \) | \(a_{324}= -0.11081089 \pm 5.9 \cdot 10^{-6} \) |
\(a_{325}= -0.66223202 \pm 4.0 \cdot 10^{-6} \) | \(a_{326}= +0.07503708 \pm 3.3 \cdot 10^{-6} \) | \(a_{327}= -0.01529755 \pm 4.6 \cdot 10^{-6} \) |
\(a_{328}= -0.20136300 \pm 4.3 \cdot 10^{-6} \) | \(a_{329}= -0.31408952 \pm 4.1 \cdot 10^{-6} \) | \(a_{330}= +0.01490118 \pm 1.3 \cdot 10^{-5} \) |
\(a_{331}= -0.38270724 \pm 3.8 \cdot 10^{-6} \) | \(a_{332}= +1.08955612 \pm 4.5 \cdot 10^{-6} \) | \(a_{333}= -0.61973826 \pm 4.0 \cdot 10^{-6} \) |
\(a_{334}= -0.02114287 \pm 4.7 \cdot 10^{-6} \) | \(a_{335}= +0.44436267 \pm 4.4 \cdot 10^{-6} \) | \(a_{336}= +0.21645061 \pm 4.9 \cdot 10^{-6} \) |
\(a_{337}= -0.33695507 \pm 5.1 \cdot 10^{-6} \) | \(a_{338}= +0.02142595 \pm 4.9 \cdot 10^{-6} \) | \(a_{339}= +0.08041686 \pm 3.0 \cdot 10^{-6} \) |
\(a_{340}= -0.53067289 \pm 2.7 \cdot 10^{-6} \) | \(a_{341}= +0.34464222 \pm 3.5 \cdot 10^{-6} \) | \(a_{342}= +0.03157824 \pm 9.4 \cdot 10^{-6} \) |
\(a_{343}= +0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= -0.02263734 \pm 7.0 \cdot 10^{-6} \) | \(a_{345}= +0.02729305 \pm 8.3 \cdot 10^{-6} \) |
\(a_{346}= -0.00742282 \pm 6.1 \cdot 10^{-6} \) | \(a_{347}= -1.37761287 \pm 4.5 \cdot 10^{-6} \) | \(a_{348}= +0.51895207 \pm 1.0 \cdot 10^{-5} \) |
\(a_{349}= +0.47891251 \pm 4.2 \cdot 10^{-6} \) | \(a_{350}= +0.01697014 \pm 9.1 \cdot 10^{-6} \) | \(a_{351}= +0.14754915 \pm 4.5 \cdot 10^{-6} \) |
\(a_{352}= +0.20901583 \pm 4.4 \cdot 10^{-6} \) | \(a_{353}= -0.98455650 \pm 3.4 \cdot 10^{-6} \) | \(a_{354}= -0.01137417 \pm 8.2 \cdot 10^{-6} \) |
\(a_{355}= +0.27260197 \pm 5.1 \cdot 10^{-6} \) | \(a_{356}= +0.81455683 \pm 4.4 \cdot 10^{-6} \) | \(a_{357}= +0.31458300 \pm 4.4 \cdot 10^{-6} \) |
\(a_{358}= -0.06351237 \pm 4.4 \cdot 10^{-6} \) | \(a_{359}= +1.14879700 \pm 2.9 \cdot 10^{-6} \) | \(a_{360}= +0.01277384 \pm 9.9 \cdot 10^{-6} \) |
\(a_{361}= +2.32148780 \pm 5.0 \cdot 10^{-6} \) | \(a_{362}= -0.08549312 \pm 4.4 \cdot 10^{-6} \) | \(a_{363}= +0.46737547 \pm 3.6 \cdot 10^{-6} \) |
\(a_{364}= -0.28899778 \pm 1.0 \cdot 10^{-5} \) | \(a_{365}= -0.01950474 \pm 4.1 \cdot 10^{-6} \) | \(a_{366}= +0.01866789 \pm 9.2 \cdot 10^{-6} \) |
\(a_{367}= +0.27480043 \pm 3.5 \cdot 10^{-6} \) | \(a_{368}= +0.12703522 \pm 4.9 \cdot 10^{-6} \) | \(a_{369}= -0.64650622 \pm 3.3 \cdot 10^{-6} \) |
\(a_{370}= +0.03567217 \pm 5.1 \cdot 10^{-6} \) | \(a_{371}= +0.14704270 \pm 4.6 \cdot 10^{-6} \) | \(a_{372}= +0.14752015 \pm 1.0 \cdot 10^{-5} \) |
\(a_{373}= -0.00209073 \pm 5.4 \cdot 10^{-6} \) | \(a_{374}= +0.10080201 \pm 4.9 \cdot 10^{-6} \) | \(a_{375}= -0.39717849 \pm 3.6 \cdot 10^{-6} \) |
\(a_{376}= -0.08627564 \pm 6.7 \cdot 10^{-6} \) | \(a_{377}= -0.69100551 \pm 3.3 \cdot 10^{-6} \) | \(a_{378}= -0.00378105 \pm 5.1 \cdot 10^{-6} \) |
\(a_{379}= -0.46628877 \pm 3.8 \cdot 10^{-6} \) | \(a_{380}= +0.67088539 \pm 3.9 \cdot 10^{-6} \) | \(a_{381}= +0.47810870 \pm 5.0 \cdot 10^{-6} \) |
\(a_{382}= -0.00279481 \pm 6.3 \cdot 10^{-6} \) | \(a_{383}= -0.81647614 \pm 5.3 \cdot 10^{-6} \) | \(a_{384}= +0.11923490 \pm 4.5 \cdot 10^{-6} \) |
\(a_{385}= -0.18766769 \pm 7.9 \cdot 10^{-6} \) | \(a_{386}= +0.02720777 \pm 5.0 \cdot 10^{-6} \) | \(a_{387}= -0.07268058 \pm 4.6 \cdot 10^{-6} \) |
\(a_{388}= -0.08210410 \pm 3.4 \cdot 10^{-6} \) | \(a_{389}= -0.09506353 \pm 3.6 \cdot 10^{-6} \) | \(a_{390}= -0.00849294 \pm 1.3 \cdot 10^{-5} \) |
\(a_{391}= +0.18462929 \pm 3.1 \cdot 10^{-6} \) | \(a_{392}= +0.01483159 \pm 5.9 \cdot 10^{-6} \) | \(a_{393}= -0.37401134 \pm 3.6 \cdot 10^{-6} \) |
\(a_{394}= +0.09323008 \pm 3.6 \cdot 10^{-6} \) | \(a_{395}= +0.30955504 \pm 2.9 \cdot 10^{-6} \) | \(a_{396}= +0.44718286 \pm 9.8 \cdot 10^{-6} \) |
\(a_{397}= -0.47860770 \pm 3.5 \cdot 10^{-6} \) | \(a_{398}= -0.02659896 \pm 3.9 \cdot 10^{-6} \) | \(a_{399}= -0.39770100 \pm 4.3 \cdot 10^{-6} \) |
\(a_{400}= -0.85676171 \pm 3.3 \cdot 10^{-6} \) | \(a_{401}= -1.17782429 \pm 4.1 \cdot 10^{-6} \) | \(a_{402}= -0.03612956 \pm 9.5 \cdot 10^{-6} \) |
\(a_{403}= -0.19642900 \pm 4.0 \cdot 10^{-6} \) | \(a_{404}= +0.78927243 \pm 6.0 \cdot 10^{-6} \) | \(a_{405}= +0.04101234 \pm 4.0 \cdot 10^{-6} \) |
\(a_{406}= +0.01770748 \pm 9.6 \cdot 10^{-6} \) | \(a_{407}= +2.50098466 \pm 3.5 \cdot 10^{-6} \) | \(a_{408}= +0.08641119 \pm 1.0 \cdot 10^{-5} \) |
