Maass form invariants
| Level: | \( 19 \) |
| Weight: | \( 0 \) |
| Character: | 19.1 |
| Symmetry: | odd |
| Fricke sign: | $-1$ |
| Spectral parameter: | \(3.84044805111431923274515994417 \pm 4 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= -0.97374773 \pm 1.0 \cdot 10^{-7} \) | \(a_{3}= -0.17706866 \pm 9.8 \cdot 10^{-8} \) |
| \(a_{4}= -0.05181537 \pm 1.0 \cdot 10^{-7} \) | \(a_{5}= +1.50521148 \pm 8.0 \cdot 10^{-8} \) | \(a_{6}= +0.17242021 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{7}= -0.16909248 \pm 9.5 \cdot 10^{-8} \) | \(a_{8}= +1.02420282 \pm 1.1 \cdot 10^{-7} \) | \(a_{9}= -0.96864669 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{10}= -1.46569626 \pm 9.0 \cdot 10^{-8} \) | \(a_{11}= +1.54539415 \pm 8.6 \cdot 10^{-8} \) | \(a_{12}= +0.00917488 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{13}= +1.32982933 \pm 8.1 \cdot 10^{-8} \) | \(a_{14}= +0.16465342 \pm 1.0 \cdot 10^{-7} \) | \(a_{15}= -0.26652578 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{16}= -0.94549980 \pm 1.0 \cdot 10^{-7} \) | \(a_{17}= +0.06231457 \pm 8.1 \cdot 10^{-8} \) | \(a_{18}= +0.94321751 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{19}= +0.22941573 \pm 1.0 \cdot 10^{-8} \) | \(a_{20}= -0.07799308 \pm 1.0 \cdot 10^{-7} \) | \(a_{21}= +0.02994098 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{22}= -1.50482404 \pm 8.6 \cdot 10^{-8} \) | \(a_{23}= +0.37696171 \pm 9.0 \cdot 10^{-8} \) | \(a_{24}= -0.18135422 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{25}= +1.26566161 \pm 6.8 \cdot 10^{-8} \) | \(a_{26}= -1.29491829 \pm 9.2 \cdot 10^{-8} \) | \(a_{27}= +0.34858563 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{28}= +0.00876159 \pm 9.1 \cdot 10^{-8} \) | \(a_{29}= -1.16401010 \pm 6.5 \cdot 10^{-8} \) | \(a_{30}= +0.25952887 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{31}= +1.44284161 \pm 8.4 \cdot 10^{-8} \) | \(a_{32}= -0.10352454 \pm 9.7 \cdot 10^{-8} \) | \(a_{33}= -0.27364087 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{34}= -0.06067867 \pm 1.0 \cdot 10^{-7} \) | \(a_{35}= -0.25451994 \pm 6.9 \cdot 10^{-8} \) | \(a_{36}= +0.05019078 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{37}= +0.75374362 \pm 8.0 \cdot 10^{-8} \) | \(a_{38}= -0.22339305 \pm 1.1 \cdot 10^{-7} \) | \(a_{39}= -0.23547110 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{40}= +1.54164185 \pm 1.1 \cdot 10^{-7} \) | \(a_{41}= +0.96309164 \pm 6.5 \cdot 10^{-8} \) | \(a_{42}= -0.02915496 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{43}= -0.63414666 \pm 6.8 \cdot 10^{-8} \) | \(a_{44}= -0.08007516 \pm 7.5 \cdot 10^{-8} \) | \(a_{45}= -1.45801812 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{46}= -0.36706561 \pm 9.1 \cdot 10^{-8} \) | \(a_{47}= -0.05809019 \pm 8.3 \cdot 10^{-8} \) | \(a_{48}= +0.16741838 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{49}= -0.97140773 \pm 9.4 \cdot 10^{-8} \) | \(a_{50}= -1.23243511 \pm 8.4 \cdot 10^{-8} \) | \(a_{51}= -0.01103396 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{52}= -0.06890559 \pm 9.8 \cdot 10^{-8} \) | \(a_{53}= -0.09857959 \pm 8.6 \cdot 10^{-8} \) | \(a_{54}= -0.33943447 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{55}= +2.32614502 \pm 7.8 \cdot 10^{-8} \) | \(a_{56}= -0.17318500 \pm 9.8 \cdot 10^{-8} \) | \(a_{57}= -0.04062234 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{58}= +1.13345219 \pm 8.2 \cdot 10^{-8} \) | \(a_{59}= +0.34180750 \pm 8.3 \cdot 10^{-8} \) | \(a_{60}= +0.01381013 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{61}= -0.58858001 \pm 8.9 \cdot 10^{-8} \) | \(a_{62}= -1.40496374 \pm 7.8 \cdot 10^{-8} \) | \(a_{63}= +0.16379087 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{64}= +1.04630659 \pm 9.6 \cdot 10^{-8} \) | \(a_{65}= +2.00167438 \pm 7.1 \cdot 10^{-8} \) | \(a_{66}= +0.26645718 \pm 9.8 \cdot 10^{-8} \) |
| \(a_{67}= -0.09665150 \pm 7.8 \cdot 10^{-8} \) | \(a_{68}= -0.00322885 \pm 1.0 \cdot 10^{-7} \) | \(a_{69}= -0.06674811 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{70}= +0.24783822 \pm 6.5 \cdot 10^{-8} \) | \(a_{71}= +0.31616097 \pm 8.8 \cdot 10^{-8} \) | \(a_{72}= -0.99209067 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{73}= -1.78902131 \pm 9.0 \cdot 10^{-8} \) | \(a_{74}= -0.73395613 \pm 8.5 \cdot 10^{-8} \) | \(a_{75}= -0.22410901 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{76}= -0.01188726 \pm 1.1 \cdot 10^{-7} \) | \(a_{77}= -0.26131453 \pm 9.1 \cdot 10^{-8} \) | \(a_{78}= +0.22928945 \pm 8.9 \cdot 10^{-8} \) |
| \(a_{79}= +1.40631478 \pm 7.2 \cdot 10^{-8} \) | \(a_{80}= -1.42317716 \pm 1.0 \cdot 10^{-7} \) | \(a_{81}= +0.90692310 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{82}= -0.93780829 \pm 7.5 \cdot 10^{-8} \) | \(a_{83}= -1.12023361 \pm 8.3 \cdot 10^{-8} \) | \(a_{84}= -0.00155140 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{85}= +0.09379660 \pm 6.2 \cdot 10^{-8} \) | \(a_{86}= +0.61749886 \pm 6.6 \cdot 10^{-8} \) | \(a_{87}= +0.20610971 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{88}= +1.58279705 \pm 9.8 \cdot 10^{-8} \) | \(a_{89}= -1.05098980 \pm 7.6 \cdot 10^{-8} \) | \(a_{90}= +1.41974183 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{91}= -0.22486414 \pm 9.7 \cdot 10^{-8} \) | \(a_{92}= -0.01953241 \pm 8.2 \cdot 10^{-8} \) | \(a_{93}= -0.25548203 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{94}= +0.05656519 \pm 9.9 \cdot 10^{-8} \) | \(a_{95}= +0.34531920 \pm 9.1 \cdot 10^{-8} \) | \(a_{96}= +0.01833095 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{97}= -1.09790114 \pm 6.7 \cdot 10^{-8} \) | \(a_{98}= +0.94590607 \pm 1.0 \cdot 10^{-7} \) | \(a_{99}= -1.49694093 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{100}= -0.06558072 \pm 8.2 \cdot 10^{-8} \) | \(a_{101}= -0.07620400 \pm 8.5 \cdot 10^{-8} \) | \(a_{102}= +0.01074429 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{103}= +1.64927324 \pm 1.0 \cdot 10^{-7} \) | \(a_{104}= +1.36201495 \pm 9.8 \cdot 10^{-8} \) | \(a_{105}= +0.04506751 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{106}= +0.09599165 \pm 9.4 \cdot 10^{-8} \) | \(a_{107}= -0.24671850 \pm 8.2 \cdot 10^{-8} \) | \(a_{108}= -0.01806209 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{109}= +1.33422374 \pm 7.3 \cdot 10^{-8} \) | \(a_{110}= -2.26507842 \pm 7.6 \cdot 10^{-8} \) | \(a_{111}= -0.13346437 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{112}= +0.15987691 \pm 9.8 \cdot 10^{-8} \) | \(a_{113}= -0.68572601 \pm 9.0 \cdot 10^{-8} \) | \(a_{114}= +0.03955591 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{115}= +0.56740710 \pm 9.1 \cdot 10^{-8} \) | \(a_{116}= +0.06031361 \pm 9.1 \cdot 10^{-8} \) | \(a_{117}= -1.28813478 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{118}= -0.33283428 \pm 1.0 \cdot 10^{-7} \) | \(a_{119}= -0.01053692 \pm 8.1 \cdot 10^{-8} \) | \(a_{120}= -0.27297646 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{121}= +1.38824308 \pm 7.5 \cdot 10^{-8} \) | \(a_{122}= +0.57312845 \pm 7.7 \cdot 10^{-8} \) | \(a_{123}= -0.17053335 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{124}= -0.07476137 \pm 6.7 \cdot 10^{-8} \) | \(a_{125}= +0.39987690 \pm 7.3 \cdot 10^{-8} \) | \(a_{126}= -0.15949099 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{127}= -0.43740813 \pm 8.4 \cdot 10^{-8} \) | \(a_{128}= -0.91531412 \pm 9.7 \cdot 10^{-8} \) | \(a_{129}= +0.11228750 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{130}= -1.94912587 \pm 7.1 \cdot 10^{-8} \) | \(a_{131}= +0.99278341 \pm 8.9 \cdot 10^{-8} \) | \(a_{132}= +0.01417880 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{133}= -0.03879248 \pm 1.0 \cdot 10^{-7} \) | \(a_{134}= +0.09411418 \pm 9.5 \cdot 10^{-8} \) | \(a_{135}= +0.52469510 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{136}= +0.06382275 \pm 1.2 \cdot 10^{-7} \) | \(a_{137}= -1.40056813 \pm 8.7 \cdot 10^{-8} \) | \(a_{138}= +0.06499582 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{139}= -0.49296556 \pm 8.4 \cdot 10^{-8} \) | \(a_{140}= +0.01318804 \pm 7.6 \cdot 10^{-8} \) | \(a_{141}= +0.01028595 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{142}= -0.30786103 \pm 1.0 \cdot 10^{-7} \) | \(a_{143}= +2.05511047 \pm 6.9 \cdot 10^{-8} \) | \(a_{144}= +0.91585525 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{145}= -1.75208136 \pm 6.7 \cdot 10^{-8} \) | \(a_{146}= +1.74205543 \pm 8.3 \cdot 10^{-8} \) | \(a_{147}= +0.17200587 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{148}= -0.03905550 \pm 7.3 \cdot 10^{-8} \) | \(a_{149}= +0.49446516 \pm 6.8 \cdot 10^{-8} \) | \(a_{150}= +0.21822563 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{151}= +0.83602796 \pm 6.0 \cdot 10^{-8} \) | \(a_{152}= +0.23496824 \pm 1.2 \cdot 10^{-7} \) | \(a_{153}= -0.06036080 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{154}= +0.25445443 \pm 8.4 \cdot 10^{-8} \) | \(a_{155}= +2.17178176 \pm 8.8 \cdot 10^{-8} \) | \(a_{156}= +0.01220102 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{157}= -0.79419410 \pm 8.5 \cdot 10^{-8} \) | \(a_{158}= -1.36939582 \pm 1.0 \cdot 10^{-7} \) | \(a_{159}= +0.01745536 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{160}= -0.15582633 \pm 9.6 \cdot 10^{-8} \) | \(a_{161}= -0.06374139 \pm 6.3 \cdot 10^{-8} \) | \(a_{162}= -0.88311430 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{163}= -0.88189357 \pm 8.4 \cdot 10^{-8} \) | \(a_{164}= -0.04990295 \pm 8.3 \cdot 10^{-8} \) | \(a_{165}= -0.41188738 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{166}= +1.09082493 \pm 8.9 \cdot 10^{-8} \) | \(a_{167}= -0.66834485 \pm 9.9 \cdot 10^{-8} \) | \(a_{168}= +0.03066564 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{169}= +0.76844605 \pm 8.3 \cdot 10^{-8} \) | \(a_{170}= -0.09133423 \pm 9.0 \cdot 10^{-8} \) | \(a_{171}= -0.22222279 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{172}= +0.03285854 \pm 7.2 \cdot 10^{-8} \) | \(a_{173}= -1.12749417 \pm 9.4 \cdot 10^{-8} \) | \(a_{174}= -0.20069886 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{175}= -0.21401386 \pm 7.9 \cdot 10^{-8} \) | \(a_{176}= -1.46116986 \pm 8.6 \cdot 10^{-8} \) | \(a_{177}= -0.06052340 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{178}= +1.02339892 \pm 9.0 \cdot 10^{-8} \) | \(a_{179}= -0.67680655 \pm 8.7 \cdot 10^{-8} \) | \(a_{180}= +0.07554774 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{181}= -1.76397460 \pm 8.9 \cdot 10^{-8} \) | \(a_{182}= +0.21896095 \pm 1.0 \cdot 10^{-7} \) | \(a_{183}= +0.10421907 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{184}= +0.38608525 \pm 1.0 \cdot 10^{-7} \) | \(a_{185}= +1.13454354 \pm 6.7 \cdot 10^{-8} \) | \(a_{186}= +0.24877505 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{187}= +0.09630056 \pm 7.3 \cdot 10^{-8} \) | \(a_{188}= +0.00300996 \pm 9.9 \cdot 10^{-8} \) | \(a_{189}= -0.05894321 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{190}= -0.33625378 \pm 1.9 \cdot 10^{-7} \) | \(a_{191}= -0.51840510 \pm 9.3 \cdot 10^{-8} \) | \(a_{192}= -0.18526811 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{193}= +1.15778498 \pm 9.4 \cdot 10^{-8} \) | \(a_{194}= +1.06907873 \pm 8.5 \cdot 10^{-8} \) | \(a_{195}= -0.35443380 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{196}= +0.05033385 \pm 8.2 \cdot 10^{-8} \) | \(a_{197}= -0.68270507 \pm 7.4 \cdot 10^{-8} \) | \(a_{198}= +1.45764282 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{199}= +1.13728117 \pm 7.3 \cdot 10^{-8} \) | \(a_{200}= +1.29629419 \pm 8.4 \cdot 10^{-8} \) | \(a_{201}= +0.01711395 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{202}= +0.07420347 \pm 1.1 \cdot 10^{-7} \) | \(a_{203}= +0.19682535 \pm 6.4 \cdot 10^{-8} \) | \(a_{204}= +0.00057173 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{205}= +1.44965659 \pm 6.4 \cdot 10^{-8} \) | \(a_{206}= -1.60597607 \pm 1.2 \cdot 10^{-7} \) | \(a_{207}= -0.36514271 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{208}= -1.25735337 \pm 1.1 \cdot 10^{-7} \) | \(a_{209}= +0.35453773 \pm 9.7 \cdot 10^{-8} \) | \(a_{210}= -0.04388438 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{211}= -0.08104771 \pm 6.3 \cdot 10^{-8} \) | \(a_{212}= +0.00510794 \pm 7.6 \cdot 10^{-8} \) | \(a_{213}= -0.05598220 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{214}= +0.24024158 \pm 9.9 \cdot 10^{-8} \) | \(a_{215}= -0.95452483 \pm 5.9 \cdot 10^{-8} \) | \(a_{216}= +0.35702239 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{217}= -0.24397367 \pm 5.3 \cdot 10^{-8} \) | \(a_{218}= -1.29919733 \pm 6.5 \cdot 10^{-8} \) | \(a_{219}= +0.31677961 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{220}= -0.12053006 \pm 6.4 \cdot 10^{-8} \) | \(a_{221}= +0.08286774 \pm 7.3 \cdot 10^{-8} \) | \(a_{222}= +0.12996063 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{223}= +0.37568135 \pm 7.6 \cdot 10^{-8} \) | \(a_{224}= +0.01750522 \pm 7.7 \cdot 10^{-8} \) | \(a_{225}= -1.22597892 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{226}= +0.66772414 \pm 1.1 \cdot 10^{-7} \) | \(a_{227}= +0.35078876 \pm 6.6 \cdot 10^{-8} \) | \(a_{228}= +0.00210486 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{229}= +0.59611300 \pm 8.0 \cdot 10^{-8} \) | \(a_{230}= -0.55251137 \pm 1.0 \cdot 10^{-7} \) | \(a_{231}= +0.04627061 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{232}= -1.19218243 \pm 1.1 \cdot 10^{-7} \) | \(a_{233}= +1.33210762 \pm 9.4 \cdot 10^{-8} \) | \(a_{234}= +1.25431831 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{235}= -0.08743802 \pm 6.5 \cdot 10^{-8} \) | \(a_{236}= -0.01771088 \pm 1.0 \cdot 10^{-7} \) | \(a_{237}= -0.24901427 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{238}= +0.01026031 \pm 9.1 \cdot 10^{-8} \) | \(a_{239}= -1.72769601 \pm 8.9 \cdot 10^{-8} \) | \(a_{240}= +0.25200007 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{241}= +0.23474951 \pm 8.2 \cdot 10^{-8} \) | \(a_{242}= -1.35179854 \pm 7.8 \cdot 10^{-8} \) | \(a_{243}= -0.50917329 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{244}= +0.03049749 \pm 7.4 \cdot 10^{-8} \) | \(a_{245}= -1.46217407 \pm 7.0 \cdot 10^{-8} \) | \(a_{246}= +0.16605646 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{247}= +0.30508377 \pm 9.1 \cdot 10^{-8} \) | \(a_{248}= +1.47776245 \pm 9.0 \cdot 10^{-8} \) | \(a_{249}= +0.19835827 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{250}= -0.38937922 \pm 7.5 \cdot 10^{-8} \) | \(a_{251}= +0.56184977 \pm 9.4 \cdot 10^{-8} \) | \(a_{252}= -0.00848688 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{253}= +0.58255442 \pm 8.2 \cdot 10^{-8} \) | \(a_{254}= +0.42592517 \pm 8.8 \cdot 10^{-8} \) | \(a_{255}= -0.01660844 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{256}= -0.15502155 \pm 9.1 \cdot 10^{-8} \) | \(a_{257}= -0.25559734 \pm 6.1 \cdot 10^{-8} \) | \(a_{258}= -0.10933970 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{259}= -0.12745238 \pm 1.0 \cdot 10^{-7} \) | \(a_{260}= -0.10371749 \pm 8.5 \cdot 10^{-8} \) | \(a_{261}= +1.12751453 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{262}= -0.96672059 \pm 1.0 \cdot 10^{-7} \) | \(a_{263}= +1.07137041 \pm 9.7 \cdot 10^{-8} \) | \(a_{264}= -0.28026375 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{265}= -0.14838313 \pm 6.7 \cdot 10^{-8} \) | \(a_{266}= +0.03777408 \pm 2.0 \cdot 10^{-7} \) | \(a_{267}= +0.18609736 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{268}= +0.00500803 \pm 9.8 \cdot 10^{-8} \) | \(a_{269}= -0.74612026 \pm 9.5 \cdot 10^{-8} \) | \(a_{270}= -0.51092066 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{271}= -1.15915568 \pm 9.3 \cdot 10^{-8} \) | \(a_{272}= -0.05891841 \pm 1.3 \cdot 10^{-7} \) | \(a_{273}= +0.03981639 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{274}= +1.36380003 \pm 1.0 \cdot 10^{-7} \) | \(a_{275}= +1.95594604 \pm 5.8 \cdot 10^{-8} \) | \(a_{276}= +0.00345858 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{277}= +1.97518335 \pm 1.0 \cdot 10^{-7} \) | \(a_{278}= +0.48002410 \pm 7.8 \cdot 10^{-8} \) | \(a_{279}= -1.39760375 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{280}= -0.26068004 \pm 8.3 \cdot 10^{-8} \) | \(a_{281}= -0.04011751 \pm 1.0 \cdot 10^{-7} \) | \(a_{282}= -0.01001592 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{283}= +1.01266897 \pm 8.8 \cdot 10^{-8} \) | \(a_{284}= -0.01638200 \pm 1.1 \cdot 10^{-7} \) | \(a_{285}= -0.06114521 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{286}= -2.00115914 \pm 6.9 \cdot 10^{-8} \) | \(a_{287}= -0.16285155 \pm 7.0 \cdot 10^{-8} \) | \(a_{288}= +0.10027870 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{289}= -0.99611689 \pm 8.5 \cdot 10^{-8} \) | \(a_{290}= +1.70608524 \pm 8.6 \cdot 10^{-8} \) | \(a_{291}= +0.19440388 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{292}= +0.09269880 \pm 5.5 \cdot 10^{-8} \) | \(a_{293}= -0.51918742 \pm 9.1 \cdot 10^{-8} \) | \(a_{294}= -0.16749032 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{295}= +0.51449258 \pm 7.2 \cdot 10^{-8} \) | \(a_{296}= +0.77198634 \pm 8.8 \cdot 10^{-8} \) | \(a_{297}= +0.53870220 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{298}= -0.48148433 \pm 7.3 \cdot 10^{-8} \) | \(a_{299}= +0.50129474 \pm 4.4 \cdot 10^{-8} \) | \(a_{300}= +0.01161229 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{301}= +0.10722943 \pm 8.1 \cdot 10^{-8} \) | \(a_{302}= -0.81408033 \pm 6.4 \cdot 10^{-8} \) | \(a_{303}= +0.01349334 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{304}= -0.21691253 \pm 1.1 \cdot 10^{-7} \) | \(a_{305}= -0.88593740 \pm 7.9 \cdot 10^{-8} \) | \(a_{306}= +0.05877619 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{307}= -0.98357849 \pm 1.0 \cdot 10^{-7} \) | \(a_{308}= +0.01354011 \pm 8.0 \cdot 10^{-8} \) | \(a_{309}= -0.29203460 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{310}= -2.11476755 \pm 7.7 \cdot 10^{-8} \) | \(a_{311}= -1.77000683 \pm 8.9 \cdot 10^{-8} \) | \(a_{312}= -0.24117016 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{313}= -0.33776337 \pm 7.5 \cdot 10^{-8} \) | \(a_{314}= +0.77334470 \pm 9.1 \cdot 10^{-8} \) | \(a_{315}= +0.24653990 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{316}= -0.07286872 \pm 1.0 \cdot 10^{-7} \) | \(a_{317}= +0.33152383 \pm 6.5 \cdot 10^{-8} \) | \(a_{318}= -0.01699711 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{319}= -1.79885439 \pm 6.9 \cdot 10^{-8} \) | \(a_{320}= +1.57491269 \pm 9.0 \cdot 10^{-8} \) | \(a_{321}= +0.04368611 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{322}= +0.06206803 \pm 7.2 \cdot 10^{-8} \) | \(a_{323}= +0.01429594 \pm 9.1 \cdot 10^{-8} \) | \(a_{324}= -0.04699255 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{325}= +1.68311393 \pm 6.0 \cdot 10^{-8} \) | \(a_{326}= +0.85874186 \pm 1.0 \cdot 10^{-7} \) | \(a_{327}= -0.23624921 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{328}= +0.98640117 \pm 7.8 \cdot 10^{-8} \) | \(a_{329}= +0.00982261 \pm 7.5 \cdot 10^{-8} \) | \(a_{330}= +0.40107440 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{331}= -0.01625344 \pm 8.6 \cdot 10^{-8} \) | \(a_{332}= +0.05804532 \pm 8.9 \cdot 10^{-8} \) | \(a_{333}= -0.73011126 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{334}= +0.65079928 \pm 1.0 \cdot 10^{-7} \) | \(a_{335}= -0.14548095 \pm 7.9 \cdot 10^{-8} \) | \(a_{336}= -0.02830919 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{337}= -1.29005497 \pm 7.7 \cdot 10^{-8} \) | \(a_{338}= -0.74827259 \pm 8.1 \cdot 10^{-8} \) | \(a_{339}= +0.12142059 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{340}= -0.00486011 \pm 1.1 \cdot 10^{-7} \) | \(a_{341}= +2.22975899 \pm 7.2 \cdot 10^{-8} \) | \(a_{342}= +0.21638894 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{343}= +0.33335022 \pm 8.1 \cdot 10^{-8} \) | \(a_{344}= -0.64949479 \pm 8.1 \cdot 10^{-8} \) | \(a_{345}= -0.10047001 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{346}= +1.09789488 \pm 1.1 \cdot 10^{-7} \) | \(a_{347}= -0.55745245 \pm 9.6 \cdot 10^{-8} \) | \(a_{348}= -0.01067965 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{349}= +1.25719331 \pm 8.2 \cdot 10^{-8} \) | \(a_{350}= +0.20839551 \pm 9.4 \cdot 10^{-8} \) | \(a_{351}= +0.46355940 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{352}= -0.15998622 \pm 7.5 \cdot 10^{-8} \) | \(a_{353}= -0.14951903 \pm 7.6 \cdot 10^{-8} \) | \(a_{354}= +0.05893452 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{355}= +0.47588913 \pm 7.8 \cdot 10^{-8} \) | \(a_{356}= +0.05445742 \pm 9.5 \cdot 10^{-8} \) | \(a_{357}= +0.00186576 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{358}= +0.65903884 \pm 1.1 \cdot 10^{-7} \) | \(a_{359}= +1.02118029 \pm 9.9 \cdot 10^{-8} \) | \(a_{360}= -1.49330627 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{361}= +0.05263158 \pm 7.5 \cdot 10^{-7} \) | \(a_{362}= +1.71766626 \pm 7.9 \cdot 10^{-8} \) | \(a_{363}= -0.24581434 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{364}= +0.01165142 \pm 8.7 \cdot 10^{-8} \) | \(a_{365}= -2.69285542 \pm 8.7 \cdot 10^{-8} \) | \(a_{366}= -0.10148309 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{367}= +1.71291595 \pm 9.6 \cdot 10^{-8} \) | \(a_{368}= -0.35641722 \pm 8.2 \cdot 10^{-8} \) | \(a_{369}= -0.93289553 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{370}= -1.10475920 \pm 7.1 \cdot 10^{-8} \) | \(a_{371}= +0.01666907 \pm 1.2 \cdot 10^{-7} \) | \(a_{372}= +0.01323790 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{373}= -1.13901211 \pm 1.0 \cdot 10^{-7} \) | \(a_{374}= -0.09377246 \pm 8.4 \cdot 10^{-8} \) | \(a_{375}= -0.07080567 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{376}= -0.05949613 \pm 1.1 \cdot 10^{-7} \) | \(a_{377}= -1.54793477 \pm 6.3 \cdot 10^{-8} \) | \(a_{378}= +0.05739582 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{379}= +0.29287492 \pm 8.8 \cdot 10^{-8} \) | \(a_{380}= -0.01789284 \pm 1.9 \cdot 10^{-7} \) | \(a_{381}= +0.07745127 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{382}= +0.50479579 \pm 1.1 \cdot 10^{-7} \) | \(a_{383}= -1.40777615 \pm 7.4 \cdot 10^{-8} \) | \(a_{384}= +0.16207345 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{385}= -0.39333363 \pm 7.2 \cdot 10^{-8} \) | \(a_{386}= -1.12739049 \pm 1.2 \cdot 10^{-7} \) | \(a_{387}= +0.61426406 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{388}= +0.05688815 \pm 8.2 \cdot 10^{-8} \) | \(a_{389}= +0.43357526 \pm 9.1 \cdot 10^{-8} \) | \(a_{390}= +0.34512911 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{391}= +0.02349021 \pm 9.0 \cdot 10^{-8} \) | \(a_{392}= -0.99491854 \pm 1.0 \cdot 10^{-7} \) | \(a_{393}= -0.17579083 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{394}= +0.66478250 \pm 8.4 \cdot 10^{-8} \) | \(a_{395}= +2.11680115 \pm 7.6 \cdot 10^{-8} \) | \(a_{396}= +0.07756454 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{397}= -0.01700180 \pm 7.7 \cdot 10^{-8} \) | \(a_{398}= -1.10742495 \pm 8.2 \cdot 10^{-8} \) | \(a_{399}= +0.00686893 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{400}= -1.19668280 \pm 7.6 \cdot 10^{-8} \) | \(a_{401}= +0.00796553 \pm 8.0 \cdot 10^{-8} \) | \(a_{402}= -0.01666467 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{403}= +1.91873310 \pm 6.3 \cdot 10^{-8} \) | \(a_{404}= +0.00394854 \pm 1.1 \cdot 10^{-7} \) | \(a_{405}= +1.36511106 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{406}= -0.19165824 \pm 7.0 \cdot 10^{-8} \) | \(a_{407}= +1.16483097 \pm 8.2 \cdot 10^{-8} \) | \(a_{408}= -0.01130101 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{409}= +0.42445535 \pm 7.9 \cdot 10^{-8} \) | \(a_{410}= -1.41159981 \pm 6.8 \cdot 10^{-8} \) | \(a_{411}= +0.24799672 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{412}= -0.08545770 \pm 1.3 \cdot 10^{-7} \) | \(a_{413}= -0.05779708 \pm 8.8 \cdot 10^{-8} \) | \(a_{414}= +0.35555689 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{415}= -1.68618850 \pm 8.2 \cdot 10^{-8} \) | \(a_{416}= -0.13766997 \pm 9.4 \cdot 10^{-8} \) | \(a_{417}= +0.08728875 \pm 8.9 \cdot 10^{-8} \) |
| \(a_{418}= -0.34523031 \pm 1.9 \cdot 10^{-7} \) | \(a_{419}= +0.36307662 \pm 9.3 \cdot 10^{-8} \) | \(a_{420}= -0.00233519 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{421}= +0.31595425 \pm 8.4 \cdot 10^{-8} \) | \(a_{422}= +0.07892003 \pm 7.0 \cdot 10^{-8} \) | \(a_{423}= +0.05626887 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{424}= -0.10096549 \pm 8.5 \cdot 10^{-8} \) | \(a_{425}= +0.07886915 \pm 6.0 \cdot 10^{-8} \) | \(a_{426}= +0.05451254 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{427}= +0.09952445 \pm 8.5 \cdot 10^{-8} \) | \(a_{428}= +0.01278381 \pm 9.0 \cdot 10^{-8} \) | \(a_{429}= -0.36389566 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{430}= +0.92946638 \pm 5.7 \cdot 10^{-8} \) | \(a_{431}= +0.73091629 \pm 8.7 \cdot 10^{-8} \) | \(a_{432}= -0.32958765 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{433}= +0.10038724 \pm 8.7 \cdot 10^{-8} \) | \(a_{434}= +0.23756880 \pm 5.9 \cdot 10^{-8} \) | \(a_{435}= +0.31023870 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{436}= -0.06913329 \pm 7.4 \cdot 10^{-8} \) | \(a_{437}= +0.08648095 \pm 1.0 \cdot 10^{-7} \) | \(a_{438}= -0.30846342 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{439}= -1.50671611 \pm 8.9 \cdot 10^{-8} \) | \(a_{440}= +2.38244429 \pm 9.2 \cdot 10^{-8} \) | \(a_{441}= +0.94095088 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{442}= -0.08069227 \pm 9.2 \cdot 10^{-8} \) | \(a_{443}= -1.87945830 \pm 8.2 \cdot 10^{-8} \) | \(a_{444}= +0.00691551 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{445}= -1.58196191 \pm 6.8 \cdot 10^{-8} \) | \(a_{446}= -0.36581886 \pm 9.5 \cdot 10^{-8} \) | \(a_{447}= -0.08755428 