\(a_{409}= -0.65707332 \pm 3.7 \cdot 10^{-6} \) | \(a_{410}= +0.03721293 \pm 3.7 \cdot 10^{-6} \) | \(a_{411}= -0.82806340 \pm 3.6 \cdot 10^{-6} \) |
\(a_{412}= -0.92279792 \pm 5.4 \cdot 10^{-6} \) | \(a_{413}= +0.14324796 \pm 3.1 \cdot 10^{-6} \) | \(a_{414}= -0.00221910 \pm 9.4 \cdot 10^{-6} \) |
\(a_{415}= -0.40325681 \pm 4.0 \cdot 10^{-6} \) | \(a_{416}= -0.11912867 \pm 4.1 \cdot 10^{-6} \) | \(a_{417}= -0.65006720 \pm 4.6 \cdot 10^{-6} \) |
\(a_{418}= -0.12743556 \pm 6.1 \cdot 10^{-6} \) | \(a_{419}= +0.52534490 \pm 4.5 \cdot 10^{-6} \) | \(a_{420}= -0.08032900 \pm 9.9 \cdot 10^{-6} \) |
\(a_{421}= +1.19187452 \pm 3.8 \cdot 10^{-6} \) | \(a_{422}= -0.01917138 \pm 4.5 \cdot 10^{-6} \) | \(a_{423}= -0.27700092 \pm 4.1 \cdot 10^{-6} \) |
\(a_{424}= +0.04039041 \pm 6.9 \cdot 10^{-6} \) | \(a_{425}= -1.24519248 \pm 3.9 \cdot 10^{-6} \) | \(a_{426}= -0.02216431 \pm 1.0 \cdot 10^{-5} \) |
\(a_{427}= -0.23510618 \pm 4.1 \cdot 10^{-6} \) | \(a_{428}= -0.49133183 \pm 7.2 \cdot 10^{-6} \) | \(a_{429}= -0.59544193 \pm 8.5 \cdot 10^{-6} \) |
\(a_{430}= +0.00418350 \pm 5.6 \cdot 10^{-6} \) | \(a_{431}= +1.15731112 \pm 4.3 \cdot 10^{-6} \) | \(a_{432}= +0.19089149 \pm 4.9 \cdot 10^{-6} \) |
\(a_{433}= -0.90892409 \pm 3.1 \cdot 10^{-6} \) | \(a_{434}= +0.00503362 \pm 9.8 \cdot 10^{-6} \) | \(a_{435}= -0.19206992 \pm 8.5 \cdot 10^{-6} \) |
\(a_{436}= +0.02642454 \pm 5.1 \cdot 10^{-6} \) | \(a_{437}= -0.23341138 \pm 3.7 \cdot 10^{-6} \) | \(a_{438}= +0.00158586 \pm 9.1 \cdot 10^{-6} \) |
\(a_{439}= +0.84287767 \pm 4.3 \cdot 10^{-6} \) | \(a_{440}= -0.05154947 \pm 4.6 \cdot 10^{-6} \) | \(a_{441}= +0.04761905 \pm 8.8 \cdot 10^{-7} \) |
\(a_{442}= -0.05745216 \pm 3.1 \cdot 10^{-6} \) | \(a_{443}= -0.01624352 \pm 4.2 \cdot 10^{-6} \) | \(a_{444}= +1.07051778 \pm 9.9 \cdot 10^{-6} \) |
\(a_{445}= -0.30147652 \pm 4.3 \cdot 10^{-6} \) | \(a_{446}= -0.07339265 \pm 4.9 \cdot 10^{-6} \) | \(a_{447}= -0.01007950 \pm 3.9 \cdot 10^{-6} \) |
\(a_{448}= -0.37185070 \pm 3.9 \cdot 10^{-6} \) | \(a_{449}= +0.64114977 \pm 3.8 \cdot 10^{-6} \) | \(a_{450}= +0.01496626 \pm 9.1 \cdot 10^{-6} \) |
\(a_{451}= +2.60900806 \pm 2.8 \cdot 10^{-6} \) | \(a_{452}= -0.13890973 \pm 5.0 \cdot 10^{-6} \) | \(a_{453}= +0.96435992 \pm 4.4 \cdot 10^{-6} \) |
\(a_{454}= +0.04354887 \pm 4.1 \cdot 10^{-6} \) | \(a_{455}= +0.10696129 \pm 8.5 \cdot 10^{-6} \) | \(a_{456}= -0.10924245 \pm 1.0 \cdot 10^{-5} \) |
\(a_{457}= -0.80979011 \pm 4.7 \cdot 10^{-6} \) | \(a_{458}= +0.05137503 \pm 5.2 \cdot 10^{-6} \) | \(a_{459}= +0.27743613 \pm 4.4 \cdot 10^{-6} \) |
\(a_{460}= -0.04714522 \pm 6.5 \cdot 10^{-6} \) | \(a_{461}= -0.19161675 \pm 5.3 \cdot 10^{-6} \) | \(a_{462}= +0.01525860 \pm 9.0 \cdot 10^{-6} \) |
\(a_{463}= +1.00726908 \pm 3.9 \cdot 10^{-6} \) | \(a_{464}= -0.89398738 \pm 4.1 \cdot 10^{-6} \) | \(a_{465}= -0.05459884 \pm 8.7 \cdot 10^{-6} \) |
\(a_{466}= +0.08584520 \pm 4.2 \cdot 10^{-6} \) | \(a_{467}= +0.87640993 \pm 4.6 \cdot 10^{-6} \) | \(a_{468}= -0.25487209 \pm 1.0 \cdot 10^{-5} \) |
\(a_{469}= +0.45502105 \pm 4.4 \cdot 10^{-6} \) | \(a_{470}= +0.01594419 \pm 5.5 \cdot 10^{-6} \) | \(a_{471}= +0.30657811 \pm 4.2 \cdot 10^{-6} \) |
\(a_{472}= +0.03934805 \pm 4.5 \cdot 10^{-6} \) | \(a_{473}= +0.29330610 \pm 3.8 \cdot 10^{-6} \) | \(a_{474}= -0.02516883 \pm 7.9 \cdot 10^{-6} \) |
\(a_{475}= +1.57419281 \pm 4.0 \cdot 10^{-6} \) | \(a_{476}= -0.54340149 \pm 1.0 \cdot 10^{-5} \) | \(a_{477}= +0.12967948 \pm 4.6 \cdot 10^{-6} \) |
\(a_{478}= -0.00180876 \pm 4.6 \cdot 10^{-6} \) | \(a_{479}= -1.90410484 \pm 4.4 \cdot 10^{-6} \) | \(a_{480}= -0.03311267 \pm 8.5 \cdot 10^{-6} \) |
\(a_{481}= -1.42543739 \pm 4.1 \cdot 10^{-6} \) | \(a_{482}= -0.07366188 \pm 4.1 \cdot 10^{-6} \) | \(a_{483}= +0.02794770 \pm 4.3 \cdot 10^{-6} \) |
\(a_{484}= -0.80733074 \pm 5.5 \cdot 10^{-6} \) | \(a_{485}= +0.03038764 \pm 2.5 \cdot 10^{-6} \) | \(a_{486}= -0.00333457 \pm 5.1 \cdot 10^{-6} \) |
\(a_{487}= -0.63974912 \pm 3.8 \cdot 10^{-6} \) | \(a_{488}= -0.06458011 \pm 4.9 \cdot 10^{-6} \) | \(a_{489}= -0.83343639 \pm 4.1 \cdot 10^{-6} \) |
\(a_{490}= -0.00274095 \pm 9.1 \cdot 10^{-6} \) | \(a_{491}= -0.90197421 \pm 3.3 \cdot 10^{-6} \) | \(a_{492}= +1.11675596 \pm 9.3 \cdot 10^{-6} \) |
\(a_{493}= -1.29929518 \pm 4.8 \cdot 10^{-6} \) | \(a_{494}= +0.07263196 \pm 4.1 \cdot 10^{-6} \) | \(a_{495}= -0.16550734 \pm 7.9 \cdot 10^{-6} \) |
\(a_{496}= -0.25412973 \pm 4.9 \cdot 10^{-6} \) | \(a_{497}= +0.27914054 \pm 5.5 \cdot 10^{-6} \) | \(a_{498}= +0.03278739 \pm 9.0 \cdot 10^{-6} \) |
\(a_{499}= +1.89210959 \pm 4.1 \cdot 10^{-6} \) | \(a_{500}= +0.68607453 \pm 5.2 \cdot 10^{-6} \) | \(a_{501}= +0.23483367 \pm 3.3 \cdot 10^{-6} \) |
\(a_{502}= +0.06435216 \pm 4.3 \cdot 10^{-6} \) | \(a_{503}= +0.15900137 \pm 4.6 \cdot 10^{-6} \) | \(a_{504}= +0.01308023 \pm 5.9 \cdot 10^{-6} \) |
\(a_{505}= -0.29211849 \pm 3.1 \cdot 10^{-6} \) | \(a_{506}= +0.00895530 \pm 4.1 \cdot 10^{-6} \) | \(a_{507}= -0.23797786 \pm 5.1 \cdot 10^{-6} \) |
\(a_{508}= -0.82587101 \pm 8.3 \cdot 10^{-6} \) | \(a_{509}= -1.17258549 \pm 4.4 \cdot 10^{-6} \) | \(a_{510}= -0.01596924 \pm 1.3 \cdot 10^{-5} \) |
\(a_{511}= -0.01997258 \pm 4.0 \cdot 10^{-6} \) | \(a_{512}= -0.25710285 \pm 5.4 \cdot 10^{-6} \) | \(a_{513}= -0.35073931 \pm 4.3 \cdot 10^{-6} \) |
\(a_{514}= +0.03816643 \pm 3.9 \cdot 10^{-6} \) | \(a_{515}= +0.34153775 \pm 3.9 \cdot 10^{-6} \) | \(a_{516}= +0.12554631 \pm 1.0 \cdot 10^{-5} \) |
\(a_{517}= +1.11785101 \pm 3.3 \cdot 10^{-6} \) | \(a_{518}= +0.03652779 \pm 9.1 \cdot 10^{-6} \) | \(a_{519}= +0.08244526 \pm 5.0 \cdot 10^{-6} \) |
\(a_{520}= +0.02938065 \pm 5.7 \cdot 10^{-6} \) | \(a_{521}= -0.14660796 \pm 4.8 \cdot 10^{-6} \) | \(a_{522}= +0.01561653 \pm 9.6 \cdot 10^{-6} \) |
\(a_{523}= +0.47451572 \pm 4.3 \cdot 10^{-6} \) | \(a_{524}= +0.64605627 \pm 6.1 \cdot 10^{-6} \) | \(a_{525}= -0.18848724 \pm 4.1 \cdot 10^{-6} \) |
\(a_{526}= -0.06726049 \pm 4.7 \cdot 10^{-6} \) | \(a_{527}= -0.36934474 \pm 5.2 \cdot 10^{-6} \) | \(a_{528}= -0.77035214 \pm 8.8 \cdot 10^{-6} \) |
\(a_{529}= -0.98359745 \pm 4.1 \cdot 10^{-6} \) | \(a_{530}= -0.00746436 \pm 4.9 \cdot 10^{-6} \) | \(a_{531}= +0.12633282 \pm 3.1 \cdot 10^{-6} \) |
\(a_{532}= +0.68697710 \pm 1.0 \cdot 10^{-5} \) | \(a_{533}= -1.48700538 \pm 4.6 \cdot 10^{-6} \) | \(a_{534}= +0.02451200 \pm 8.8 \cdot 10^{-6} \) |
\(a_{535}= +0.18184736 \pm 3.8 \cdot 10^{-6} \) | \(a_{536}= +0.12498740 \pm 5.4 \cdot 10^{-6} \) | \(a_{537}= +0.70543154 \pm 3.8 \cdot 10^{-6} \) |
\(a_{538}= -0.02739030 \pm 4.3 \cdot 10^{-6} \) | \(a_{539}= -0.19216904 \pm 3.9 \cdot 10^{-6} \) | \(a_{540}= -0.07084352 \pm 9.9 \cdot 10^{-6} \) |
\(a_{541}= -1.30963824 \pm 4.1 \cdot 10^{-6} \) | \(a_{542}= +0.08816525 \pm 4.7 \cdot 10^{-6} \) | \(a_{543}= +0.94957151 \pm 3.4 \cdot 10^{-6} \) |
\(a_{544}= -0.22399721 \pm 3.4 \cdot 10^{-6} \) | \(a_{545}= -0.00978001 \pm 3.4 \cdot 10^{-6} \) | \(a_{546}= -0.00869665 \pm 9.6 \cdot 10^{-6} \) |
\(a_{547}= +0.41368469 \pm 3.4 \cdot 10^{-6} \) | \(a_{548}= +1.43037254 \pm 5.2 \cdot 10^{-6} \) | \(a_{549}= -0.20734416 \pm 4.1 \cdot 10^{-6} \) |
\(a_{550}= -0.06039707 \pm 4.4 \cdot 10^{-6} \) | \(a_{551}= +1.64259033 \pm 3.7 \cdot 10^{-6} \) | \(a_{552}= +0.00767681 \pm 1.0 \cdot 10^{-5} \) |
\(a_{553}= +0.31697995 \pm 2.8 \cdot 10^{-6} \) | \(a_{554}= -0.03116693 \pm 4.5 \cdot 10^{-6} \) | \(a_{555}= -0.39621051 \pm 8.0 \cdot 10^{-6} \) |
\(a_{556}= +1.12290710 \pm 6.2 \cdot 10^{-6} \) | \(a_{557}= +0.36314762 \pm 4.3 \cdot 10^{-6} \) | \(a_{558}= +0.00443924 \pm 9.8 \cdot 10^{-6} \) |
\(a_{559}= -0.16716995 \pm 5.0 \cdot 10^{-6} \) | \(a_{560}= +0.13838101 \pm 8.9 \cdot 10^{-6} \) | \(a_{561}= -1.11960732 \pm 8.3 \cdot 10^{-6} \) |
\(a_{562}= -0.04219886 \pm 5.6 \cdot 10^{-6} \) | \(a_{563}= +0.40598446 \pm 3.0 \cdot 10^{-6} \) | \(a_{564}= +0.47848330 \pm 1.0 \cdot 10^{-5} \) |
\(a_{565}= +0.05141203 \pm 2.7 \cdot 10^{-6} \) | \(a_{566}= -0.04242044 \pm 4.1 \cdot 10^{-6} \) | \(a_{567}= +0.04199605 \pm 1.0 \cdot 10^{-6} \) |
\(a_{568}= +0.07667568 \pm 6.1 \cdot 10^{-6} \) | \(a_{569}= +1.18796458 \pm 4.0 \cdot 10^{-6} \) | \(a_{570}= +0.02018857 \pm 1.3 \cdot 10^{-5} \) |
\(a_{571}= -0.12674731 \pm 4.2 \cdot 10^{-6} \) | \(a_{572}= +1.02854901 \pm 4.3 \cdot 10^{-6} \) | \(a_{573}= +0.03104188 \pm 4.7 \cdot 10^{-6} \) |
\(a_{574}= +0.03810551 \pm 8.4 \cdot 10^{-6} \) | \(a_{575}= -0.11062347 \pm 4.5 \cdot 10^{-6} \) | \(a_{576}= -0.32794149 \pm 3.9 \cdot 10^{-6} \) |