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{448}= -0.17692258 \pm 8.4 \cdot 10^{-8} \) | \(a_{449}= +1.43991139 \pm 9.2 \cdot 10^{-8} \) | \(a_{450}= +1.19379419 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{451}= +1.48835618 \pm 6.1 \cdot 10^{-8} \) | \(a_{452}= +0.03553114 \pm 1.0 \cdot 10^{-7} \) | \(a_{453}= -0.14803435 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{454}= -0.34157975 \pm 7.9 \cdot 10^{-8} \) | \(a_{455}= -0.33846809 \pm 6.6 \cdot 10^{-8} \) | \(a_{456}= -0.04160551 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{457}= +1.38212671 \pm 8.9 \cdot 10^{-8} \) | \(a_{458}= -0.58046367 \pm 1.0 \cdot 10^{-7} \) | \(a_{459}= +0.02172196 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{460}= -0.02940041 \pm 1.1 \cdot 10^{-7} \) | \(a_{461}= -1.46665786 \pm 8.0 \cdot 10^{-8} \) | \(a_{462}= -0.04505591 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{463}= -0.95446374 \pm 6.4 \cdot 10^{-8} \) | \(a_{464}= +1.10057132 \pm 1.0 \cdot 10^{-7} \) | \(a_{465}= -0.38455449 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{466}= -1.29713677 \pm 1.0 \cdot 10^{-7} \) | \(a_{467}= -1.19462769 \pm 7.9 \cdot 10^{-8} \) | \(a_{468}= +0.06674518 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{469}= +0.01634304 \pm 9.1 \cdot 10^{-8} \) | \(a_{470}= +0.08514257 \pm 6.7 \cdot 10^{-8} \) | \(a_{471}= +0.14062689 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{472}= +0.35008021 \pm 1.0 \cdot 10^{-7} \) | \(a_{473}= -0.98000653 \pm 8.4 \cdot 10^{-8} \) | \(a_{474}= +0.24247708 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{475}= +0.29036269 \pm 7.8 \cdot 10^{-8} \) | \(a_{476}= +0.00054597 \pm 6.6 \cdot 10^{-8} \) | \(a_{477}= +0.09548879 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{478}= +1.68234006 \pm 9.4 \cdot 10^{-8} \) | \(a_{479}= +0.66906283 \pm 8.8 \cdot 10^{-8} \) | \(a_{480}= +0.02759196 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{481}= +1.00235037 \pm 7.1 \cdot 10^{-8} \) | \(a_{482}= -0.22858680 \pm 9.6 \cdot 10^{-8} \) | \(a_{483}= +0.01128660 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{484}= -0.07193232 \pm 6.7 \cdot 10^{-8} \) | \(a_{485}= -1.65257340 \pm 6.3 \cdot 10^{-8} \) | \(a_{486}= +0.49580633 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{487}= -1.10613419 \pm 9.4 \cdot 10^{-8} \) | \(a_{488}= -0.60282531 \pm 8.6 \cdot 10^{-8} \) | \(a_{489}= +0.15615571 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{490}= +1.42378868 \pm 6.7 \cdot 10^{-8} \) | \(a_{491}= -0.35978044 \pm 9.0 \cdot 10^{-8} \) | \(a_{492}= +0.00883625 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{493}= -0.07253478 \pm 5.8 \cdot 10^{-8} \) | \(a_{494}= -0.29707463 \pm 1.9 \cdot 10^{-7} \) | \(a_{495}= -2.25321267 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{496}= -1.36420646 \pm 6.9 \cdot 10^{-8} \) | \(a_{497}= -0.05346044 \pm 7.6 \cdot 10^{-8} \) | \(a_{498}= -0.19315091 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{499}= -0.59643097 \pm 9.2 \cdot 10^{-8} \) | \(a_{500}= -0.02071977 \pm 8.0 \cdot 10^{-8} \) | \(a_{501}= +0.11834293 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{502}= -0.54709993 \pm 9.9 \cdot 10^{-8} \) | \(a_{503}= +0.54393164 \pm 8.1 \cdot 10^{-8} \) | \(a_{504}= +0.16775507 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{505}= -0.11470314 \pm 7.1 \cdot 10^{-8} \) | \(a_{506}= -0.56726104 \pm 8.1 \cdot 10^{-8} \) | \(a_{507}= -0.13606771 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{508}= +0.02266446 \pm 7.5 \cdot 10^{-8} \) | \(a_{509}= +0.78205920 \pm 8.9 \cdot 10^{-8} \) | \(a_{510}= +0.01617243 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{511}= +0.30251005 \pm 1.0 \cdot 10^{-7} \) | \(a_{512}= +1.06626600 \pm 7.2 \cdot 10^{-8} \) | \(a_{513}= +0.07997103 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{514}= +0.24888732 \pm 8.1 \cdot 10^{-8} \) | \(a_{515}= +2.48250502 \pm 9.9 \cdot 10^{-8} \) | \(a_{516}= -0.00581822 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{517}= -0.08977224 \pm 8.3 \cdot 10^{-8} \) | \(a_{518}= +0.12410646 \pm 1.0 \cdot 10^{-7} \) | \(a_{519}= +0.19964388 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{520}= +2.05012054 \pm 9.3 \cdot 10^{-8} \) | \(a_{521}= +0.49238640 \pm 7.1 \cdot 10^{-8} \) | \(a_{522}= -1.09791471 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{523}= +1.27652652 \pm 8.2 \cdot 10^{-8} \) | \(a_{524}= -0.05144144 \pm 9.9 \cdot 10^{-8} \) | \(a_{525}= +0.03789515 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{526}= -1.04324450 \pm 1.2 \cdot 10^{-7} \) | \(a_{527}= +0.08991005 \pm 6.8 \cdot 10^{-8} \) | \(a_{528}= +0.25872739 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{529}= -0.85789987 \pm 9.9 \cdot 10^{-8} \) | \(a_{530}= +0.14448773 \pm 6.9 \cdot 10^{-8} \) | \(a_{531}= -0.33109071 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{532}= +0.00201005 \pm 2.0 \cdot 10^{-7} \) | \(a_{533}= +1.28074751 \pm 7.8 \cdot 10^{-8} \) | \(a_{534}= -0.18121188 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{535}= -0.37136352 \pm 7.1 \cdot 10^{-8} \) | \(a_{536}= -0.09899074 \pm 1.0 \cdot 10^{-7} \) | \(a_{537}= +0.11984123 \pm 8.9 \cdot 10^{-8} \) |
| \(a_{538}= +0.72653290 \pm 9.5 \cdot 10^{-8} \) | \(a_{539}= -1.50120783 \pm 8.0 \cdot 10^{-8} \) | \(a_{540}= -0.02718727 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{541}= +1.04829615 \pm 7.8 \cdot 10^{-8} \) | \(a_{542}= +1.12872521 \pm 1.0 \cdot 10^{-7} \) | \(a_{543}= +0.31234462 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{544}= -0.00645109 \pm 1.1 \cdot 10^{-7} \) | \(a_{545}= +2.00828889 \pm 7.8 \cdot 10^{-8} \) | \(a_{546}= -0.03877112 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{547}= -0.71658854 \pm 1.0 \cdot 10^{-7} \) | \(a_{548}= +0.07257095 \pm 1.1 \cdot 10^{-7} \) | \(a_{549}= +0.57012608 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{550}= -1.90459801 \pm 6.4 \cdot 10^{-8} \) | \(a_{551}= -0.26704223 \pm 7.5 \cdot 10^{-8} \) | \(a_{552}= -0.06836360 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{553}= -0.23779725 \pm 6.8 \cdot 10^{-8} \) | \(a_{554}= -1.92333029 \pm 1.2 \cdot 10^{-7} \) | \(a_{555}= -0.20089211 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{556}= +0.02554319 \pm 8.5 \cdot 10^{-8} \) | \(a_{557}= -0.86717041 \pm 7.2 \cdot 10^{-8} \) | \(a_{558}= +1.36091347 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{559}= -0.84330682 \pm 6.0 \cdot 10^{-8} \) | \(a_{560}= +0.24064856 \pm 7.5 \cdot 10^{-8} \) | \(a_{561}= -0.01705181 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{562}= +0.03906433 \pm 1.3 \cdot 10^{-7} \) | \(a_{563}= -1.08290688 \pm 7.7 \cdot 10^{-8} \) | \(a_{564}= -0.00053297 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{565}= -1.03216266 \pm 6.5 \cdot 10^{-8} \) | \(a_{566}= -0.98608410 \pm 8.9 \cdot 10^{-8} \) | \(a_{567}= -0.15335388 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{568}= +0.32381296 \pm 1.3 \cdot 10^{-7} \) | \(a_{569}= +1.10025687 \pm 8.7 \cdot 10^{-8} \) | \(a_{570}= +0.05954001 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{571}= +0.77983888 \pm 9.0 \cdot 10^{-8} \) | \(a_{572}= -0.10648630 \pm 7.4 \cdot 10^{-8} \) | \(a_{573}= +0.09179330 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{574}= +0.15857633 \pm 8.4 \cdot 10^{-8} \) | \(a_{575}= +0.47710597 \pm 6.6 \cdot 10^{-8} \) | \(a_{576}= -1.01350141 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{577}= -0.66185777 \pm 1.0 \cdot 10^{-7} \) | \(a_{578}= +0.96996656 \pm 1.0 \cdot 10^{-7} \) | \(a_{579}= -0.20500744 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{580}= +0.09078474 \pm 9.7 \cdot 10^{-8} \) | \(a_{581}= +0.18942308 \pm 7.4 \cdot 10^{-8} \) | \(a_{582}= -0.18930034 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{583}= -0.15234432 \pm 7.3 \cdot 10^{-8} \) | \(a_{584}= -1.83232067 \pm 8.4 \cdot 10^{-8} \) | \(a_{585}= -1.93891526 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{586}= +0.50555757 \pm 9.9 \cdot 10^{-8} \) | \(a_{587}= +1.10013992 \pm 7.7 \cdot 10^{-8} \) | \(a_{588}= -0.00891255 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{589}= +0.33101057 \pm 9.4 \cdot 10^{-8} \) | \(a_{590}= -0.50098598 \pm 9.7 \cdot 10^{-8} \) | \(a_{591}= +0.12088567 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{592}= -0.71266444 \pm 8.2 \cdot 10^{-8} \) | \(a_{593}= -0.31664755 \pm 1.1 \cdot 10^{-7} \) | \(a_{594}= -0.52456004 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{595}= -0.01586030 \pm 4.8 \cdot 10^{-8} \) | \(a_{596}= -0.02562089 \pm 8.1 \cdot 10^{-8} \) | \(a_{597}= -0.20137685 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{598}= -0.48813461 \pm 3.9 \cdot 10^{-8} \) | \(a_{599}= +0.41194451 \pm 9.2 \cdot 10^{-8} \) | \(a_{600}= -0.22953308 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{601}= +0.89746166 \pm 8.7 \cdot 10^{-8} \) | \(a_{602}= -0.10441441 \pm 7.2 \cdot 10^{-8} \) | \(a_{603}= +0.09362116 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{604}= -0.04331910 \pm 7.0 \cdot 10^{-8} \) | \(a_{605}= +2.08959942 \pm 7.2 \cdot 10^{-8} \) | \(a_{606}= -0.01313911 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{607}= +1.20008027 \pm 7.0 \cdot 10^{-8} \) | \(a_{608}= -0.02375016 \pm 1.0 \cdot 10^{-7} \) | \(a_{609}= -0.03485160 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{610}= +0.86267952 \pm 6.2 \cdot 10^{-8} \) | \(a_{611}= -0.07725004 \pm 6.1 \cdot 10^{-8} \) | \(a_{612}= +0.00312762 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{613}= +0.66196635 \pm 1.0 \cdot 10^{-7} \) | \(a_{614}= +0.95775732 \pm 1.1 \cdot 10^{-7} \) | \(a_{615}= -0.25668875 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{616}= -0.26763908 \pm 9.3 \cdot 10^{-8} \) | \(a_{617}= -0.70347226 \pm 9.1 \cdot 10^{-8} \) | \(a_{618}= +0.28436803 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{619}= +0.50872192 \pm 6.3 \cdot 10^{-8} \) | \(a_{620}= -0.11253167 \pm 7.3 \cdot 10^{-8} \) | \(a_{621}= +0.13140344 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{622}= +1.72354013 \pm 1.0 \cdot 10^{-7} \) | \(a_{623}= +0.17771447 \pm 7.9 \cdot 10^{-8} \) | \(a_{624}= +0.22263788 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{625}= -0.66376231 \pm 8.1 \cdot 10^{-8} \) | \(a_{626}= +0.32889631 \pm 8.0 \cdot 10^{-8} \) | \(a_{627}= -0.06277752 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{628}= +0.04115146 \pm 9.3 \cdot 10^{-8} \) | \(a_{629}= +0.04696921 \pm 5.5 \cdot 10^{-8} \) | \(a_{630}= -0.24006767 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{631}= -0.99804788 \pm 8.5 \cdot 10^{-8} \) | \(a_{632}= +1.44035156 \pm 1.0 \cdot 10^{-7} \) | \(a_{633}= +0.01435101 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{634}= -0.32282058 \pm 8.0 \cdot 10^{-8} \) | \(a_{635}= -0.65839174 \pm 6.6 \cdot 10^{-8} \) | \(a_{636}= -0.00090446 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{637}= -1.29180650 \pm 9.4 \cdot 10^{-8} \) | \(a_{638}= +1.75163038 \pm 7.1 \cdot 10^{-8} \) | \(a_{639}= -0.30624828 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{640}= -1.37774132 \pm 7.9 \cdot 10^{-8} \) | \(a_{641}= +0.14584532 \pm 9.6 \cdot 10^{-8} \) | \(a_{642}= -0.04253925 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{643}= +0.10827661 \pm 9.9 \cdot 10^{-8} \) | \(a_{644}= +0.00330278 \pm 6.4 \cdot 10^{-8} \) | \(a_{645}= +0.16901643 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{646}= -0.01392064 \pm 1.9 \cdot 10^{-7} \) | \(a_{647}= -1.35671187 \pm 7.5 \cdot 10^{-8} \) | \(a_{648}= +0.92887320 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{649}= +0.52822732 \pm 7.6 \cdot 10^{-8} \) | \(a_{650}= -1.63892836 \pm 7.0 \cdot 10^{-8} \) | \(a_{651}= +0.04320009 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{652}= +0.04569564 \pm 1.2 \cdot 10^{-7} \) | \(a_{653}= -0.02147375 \pm 6.1 \cdot 10^{-8} \) | \(a_{654}= +0.23004713 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{655}= +1.49434899 \pm 7.1 \cdot 10^{-8} \) | \(a_{656}= -0.91060295 \pm 7.2 \cdot 10^{-8} \) | \(a_{657}= +1.73292957 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{658}= -0.00956475 \pm 9.6 \cdot 10^{-8} \) | \(a_{659}= -1.40992620 \pm 8.2 \cdot 10^{-8} \) | \(a_{660}= +0.02134210 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{661}= -0.68109706 \pm 8.1 \cdot 10^{-8} \) | \(a_{662}= +0.01582675 \pm 7.9 \cdot 10^{-8} \) | \(a_{663}= -0.01467328 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{664}= -1.14734643 \pm 9.1 \cdot 10^{-8} \) | \(a_{665}= -0.05839088 \pm 1.8 \cdot 10^{-7} \) | \(a_{666}= +0.71094418 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{667}= -0.43878724 \pm 4.7 \cdot 10^{-8} \) | \(a_{668}= +0.03463053 \pm 9.3 \cdot 10^{-8} \) | \(a_{669}= -0.06652139 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{670}= +0.14166174 \pm 1.0 \cdot 10^{-7} \) | \(a_{671}= -0.90958811 \pm 9.2 \cdot 10^{-8} \) | \(a_{672}= -0.00309963 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{673}= +0.47677045 \pm 1.0 \cdot 10^{-7} \) | \(a_{674}= +1.25618810 \pm 1.0 \cdot 10^{-7} \) | \(a_{675}= +0.44119145 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{676}= -0.03981731 \pm 8.8 \cdot 10^{-8} \) | \(a_{677}= +1.13393148 \pm 9.3 \cdot 10^{-8} \) | \(a_{678}= -0.11823302 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{679}= +0.18564683 \pm 7.5 \cdot 10^{-8} \) | \(a_{680}= +0.09606674 \pm 1.3 \cdot 10^{-7} \) | \(a_{681}= -0.06211370 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{682}= -2.17122274 \pm 6.7 \cdot 10^{-8} \) | \(a_{683}= +0.86708326 \pm 9.9 \cdot 10^{-8} \) | \(a_{684}= +0.01151456 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{685}= -2.10815123 \pm 7.4 \cdot 10^{-8} \) | \(a_{686}= -0.32459902 \pm 9.2 \cdot 10^{-8} \) | \(a_{687}= -0.10555293 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{688}= +0.59958554 \pm 7.0 \cdot 10^{-8} \) | \(a_{689}= -0.13109403 \pm 9.4 \cdot 10^{-8} \) | \(a_{690}= +0.09783245 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{691}= +0.17007370 \pm 9.5 \cdot 10^{-8} \) | \(a_{692}= +0.05842152 \pm 1.0 \cdot 10^{-7} \) | \(a_{693}= +0.25312145 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{694}= +0.54281806 \pm 1.1 \cdot 10^{-7} \) | \(a_{695}= -0.74201743 \pm 8.7 \cdot 10^{-8} \) | \(a_{696}= +0.21109815 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{697}= +0.06001464 \pm 4.9 \cdot 10^{-8} \) | \(a_{698}= -1.22418913 \pm 8.5 \cdot 10^{-8} \) | \(a_{699}= -0.23587451 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{700}= +0.01108921 \pm 8.3 \cdot 10^{-8} \) | \(a_{701}= -0.67386381 \pm 8.5 \cdot 10^{-8} \) | \(a_{702}= -0.45138991 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{703}= +0.17292064 \pm 9.0 \cdot 10^{-8} \) | \(a_{704}= +1.61695608 \pm 8.6 \cdot 10^{-8} \) | \(a_{705}= +0.01548253 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{706}= +0.14559382 \pm 8.9 \cdot 10^{-8} \) | \(a_{707}= +0.01288552 \pm 8.6 \cdot 10^{-8} \) | \(a_{708}= +0.00313604 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{709}= +0.26452245 \pm 8.1 \cdot 10^{-8} \) | \(a_{710}= -0.46339595 \pm 9.0 \cdot 10^{-8} \) | \(a_{711}= -1.36222215 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{712}= -1.07642671 \pm 1.0 \cdot 10^{-7} \) | \(a_{713}= +0.54389604 \pm 1.1 \cdot 10^{-7} \) | \(a_{714}= -0.00181678 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{715}= +3.09337587 \pm 7.5 \cdot 10^{-8} \) | \(a_{716}= +0.03506898 \pm 1.0 \cdot 10^{-7} \) | \(a_{717}= +0.30592082 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{718}= -0.99437199 \pm 9.9 \cdot 10^{-8} \) | \(a_{719}= +0.31582188 \pm 8.6 \cdot 10^{-8} \) | \(a_{720}= +1.37855584 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{721}= -0.27887970 \pm 9.8 \cdot 10^{-8} \) | \(a_{722}= -0.05124988 \pm 1.1 \cdot 10^{-7} \) | \(a_{723}= -0.04156678 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{724}= +0.09140099 \pm 8.1 \cdot 10^{-8} \) | \(a_{725}= -1.47324289 \pm 5.0 \cdot 10^{-8} \) | \(a_{726}= +0.23936116 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{727}= +0.48097202 \pm 8.4 \cdot 10^{-8} \) | \(a_{728}= -0.23030649 \pm 8.0 \cdot 10^{-8} \) | \(a_{729}= -0.81676447 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{730}= +2.62216184 \pm 7.0 \cdot 10^{-8} \) | \(a_{731}= -0.03951657 \pm 4.8 \cdot 10^{-8} \) | \(a_{732}= -0.00540015 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{733}= -1.87779579 \pm 8.2 \cdot 10^{-8} \) | \(a_{734}= -1.66794801 \pm 1.1 \cdot 10^{-7} \) | \(a_{735}= +0.25890521 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{736}= -0.03902479 \pm 7.3 \cdot 10^{-8} \) | \(a_{737}= -0.14936466 \pm 7.6 \cdot 10^{-8} \) | \(a_{738}= +0.90840490 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{739}= +0.00263926 \pm 8.6 \cdot 10^{-8} \) | \(a_{740}= -0.05878679 \pm 8.3 \cdot 10^{-8} \) | \(a_{741}= -0.05402077 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{742}= -0.01623147 \pm 1.2 \cdot 10^{-7} \) | \(a_{743}= -1.53079856 \pm 8.2 \cdot 10^{-8} \) | \(a_{744}= -0.26166542 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{745}= +0.74427464 \pm 6.9 \cdot 10^{-8} \) | \(a_{746}= +1.10911045 \pm 9.7 \cdot 10^{-8} \) | \(a_{747}= +1.08511058 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{748}= -0.00498985 \pm 7.0 \cdot 10^{-8} \) | \(a_{749}= +0.04171824 \pm 8.3 \cdot 10^{-8} \) | \(a_{750}= +0.06894686 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{751}= +0.48051433 \pm 9.0 \cdot 10^{-8} \) | \(a_{752}= +0.05492426 \pm 9.8 \cdot 10^{-8} \) | \(a_{753}= -0.09948599 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{754}= +1.50729796 \pm 8.4 \cdot 10^{-8} \) | \(a_{755}= +1.25839889 \pm 6.0 \cdot 10^{-8} \) | \(a_{756}= +0.00305416 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{757}= -1.48888170 \pm 1.0 \cdot 10^{-7} \) | \(a_{758}= -0.28518629 \pm 1.1 \cdot 10^{-7} \) | \(a_{759}= -0.10315213 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{760}= +0.35367690 \pm 2.0 \cdot 10^{-7} \) | \(a_{761}= +1.28959854 \pm 9.0 \cdot 10^{-8} \) | \(a_{762}= -0.07541800 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{763}= -0.22560720 \pm 6.8 \cdot 10^{-8} \) | \(a_{764}= +0.02686135 \pm 1.2 \cdot 10^{-7} \) | \(a_{765}= -0.09085577 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{766}= +1.37081882 \pm 8.0 \cdot 10^{-8} \) | \(a_{767}= +0.45454564 \pm 7.2 \cdot 10^{-8} \) | \(a_{768}= +0.02744946 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{769}= -0.79243586 \pm 8.3 \cdot 10^{-8} \) | \(a_{770}= +0.38300773 \pm 5.7 \cdot 10^{-8} \) | \(a_{771}= +0.04525828 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{772}= -0.05999105 \pm 1.2 \cdot 10^{-7} \) | \(a_{773}= -0.81968429 \pm 6.2 \cdot 10^{-8} \) | \(a_{774}= -0.59813823 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{775}= +1.82614923 \pm 5.7 \cdot 10^{-8} \) | \(a_{776}= -1.12447344 \pm 8.3 \cdot 10^{-8} \) | \(a_{777}= +0.02256782 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{778}= -0.42219292 \pm 1.1 \cdot 10^{-7} \) | \(a_{779}= +0.22094837 \pm 7.5 \cdot 10^{-8} \) | \(a_{780}= +0.01836512 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{781}= +0.48859332 \pm 8.8 \cdot 