\(a_{577}= -0.48532642 \pm 5.0 \cdot 10^{-6} \) | \(a_{578}= -0.05604629 \pm 5.1 \cdot 10^{-6} \) | \(a_{579}= -0.30219655 \pm 4.7 \cdot 10^{-6} \) |
\(a_{580}= +0.33177598 \pm 4.3 \cdot 10^{-6} \) | \(a_{581}= -0.41292924 \pm 3.9 \cdot 10^{-6} \) | \(a_{582}= -0.00247071 \pm 7.8 \cdot 10^{-6} \) |
\(a_{583}= -0.52332799 \pm 4.8 \cdot 10^{-6} \) | \(a_{584}= -0.00548617 \pm 5.8 \cdot 10^{-6} \) | \(a_{585}= +0.09433099 \pm 8.5 \cdot 10^{-6} \) |
\(a_{586}= -0.07180631 \pm 4.9 \cdot 10^{-6} \) | \(a_{587}= -1.47034840 \pm 5.4 \cdot 10^{-6} \) | \(a_{588}= -0.08225575 \pm 5.9 \cdot 10^{-6} \) |
\(a_{589}= +0.46693169 \pm 4.4 \cdot 10^{-6} \) | \(a_{590}= -0.00727172 \pm 3.9 \cdot 10^{-6} \) | \(a_{591}= -1.03550587 \pm 3.4 \cdot 10^{-6} \) |
\(a_{592}= -1.84415756 \pm 4.8 \cdot 10^{-6} \) | \(a_{593}= +0.55021286 \pm 3.1 \cdot 10^{-6} \) | \(a_{594}= +0.01345682 \pm 9.0 \cdot 10^{-6} \) |
\(a_{595}= +0.20111892 \pm 8.4 \cdot 10^{-6} \) | \(a_{596}= +0.01741103 \pm 6.4 \cdot 10^{-6} \) | \(a_{597}= +0.29543444 \pm 2.9 \cdot 10^{-6} \) |
\(a_{598}= -0.00510408 \pm 4.6 \cdot 10^{-6} \) | \(a_{599}= +0.14619865 \pm 5.1 \cdot 10^{-6} \) | \(a_{600}= -0.05177459 \pm 1.0 \cdot 10^{-5} \) |
\(a_{601}= +1.93985416 \pm 4.7 \cdot 10^{-6} \) | \(a_{602}= +0.00428384 \pm 9.6 \cdot 10^{-6} \) | \(a_{603}= +0.40129085 \pm 4.4 \cdot 10^{-6} \) |
\(a_{604}= -1.66580718 \pm 6.9 \cdot 10^{-6} \) | \(a_{605}= +0.29880207 \pm 2.4 \cdot 10^{-6} \) | \(a_{606}= +0.02375113 \pm 9.8 \cdot 10^{-6} \) |
\(a_{607}= -1.39252415 \pm 4.9 \cdot 10^{-6} \) | \(a_{608}= +0.28318096 \pm 3.0 \cdot 10^{-6} \) | \(a_{609}= -0.19667687 \pm 4.5 \cdot 10^{-6} \) |
\(a_{610}= +0.01193474 \pm 3.9 \cdot 10^{-6} \) | \(a_{611}= -0.63711972 \pm 3.6 \cdot 10^{-6} \) | \(a_{612}= -0.47923507 \pm 1.0 \cdot 10^{-5} \) |
\(a_{613}= -0.52810381 \pm 4.0 \cdot 10^{-6} \) | \(a_{614}= +0.00609679 \pm 6.0 \cdot 10^{-6} \) | \(a_{615}= -0.41332378 \pm 7.4 \cdot 10^{-6} \) |
\(a_{616}= -0.05278593 \pm 9.8 \cdot 10^{-6} \) | \(a_{617}= +0.07115015 \pm 4.3 \cdot 10^{-6} \) | \(a_{618}= -0.02776923 \pm 8.9 \cdot 10^{-6} \) |
\(a_{619}= +0.99734721 \pm 3.6 \cdot 10^{-6} \) | \(a_{620}= +0.09431245 \pm 5.9 \cdot 10^{-6} \) | \(a_{621}= +0.02464755 \pm 4.3 \cdot 10^{-6} \) |
\(a_{622}= -0.04809207 \pm 4.9 \cdot 10^{-6} \) | \(a_{623}= -0.30870767 \pm 3.7 \cdot 10^{-6} \) | \(a_{624}= +0.43906256 \pm 9.4 \cdot 10^{-6} \) |
\(a_{625}= +0.60983323 \pm 3.7 \cdot 10^{-6} \) | \(a_{626}= -0.08452911 \pm 5.9 \cdot 10^{-6} \) | \(a_{627}= +1.41542599 \pm 8.2 \cdot 10^{-6} \) |
\(a_{628}= -0.52957408 \pm 5.2 \cdot 10^{-6} \) | \(a_{629}= -2.68024480 \pm 3.4 \cdot 10^{-6} \) | \(a_{630}= -0.00241729 \pm 9.1 \cdot 10^{-6} \) |
\(a_{631}= -0.01491112 \pm 4.4 \cdot 10^{-6} \) | \(a_{632}= +0.08706960 \pm 3.9 \cdot 10^{-6} \) | \(a_{633}= +0.21293637 \pm 4.4 \cdot 10^{-6} \) |
\(a_{634}= +0.09091436 \pm 5.9 \cdot 10^{-6} \) | \(a_{635}= +0.30566403 \pm 4.3 \cdot 10^{-6} \) | \(a_{636}= -0.22400454 \pm 1.0 \cdot 10^{-5} \) |
\(a_{637}= +0.10952684 \pm 4.5 \cdot 10^{-6} \) | \(a_{638}= -0.06302128 \pm 4.8 \cdot 10^{-6} \) | \(a_{639}= +0.24617882 \pm 5.5 \cdot 10^{-6} \) |
\(a_{640}= +0.07622915 \pm 3.8 \cdot 10^{-6} \) | \(a_{641}= -0.11835404 \pm 4.1 \cdot 10^{-6} \) | \(a_{642}= -0.01478537 \pm 9.9 \cdot 10^{-6} \) |
\(a_{643}= +1.39231742 \pm 4.1 \cdot 10^{-6} \) | \(a_{644}= -0.04827604 \pm 1.0 \cdot 10^{-5} \) | \(a_{645}= -0.04646608 \pm 8.6 \cdot 10^{-6} \) |
\(a_{646}= +0.13656961 \pm 5.5 \cdot 10^{-6} \) | \(a_{647}= +0.08349288 \pm 5.7 \cdot 10^{-6} \) | \(a_{648}= +0.01153568 \pm 5.9 \cdot 10^{-6} \) |
\(a_{649}= -0.50982241 \pm 3.0 \cdot 10^{-6} \) | \(a_{650}= +0.03442334 \pm 4.1 \cdot 10^{-6} \) | \(a_{651}= -0.05590844 \pm 4.7 \cdot 10^{-6} \) |
\(a_{652}= +1.43965368 \pm 3.8 \cdot 10^{-6} \) | \(a_{653}= +1.06130610 \pm 4.3 \cdot 10^{-6} \) | \(a_{654}= +0.00079518 \pm 9.7 \cdot 10^{-6} \) |
\(a_{655}= -0.23911260 \pm 3.1 \cdot 10^{-6} \) | \(a_{656}= -1.92381106 \pm 3.4 \cdot 10^{-6} \) | \(a_{657}= -0.01761416 \pm 4.0 \cdot 10^{-6} \) |
\(a_{658}= +0.01632662 \pm 9.2 \cdot 10^{-6} \) | \(a_{659}= +0.68037692 \pm 5.0 \cdot 10^{-6} \) | \(a_{660}= +0.28589255 \pm 1.3 \cdot 10^{-5} \) |
\(a_{661}= +0.06907889 \pm 4.2 \cdot 10^{-6} \) | \(a_{662}= +0.01989342 \pm 4.1 \cdot 10^{-6} \) | \(a_{663}= +0.63812072 \pm 9.0 \cdot 10^{-6} \) |
\(a_{664}= -0.11342541 \pm 4.3 \cdot 10^{-6} \) | \(a_{665}= -0.25425785 \pm 8.3 \cdot 10^{-6} \) | \(a_{666}= +0.03221448 \pm 9.1 \cdot 10^{-6} \) |
\(a_{667}= -0.11542998 \pm 2.6 \cdot 10^{-6} \) | \(a_{668}= -0.40564483 \pm 6.0 \cdot 10^{-6} \) | \(a_{669}= +0.81517165 \pm 5.0 \cdot 10^{-6} \) |
\(a_{670}= -0.02309832 \pm 4.5 \cdot 10^{-6} \) | \(a_{671}= +0.83674768 \pm 3.7 \cdot 10^{-6} \) | \(a_{672}= -0.03390690 \pm 4.5 \cdot 10^{-6} \) |
\(a_{673}= +1.86333667 \pm 3.5 \cdot 10^{-6} \) | \(a_{674}= +0.01751519 \pm 5.5 \cdot 10^{-6} \) | \(a_{675}= -0.16623012 \pm 4.1 \cdot 10^{-6} \) |
\(a_{676}= +0.41107600 \pm 6.2 \cdot 10^{-6} \) | \(a_{677}= -0.26294680 \pm 5.3 \cdot 10^{-6} \) | \(a_{678}= -0.00418013 \pm 8.1 \cdot 10^{-6} \) |
\(a_{679}= +0.03111651 \pm 2.7 \cdot 10^{-6} \) | \(a_{680}= +0.05524432 \pm 2.5 \cdot 10^{-6} \) | \(a_{681}= -0.48369699 \pm 4.5 \cdot 10^{-6} \) |
\(a_{682}= -0.01791477 \pm 4.5 \cdot 10^{-6} \) | \(a_{683}= +0.81139245 \pm 3.6 \cdot 10^{-6} \) | \(a_{684}= +0.60585685 \pm 1.0 \cdot 10^{-5} \) |
\(a_{685}= -0.52939675 \pm 2.2 \cdot 10^{-6} \) | \(a_{686}= -0.00280670 \pm 5.1 \cdot 10^{-6} \) | \(a_{687}= -0.57062214 \pm 5.6 \cdot 10^{-6} \) |
\(a_{688}= -0.21627588 \pm 5.5 \cdot 10^{-6} \) | \(a_{689}= +0.29827103 \pm 5.0 \cdot 10^{-6} \) | \(a_{690}= -0.00141871 \pm 1.3 \cdot 10^{-5} \) |
\(a_{691}= -1.10303566 \pm 5.3 \cdot 10^{-6} \) | \(a_{692}= -0.14241354 \pm 6.7 \cdot 10^{-6} \) | \(a_{693}= -0.16947716 \pm 3.9 \cdot 10^{-6} \) |
\(a_{694}= +0.07160940 \pm 4.5 \cdot 10^{-6} \) | \(a_{695}= -0.41560038 \pm 4.8 \cdot 10^{-6} \) | \(a_{696}= -0.05402416 \pm 1.0 \cdot 10^{-5} \) |
\(a_{697}= -2.79601087 \pm 2.1 \cdot 10^{-6} \) | \(a_{698}= -0.02489425 \pm 4.5 \cdot 10^{-6} \) | \(a_{699}= -0.95348212 \pm 4.0 \cdot 10^{-6} \) |
\(a_{700}= +0.32558735 \pm 1.0 \cdot 10^{-5} \) | \(a_{701}= -1.51832971 \pm 4.2 \cdot 10^{-6} \) | \(a_{702}= -0.00766972 \pm 9.6 \cdot 10^{-6} \) |
\(a_{703}= +3.38840955 \pm 2.9 \cdot 10^{-6} \) | \(a_{704}= +1.32342423 \pm 4.4 \cdot 10^{-6} \) | \(a_{705}= -0.17709198 \pm 8.1 \cdot 10^{-6} \) |
\(a_{706}= +0.05117802 \pm 3.6 \cdot 10^{-6} \) | \(a_{707}= -0.29912517 \pm 4.7 \cdot 10^{-6} \) | \(a_{708}= -0.21822363 \pm 9.0 \cdot 10^{-6} \) |
\(a_{709}= +0.12295063 \pm 4.2 \cdot 10^{-6} \) | \(a_{710}= -0.01417006 \pm 5.3 \cdot 10^{-6} \) | \(a_{711}= +0.27955004 \pm 2.8 \cdot 10^{-6} \) |
\(a_{712}= -0.08479733 \pm 4.2 \cdot 10^{-6} \) | \(a_{713}= -0.03281276 \pm 4.1 \cdot 10^{-6} \) | \(a_{714}= -0.01635227 \pm 9.5 \cdot 10^{-6} \) |
\(a_{715}= -0.38067740 \pm 4.0 \cdot 10^{-6} \) | \(a_{716}= -1.21854184 \pm 5.0 \cdot 10^{-6} \) | \(a_{717}= +0.02008992 \pm 3.7 \cdot 10^{-6} \) |
\(a_{718}= -0.05971537 \pm 4.1 \cdot 10^{-6} \) | \(a_{719}= +1.04567802 \pm 3.5 \cdot 10^{-6} \) | \(a_{720}= +0.12204058 \pm 8.9 \cdot 10^{-6} \) |
\(a_{721}= +0.34972980 \pm 3.8 \cdot 10^{-6} \) | \(a_{722}= -0.12067276 \pm 5.5 \cdot 10^{-6} \) | \(a_{723}= +0.81816201 \pm 4.3 \cdot 10^{-6} \) |
\(a_{724}= -1.64026210 \pm 5.4 \cdot 10^{-6} \) | \(a_{725}= +0.77849266 \pm 3.5 \cdot 10^{-6} \) | \(a_{726}= -0.02429454 \pm 8.7 \cdot 10^{-6} \) |
\(a_{727}= -1.56995318 \pm 5.0 \cdot 10^{-6} \) | \(a_{728}= +0.03008536 \pm 1.0 \cdot 10^{-5} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= +0.00101387 \pm 5.0 \cdot 10^{-6} \) | \(a_{731}= -0.31432905 \pm 4.1 \cdot 10^{-6} \) | \(a_{732}= +0.35816024 \pm 1.0 \cdot 10^{-5} \) |
\(a_{733}= +0.36114361 \pm 4.0 \cdot 10^{-6} \) | \(a_{734}= -0.01428434 \pm 4.2 \cdot 10^{-6} \) | \(a_{735}= +0.03044377 \pm 4.0 \cdot 10^{-6} \) |
\(a_{736}= -0.01990002 \pm 4.3 \cdot 10^{-6} \) | \(a_{737}= -1.61942922 \pm 3.7 \cdot 10^{-6} \) | \(a_{738}= +0.03360590 \pm 8.4 \cdot 10^{-6} \) |
\(a_{739}= -1.36270883 \pm 4.7 \cdot 10^{-6} \) | \(a_{740}= +0.68440247 \pm 5.8 \cdot 10^{-6} \) | \(a_{741}= -0.80672271 \pm 8.8 \cdot 10^{-6} \) |
\(a_{742}= -0.00764340 \pm 9.7 \cdot 10^{-6} \) | \(a_{743}= +1.15642677 \pm 4.2 \cdot 10^{-6} \) | \(a_{744}= -0.01535720 \pm 1.0 \cdot 10^{-5} \) |
\(a_{745}= -0.00644402 \pm 3.8 \cdot 10^{-6} \) | \(a_{746}= +0.00010868 \pm 6.8 \cdot 10^{-6} \) | \(a_{747}= -0.36416936 \pm 3.9 \cdot 10^{-6} \) |
\(a_{748}= +1.93397700 \pm 4.9 \cdot 10^{-6} \) | \(a_{749}= +0.18620911 \pm 4.8 \cdot 10^{-6} \) | \(a_{750}= +0.02064565 \pm 8.7 \cdot 10^{-6} \) |
\(a_{751}= -0.48539369 \pm 4.6 \cdot 10^{-6} \) | \(a_{752}= -0.82427271 \pm 6.5 \cdot 10^{-6} \) | \(a_{753}= -0.71475901 \pm 3.5 \cdot 10^{-6} \) |
\(a_{754}= +0.03591901 \pm 4.3 \cdot 10^{-6} \) | \(a_{755}= +0.61653373 \pm 4.6 \cdot 10^{-6} \) | \(a_{756}= -0.07254276 \pm 5.9 \cdot 10^{-6} \) |
\(a_{757}= -0.78075017 \pm 4.2 \cdot 10^{-6} \) | \(a_{758}= +0.02423806 \pm 3.7 \cdot 10^{-6} \) | \(a_{759}= -0.09946643 \pm 8.2 \cdot 10^{-6} \) |
\(a_{760}= -0.06984078 \pm 3.6 \cdot 10^{-6} \) | \(a_{761}= +0.20187420 \pm 5.0 \cdot 10^{-6} \) | \(a_{762}= -0.02485247 \pm 1.0 \cdot 10^{-5} \) |
\(a_{763}= -0.01001460 \pm 4.6 \cdot 10^{-6} \) | \(a_{764}= -0.05362084 \pm 7.8 \cdot 10^{-6} \) | \(a_{765}= +0.17737022 \pm 8.4 \cdot 10^{-6} \) |
\(a_{766}= +0.04244107 \pm 6.3 \cdot 10^{-6} \) | \(a_{767}= +0.29057352 \pm 3.8 \cdot 10^{-6} \) | \(a_{768}= +0.56181340 \pm 4.7 \cdot 10^{-6} \) |
\(a_{769}= +1.36832190 \pm 4.9 \cdot 10^{-6} \) | \(a_{770}= +0.00975511 \pm 1.3 \cdot 10^{-5} \) | \(a_{771}= -0.42391424 \pm 3.9 \cdot 10^{-6} \) |
\(a_{772}= +0.52200550 \pm 6.2 \cdot 10^{-6} \) | \(a_{773}= -1.48321783 \pm 4.0 \cdot 10^{-6} \) | \(a_{774}= +0.00377799 \pm 9.6 \cdot 10^{-6} \) |
\(a_{775}= +0.22129857 \pm 4.1 \cdot 10^{-6} \) | \(a_{776}= +0.00854723 \pm 3.4 \cdot 10^{-6} \) | \(a_{777}= -0.40571393 \pm 4.0 \cdot 10^{-6} \) |
\(a_{778}= +0.00494148 \pm 4.3 \cdot 10^{-6} \) | \(a_{779}= +3.53476292 \pm 2.7 \cdot 10^{-6} \) | \(a_{780}= -0.16294459 \pm 1.4 \cdot 10^{-5} \) |
\(a_{781}= -0.99346688 \pm 3.6 \cdot 10^{-6} \) | \(a_{782}= -0.00959718 \pm 3.2 \cdot 10^{-6} \) | \(a_{783}= -0.17345269 \pm 4.5 \cdot 10^{-6} \) |
\(a_{784}= +0.14170018 \pm 4.9 \cdot 10^{-6} \) | \(a_{785}= +0.19600124 \pm 4.9 \cdot 10^{-6} \) | \(a_{786}= +0.01944140 \pm 8.7 \cdot 10^{-6} \) |
\(a_{787}= +1.09955887 \pm 3.3 \cdot 10^{-6} \) | \(a_{788}= +1.78870261 \pm 3.7 \cdot 10^{-6} \) | \(a_{789}= +0.74706184 \pm 4.2 \cdot 10^{-6} \) |
\(a_{790}= -0.01609091 \pm 3.5 \cdot 10^{-6} \) | \(a_{791}= +0.05264519 \pm 3.0 \cdot 10^{-6} \) | \(a_{792}= -0.04655281 \pm 9.8 \cdot 10^{-6} \) |
\(a_{793}= -0.47690474 \pm 4.7 \cdot 10^{-6} \) | \(a_{794}= +0.02487840 \pm 5.7 \cdot 10^{-6} \) | \(a_{795}= +0.08290657 \pm 8.6 \cdot 10^{-6} \) |
\(a_{796}= -0.51032483 \pm 4.9 \cdot 10^{-6} \) | \(a_{797}= +1.14851274 \pm 3.8 \cdot 10^{-6} \) | \(a_{798}= +0.02067281 \pm 9.4 \cdot 10^{-6} \) |
\(a_{799}= -1.19797391 \pm 3.8 \cdot 10^{-6} \) | \(a_{800}= +0.13421137 \pm 3.4 \cdot 10^{-6} \) | \(a_{801}= -0.27225457 \pm 3.7 \cdot 10^{-6} \) |
\(a_{802}= +0.06122423 \pm 4.9 \cdot 10^{-6} \) | \(a_{803}= +0.07108282 \pm 3.3 \cdot 10^{-6} \) | \(a_{804}= -0.69317809 \pm 1.0 \cdot 10^{-5} \) |
\(a_{805}= +0.01786750 \pm 8.3 \cdot 10^{-6} \) | \(a_{806}= +0.01021053 \pm 5.0 \cdot 10^{-6} \) | \(a_{807}= +0.30422389 \pm 3.9 \cdot 10^{-6} \) |
\(a_{808}= -0.08216516 \pm 5.7 \cdot 10^{-6} \) | \(a_{809}= -1.46798458 \pm 4.5 \cdot 10^{-6} \) | \(a_{810}= -0.00213185 \pm 9.1 \cdot 10^{-6} \) |
\(a_{811}= +0.88408297 \pm 4.3 \cdot 10^{-6} \) | \(a_{812}= +0.33973388 \pm 1.0 \cdot 10^{-5} \) | \(a_{813}= -0.97925084 \pm 3.7 \cdot 10^{-6} \) |
\(a_{814}= -0.13000315 \pm 4.1 \cdot 10^{-6} \) | \(a_{815}= -0.53283181 \pm 3.4 \cdot 10^{-6} \) | \(a_{816}= +0.82556776 \pm 9.3 \cdot 10^{-6} \) |
\(a_{817}= +0.39737996 \pm 4.6 \cdot 10^{-6} \) | \(a_{818}= +0.03415519 \pm 3.6 \cdot 10^{-6} \) | \(a_{819}= +0.09659359 \pm 4.5 \cdot 10^{-6} \) |
\(a_{820}= +0.71396342 \pm 4.3 \cdot 10^{-6} \) | \(a_{821}= -1.06944473 \pm 3.5 \cdot 10^{-6} \) | \(a_{822}= +0.04304339 \pm 8.7 \cdot 10^{-6} \) |
\(a_{823}= -0.79115162 \pm 3.4 \cdot 10^{-6} \) | \(a_{824}= +0.09606548 \pm 5.5 \cdot 10^{-6} \) | \(a_{825}= +0.67082992 \pm 8.0 \cdot 10^{-6} \) |
\(a_{826}= -0.00744614 \pm 8.2 \cdot 10^{-6} \) | \(a_{827}= -0.99657777 \pm 5.0 \cdot 10^{-6} \) | \(a_{828}= -0.04257546 \pm 1.0 \cdot 10^{-5} \) |
\(a_{829}= +0.72704762 \pm 3.4 \cdot 10^{-6} \) | \(a_{830}= +0.02096161 \pm 4.9 \cdot 10^{-6} \) | \(a_{831}= +0.34617088 \pm 3.6 \cdot 10^{-6} \) |
\(a_{832}= -0.75428627 \pm 2.8 \cdot 10^{-6} \) | \(a_{833}= +0.20594292 \pm 4.4 \cdot 10^{-6} \) | \(a_{834}= +0.03379100 \pm 9.7 \cdot 10^{-6} \) |
\(a_{835}= +0.15013365 \pm 3.1 \cdot 10^{-6} \) | \(a_{836}= -2.44496552 \pm 6.5 \cdot 10^{-6} \) | \(a_{837}= -0.04930661 \pm 4.7 \cdot 10^{-6} \) |
\(a_{838}= -0.02730784 \pm 4.8 \cdot 10^{-6} \) | \(a_{839}= -1.40742316 \pm 4.7 \cdot 10^{-6} \) | \(a_{840}= +0.00836244 \pm 9.9 \cdot 10^{-6} \) |
\(a_{841}= -0.18768240 \pm 5.3 \cdot 10^{-6} \) | \(a_{842}= -0.06195458 \pm 4.0 \cdot 10^{-6} \) | \(a_{843}= +0.46870245 \pm 5.1 \cdot 10^{-6} \) |
\(a_{844}= -0.36782006 \pm 5.0 \cdot 10^{-6} \) | \(a_{845}= -0.15214379 \pm 4.3 \cdot 10^{-6} \) | \(a_{846}= +0.01439873 \pm 9.2 \cdot 10^{-6} \) |
\(a_{847}= +0.30596907 \pm 3.6 \cdot 10^{-6} \) | \(a_{848}= +0.38588772 \pm 6.1 \cdot 10^{-6} \) | \(a_{849}= +0.47116353 \pm 3.5 \cdot 10^{-6} \) |
\(a_{850}= +0.06472608 \pm 3.8 \cdot 10^{-6} \) | \(a_{851}= -0.23811418 \pm 4.1 \cdot 10^{-6} \) | \(a_{852}= -0.42524210 \pm 1.1 \cdot 10^{-5} \) |
\(a_{853}= +0.53349474 \pm 4.6 \cdot 10^{-6} \) | \(a_{854}= +0.01222100 \pm 9.2 \cdot 10^{-6} \) | \(a_{855}= -0.22423435 \pm 8.3 \cdot 10^{-6} \) |
\(a_{856}= +0.05114883 \pm 6.9 \cdot 10^{-6} \) | \(a_{857}= +1.54730517 \pm 3.9 \cdot 10^{-6} \) | \(a_{858}= +0.03095154 \pm 1.3 \cdot 10^{-5} \) |
\(a_{859}= -0.77210881 \pm 4.3 \cdot 10^{-6} \) | \(a_{860}= +0.08026415 \pm 6.9 \cdot 10^{-6} \) | \(a_{861}= -0.42323767 \pm 3.3 \cdot 10^{-6} \) |
\(a_{862}= -0.06015794 \pm 4.6 \cdot 10^{-6} \) | \(a_{863}= -0.06582967 \pm 4.6 \cdot 10^{-6} \) | \(a_{864}= -0.02990307 \pm 4.5 \cdot 10^{-6} \) |
\(a_{865}= +0.05270883 \pm 4.7 \cdot 10^{-6} \) | \(a_{866}= +0.04724659 \pm 4.0 \cdot 10^{-6} \) | \(a_{867}= +0.62250583 \pm 4.1 \cdot 10^{-6} \) |
\(a_{868}= +0.09657461 \pm 1.0 \cdot 10^{-5} \) | \(a_{869}= -1.12813813 \pm 2.7 \cdot 10^{-6} \) | \(a_{870}= +0.00998395 \pm 1.3 \cdot 10^{-5} \) |
\(a_{871}= +0.92299445 \pm 5.0 \cdot 10^{-6} \) | \(a_{872}= -0.00275086 \pm 6.2 \cdot 10^{-6} \) | \(a_{873}= +0.02744218 \pm 2.7 \cdot 10^{-6} \) |
\(a_{874}= +0.01213291 \pm 4.4 \cdot 10^{-6} \) | \(a_{875}= -0.26001436 \pm 3.6 \cdot 10^{-6} \) | \(a_{876}= +0.03042618 \pm 9.9 \cdot 10^{-6} \) |
\(a_{877}= +0.72938236 \pm 4.6 \cdot 10^{-6} \) | \(a_{878}= -0.04381344 \pm 5.8 \cdot 10^{-6} \) | \(a_{879}= +0.79755218 \pm 3.8 \cdot 10^{-6} \) |
\(a_{880}= -0.49250084 \pm 4.7 \cdot 10^{-6} \) | \(a_{881}= -1.85775258 \pm 4.0 \cdot 10^{-6} \) | \(a_{882}= -0.00247528 \pm 5.1 \cdot 10^{-6} \) |
\(a_{883}= +0.09023943 \pm 4.6 \cdot 10^{-6} \) | \(a_{884}= -1.10227111 \pm 2.5 \cdot 10^{-6} \) | \(a_{885}= +0.08076699 \pm 7.1 \cdot 10^{-6} \) |
\(a_{886}= +0.00084435 \pm 5.5 \cdot 10^{-6} \) | \(a_{887}= -0.06996569 \pm 3.5 \cdot 10^{-6} \) | \(a_{888}= -0.11144348 \pm 9.9 \cdot 10^{-6} \) |
\(a_{889}= +0.31299561 \pm 5.0 \cdot 10^{-6} \) | \(a_{890}= +0.01567099 \pm 5.7 \cdot 10^{-6} \) | \(a_{891}= -0.14946481 \pm 3.9 \cdot 10^{-6} \) |
\(a_{892}= -1.40810370 \pm 6.2 \cdot 10^{-6} \) | \(a_{893}= +1.51449832 \pm 3.1 \cdot 10^{-6} \) | \(a_{894}= +0.00052394 \pm 9.0 \cdot 10^{-6} \) |
\(a_{895}= +0.45099586 \pm 3.2 \cdot 10^{-6} \) | \(a_{896}= +0.07805756 \pm 4.5 \cdot 10^{-6} \) | \(a_{897}= +0.05669094 \pm 8.8 \cdot 10^{-6} \) |
\(a_{898}= -0.03332747 \pm 4.6 \cdot 10^{-6} \) | \(a_{899}= +0.23091383 \pm 5.1 \cdot 10^{-6} \) | \(a_{900}= +0.28714105 \pm 1.0 \cdot 10^{-5} \) |
\(a_{901}= +0.56083795 \pm 4.6 \cdot 10^{-6} \) | \(a_{902}= -0.13561829 \pm 3.2 \cdot 10^{-6} \) | \(a_{903}= -0.04758061 \pm 4.6 \cdot 10^{-6} \) |
\(a_{904}= +0.01446084 \pm 4.9 \cdot 10^{-6} \) | \(a_{905}= +0.60707921 \pm 2.7 \cdot 10^{-6} \) | \(a_{906}= -0.05012819 \pm 9.5 \cdot 10^{-6} \) |
\(a_{907}= -0.77721047 \pm 3.7 \cdot 10^{-6} \) | \(a_{908}= +0.83552406 \pm 5.1 \cdot 10^{-6} \) | \(a_{909}= -0.26380361 \pm 4.7 \cdot 10^{-6} \) |
\(a_{910}= -0.00555993 \pm 1.3 \cdot 10^{-5} \) | \(a_{911}= +0.98656187 \pm 3.3 \cdot 10^{-6} \) | \(a_{912}= -1.04369634 \pm 9.2 \cdot 10^{-6} \) |
\(a_{913}= +1.46962360 \pm 3.8 \cdot 10^{-6} \) | \(a_{914}= +0.04209353 \pm 6.2 \cdot 10^{-6} \) | \(a_{915}= -0.13255908 \pm 8.1 \cdot 10^{-6} \) |
\(a_{916}= +0.98567602 \pm 6.8 \cdot 10^{-6} \) | \(a_{917}= -0.24484790 \pm 3.6 \cdot 10^{-6} \) | \(a_{918}= -0.01442135 \pm 9.5 \cdot 10^{-6} \) |
\(a_{919}= -1.43333447 \pm 5.4 \cdot 10^{-6} \) | \(a_{920}= +0.00490793 \pm 5.8 \cdot 10^{-6} \) | \(a_{921}= -0.06771697 \pm 5.4 \cdot 10^{-6} \) |
\(a_{922}= +0.00996039 \pm 5.3 \cdot 10^{-6} \) | \(a_{923}= +0.56622692 \pm 4.6 \cdot 10^{-6} \) | \(a_{924}= +0.29274990 \pm 9.8 \cdot 10^{-6} \) |
\(a_{925}= +1.60590984 \pm 4.3 \cdot 10^{-6} \) | \(a_{926}= -0.05235864 \pm 4.4 \cdot 10^{-6} \) | \(a_{927}= +0.30843269 \pm 3.8 \cdot 10^{-6} \) |
\(a_{928}= +0.14004276 \pm 4.6 \cdot 10^{-6} \) | \(a_{929}= -0.10608787 \pm 5.4 \cdot 10^{-6} \) | \(a_{930}= +0.00283809 \pm 1.3 \cdot 10^{-5} \) |
\(a_{931}= -0.26035642 \pm 4.3 \cdot 10^{-6} \) | \(a_{932}= +1.64701717 \pm 4.5 \cdot 10^{-6} \) | \(a_{933}= +0.53415837 \pm 5.0 \cdot 10^{-6} \) |
\(a_{934}= -0.04555648 \pm 4.1 \cdot 10^{-6} \) | \(a_{935}= -0.71578635 \pm 2.8 \cdot 10^{-6} \) | \(a_{936}= +0.02653280 \pm 1.0 \cdot 10^{-5} \) |
\(a_{937}= -1.35306985 \pm 4.1 \cdot 10^{-6} \) | \(a_{938}= -0.02365235 \pm 9.5 \cdot 10^{-6} \) | \(a_{939}= +0.93886427 \pm 5.4 \cdot 10^{-6} \) |
\(a_{940}= +0.30590352 \pm 6.2 \cdot 10^{-6} \) | \(a_{941}= +0.96190278 \pm 4.5 \cdot 10^{-6} \) | \(a_{942}= -0.01593617 \pm 9.3 \cdot 10^{-6} \) |
\(a_{943}= -0.24839889 \pm 4.5 \cdot 10^{-6} \) | \(a_{944}= +0.37592907 \pm 3.6 \cdot 10^{-6} \) | \(a_{945}= +0.02684888 \pm 4.0 \cdot 10^{-6} \) |
\(a_{946}= -0.01524628 \pm 5.3 \cdot 10^{-6} \) | \(a_{947}= +0.96140381 \pm 4.0 \cdot 10^{-6} \) | \(a_{948}= -0.48288658 \pm 8.8 \cdot 10^{-6} \) |
\(a_{949}= -0.04051368 \pm 4.6 \cdot 10^{-6} \) | \(a_{950}= -0.08182778 \pm 4.1 \cdot 10^{-6} \) | \(a_{951}= -1.00978517 \pm 5.0 \cdot 10^{-6} \) |
\(a_{952}= +0.05656940 \pm 1.0 \cdot 10^{-5} \) | \(a_{953}= -1.59316548 \pm 4.8 \cdot 10^{-6} \) | \(a_{954}= -0.00674084 \pm 9.7 \cdot 10^{-6} \) |
\(a_{955}= +0.01984567 \pm 5.1 \cdot 10^{-6} \) | \(a_{956}= -0.03470274 \pm 4.8 \cdot 10^{-6} \) | \(a_{957}= +0.69997699 \pm 8.4 \cdot 10^{-6} \) |
\(a_{958}= +0.09897687 \pm 4.8 \cdot 10^{-6} \) | \(a_{959}= -0.54209474 \pm 3.6 \cdot 10^{-6} \) | \(a_{960}= -0.20965926 \pm 7.9 \cdot 10^{-6} \) |
\(a_{961}= -0.93435917 \pm 3.4 \cdot 10^{-6} \) | \(a_{962}= +0.07409536 \pm 4.5 \cdot 10^{-6} \) | \(a_{963}= +0.16422100 \pm 4.8 \cdot 10^{-6} \) |
\(a_{964}= -1.41326916 \pm 5.3 \cdot 10^{-6} \) | \(a_{965}= -0.19320003 \pm 3.9 \cdot 10^{-6} \) | \(a_{966}= -0.00145274 \pm 9.4 \cdot 10^{-6} \) |
\(a_{967}= +0.80626574 \pm 3.4 \cdot 10^{-6} \) | \(a_{968}= +0.08404507 \pm 4.9 \cdot 10^{-6} \) | \(a_{969}= -1.51687781 \pm 8.7 \cdot 10^{-6} \) |
\(a_{970}= -0.00157957 \pm 2.7 \cdot 10^{-6} \) | \(a_{971}= -1.51276089 \pm 3.0 \cdot 10^{-6} \) | \(a_{972}= -0.06397670 \pm 5.9 \cdot 10^{-6} \) |
\(a_{973}= -0.42556888 \pm 4.6 \cdot 10^{-6} \) | \(a_{974}= +0.03325466 \pm 4.0 \cdot 10^{-6} \) | \(a_{975}= -0.38233983 \pm 8.6 \cdot 10^{-6} \) |
\(a_{976}= -0.61699482 \pm 3.4 \cdot 10^{-6} \) | \(a_{977}= +0.72682358 \pm 4.0 \cdot 10^{-6} \) | \(a_{978}= +0.04332268 \pm 9.2 \cdot 10^{-6} \) |
\(a_{979}= +1.09869691 \pm 3.1 \cdot 10^{-6} \) | \(a_{980}= -0.05258767 \pm 9.9 \cdot 10^{-6} \) | \(a_{981}= -0.00883204 \pm 4.6 \cdot 10^{-6} \) |
\(a_{982}= +0.04688533 \pm 3.3 \cdot 10^{-6} \) | \(a_{983}= -0.03533051 \pm 4.3 \cdot 10^{-6} \) | \(a_{984}= -0.11625698 \pm 9.2 \cdot 10^{-6} \) |
\(a_{985}= -0.66201869 \pm 3.1 \cdot 10^{-6} \) | \(a_{986}= +0.06753839 \pm 3.4 \cdot 10^{-6} \) | \(a_{987}= -0.18133967 \pm 4.1 \cdot 10^{-6} \) |
\(a_{988}= +1.39350926 \pm 4.2 \cdot 10^{-6} \) | \(a_{989}= -0.02792514 \pm 5.4 \cdot 10^{-6} \) | \(a_{990}= +0.00860320 \pm 1.3 \cdot 10^{-5} \) |
\(a_{991}= -1.03208616 \pm 4.5 \cdot 10^{-6} \) | \(a_{992}= +0.03980932 \pm 4.4 \cdot 10^{-6} \) | \(a_{993}= -0.22095613 \pm 3.8 \cdot 10^{-6} \) |
\(a_{994}= -0.01450994 \pm 1.0 \cdot 10^{-5} \) | \(a_{995}= +0.18887688 \pm 3.2 \cdot 10^{-6} \) | \(a_{996}= +0.62905552 \pm 9.8 \cdot 10^{-6} \) |
\(a_{997}= -0.79428246 \pm 4.6 \cdot 10^{-6} \) | \(a_{998}= -0.09835335 \pm 4.8 \cdot 10^{-6} \) | \(a_{999}= -0.35780605 \pm 4.0 \cdot 10^{-6} \) |
\(a_{1000}= -0.07142201 \pm 5.1 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000