10^{-8} \) | \(a_{782}= -0.02287353 \pm 9.8 \cdot 10^{-8} \) | \(a_{783}= -0.40575720 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{784}= +0.91846582 \pm 1.0 \cdot 10^{-7} \) | \(a_{785}= -1.19543008 \pm 7.0 \cdot 10^{-8} \) | \(a_{786}= +0.17117592 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{787}= +1.54519744 \pm 7.9 \cdot 10^{-8} \) | \(a_{788}= +0.03537461 \pm 6.4 \cdot 10^{-8} \) | \(a_{789}= -0.18970612 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{790}= -2.06123030 \pm 1.0 \cdot 10^{-7} \) | \(a_{791}= +0.11595111 \pm 9.3 \cdot 10^{-8} \) | \(a_{792}= -1.53317112 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{793}= -0.78271097 \pm 8.5 \cdot 10^{-8} \) | \(a_{794}= +0.01655547 \pm 9.9 \cdot 10^{-8} \) | \(a_{795}= +0.02627400 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{796}= -0.05892864 \pm 9.1 \cdot 10^{-8} \) | \(a_{797}= +0.30495293 \pm 8.9 \cdot 10^{-8} \) | \(a_{798}= -0.00668861 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{799}= -0.00361986 \pm 8.7 \cdot 10^{-8} \) | \(a_{800}= -0.13102704 \pm 5.1 \cdot 10^{-8} \) | \(a_{801}= +1.01803779 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{802}= -0.00775642 \pm 7.7 \cdot 10^{-8} \) | \(a_{803}= -2.76474307 \pm 7.7 \cdot 10^{-8} \) | \(a_{804}= -0.00088677 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{805}= -0.09594427 \pm 5.5 \cdot 10^{-8} \) | \(a_{806}= -1.86836199 \pm 7.1 \cdot 10^{-8} \) | \(a_{807}= +0.13211451 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{808}= -0.07804835 \pm 1.4 \cdot 10^{-7} \) | \(a_{809}= +1.54938257 \pm 9.7 \cdot 10^{-8} \) | \(a_{810}= -1.32927379 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{811}= +0.06409461 \pm 9.8 \cdot 10^{-8} \) | \(a_{812}= -0.01019858 \pm 6.3 \cdot 10^{-8} \) | \(a_{813}= +0.20525014 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{814}= -1.13425151 \pm 6.9 \cdot 10^{-8} \) | \(a_{815}= -1.32743633 \pm 7.8 \cdot 10^{-8} \) | \(a_{816}= +0.01043260 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{817}= -0.14548322 \pm 7.8 \cdot 10^{-8} \) | \(a_{818}= -0.41331243 \pm 9.8 \cdot 10^{-8} \) | \(a_{819}= +0.21781390 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{820}= -0.07511449 \pm 7.8 \cdot 10^{-8} \) | \(a_{821}= -0.33596539 \pm 9.0 \cdot 10^{-8} \) | \(a_{822}= -0.24148625 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{823}= +1.89193386 \pm 7.5 \cdot 10^{-8} \) | \(a_{824}= +1.68919031 \pm 1.5 \cdot 10^{-7} \) | \(a_{825}= -0.34633675 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{826}= +0.05627977 \pm 1.0 \cdot 10^{-7} \) | \(a_{827}= -0.51345631 \pm 8.7 \cdot 10^{-8} \) | \(a_{828}= +0.01892000 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{829}= -0.12707357 \pm 9.0 \cdot 10^{-8} \) | \(a_{830}= +1.64192221 \pm 8.7 \cdot 10^{-8} \) | \(a_{831}= -0.34974307 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{832}= +1.39140919 \pm 9.7 \cdot 10^{-8} \) | \(a_{833}= -0.06053285 \pm 7.5 \cdot 10^{-8} \) | \(a_{834}= -0.08499722 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{835}= -1.00600035 \pm 8.3 \cdot 10^{-8} \) | \(a_{836}= -0.01837050 \pm 1.9 \cdot 10^{-7} \) | \(a_{837}= +0.50295386 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{838}= -0.35354503 \pm 9.3 \cdot 10^{-8} \) | \(a_{839}= +0.92580368 \pm 8.9 \cdot 10^{-8} \) | \(a_{840}= +0.04615827 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{841}= +0.35491951 \pm 6.8 \cdot 10^{-8} \) | \(a_{842}= -0.30765973 \pm 1.0 \cdot 10^{-7} \) | \(a_{843}= +0.00710355 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{844}= +0.00419952 \pm 7.3 \cdot 10^{-8} \) | \(a_{845}= +1.15667382 \pm 8.0 \cdot 10^{-8} \) | \(a_{846}= -0.05479168 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{847}= -0.23474147 \pm 8.5 \cdot 10^{-8} \) | \(a_{848}= +0.09320698 \pm 9.2 \cdot 10^{-8} \) | \(a_{849}= -0.17931194 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{850}= -0.07679866 \pm 7.3 \cdot 10^{-8} \) | \(a_{851}= +0.28413248 \pm 5.2 \cdot 10^{-8} \) | \(a_{852}= +0.00290074 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{853}= -0.23186260 \pm 9.7 \cdot 10^{-8} \) | \(a_{854}= -0.09691171 \pm 6.3 \cdot 10^{-8} \) | \(a_{855}= -0.33449230 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{856}= -0.25268978 \pm 1.1 \cdot 10^{-7} \) | \(a_{857}= +1.23150262 \pm 1.1 \cdot 10^{-7} \) | \(a_{858}= +0.35434257 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{859}= +0.90888854 \pm 8.7 \cdot 10^{-8} \) | \(a_{860}= +0.04945905 \pm 6.3 \cdot 10^{-8} \) | \(a_{861}= +0.02883591 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{862}= -0.71172808 \pm 1.0 \cdot 10^{-7} \) | \(a_{863}= -0.01061220 \pm 9.1 \cdot 10^{-8} \) | \(a_{864}= -0.03608717 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{865}= -1.69711717 \pm 7.6 \cdot 10^{-8} \) | \(a_{866}= -0.09775185 \pm 8.4 \cdot 10^{-8} \) | \(a_{867}= +0.17638108 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{868}= +0.01264159 \pm 4.9 \cdot 10^{-8} \) | \(a_{869}= +2.17331063 \pm 6.8 \cdot 10^{-8} \) | \(a_{870}= -0.30209423 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{871}= -0.12853000 \pm 7.5 \cdot 10^{-8} \) | \(a_{872}= +1.36651572 \pm 7.6 \cdot 10^{-8} \) | \(a_{873}= +1.06347830 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{874}= -0.08421063 \pm 2.0 \cdot 10^{-7} \) | \(a_{875}= -0.06761618 \pm 7.5 \cdot 10^{-8} \) | \(a_{876}= -0.01641405 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{877}= +1.07348428 \pm 9.4 \cdot 10^{-8} \) | \(a_{878}= +1.46716139 \pm 9.8 \cdot 10^{-8} \) | \(a_{879}= +0.09193182 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{880}= -2.19936965 \pm 8.2 \cdot 10^{-8} \) | \(a_{881}= -0.35451248 \pm 7.8 \cdot 10^{-8} \) | \(a_{882}= -0.91624878 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{883}= -1.05611776 \pm 9.2 \cdot 10^{-8} \) | \(a_{884}= -0.00429382 \pm 1.1 \cdot 10^{-7} \) | \(a_{885}= -0.09110051 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{886}= +1.83011825 \pm 1.0 \cdot 10^{-7} \) | \(a_{887}= +1.04376998 \pm 9.4 \cdot 10^{-8} \) | \(a_{888}= -0.13669459 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{889}= +0.07396243 \pm 1.1 \cdot 10^{-7} \) | \(a_{890}= +1.54043181 \pm 6.9 \cdot 10^{-8} \) | \(a_{891}= +1.40155365 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{892}= -0.01946607 \pm 1.1 \cdot 10^{-7} \) | \(a_{893}= -0.01332680 \pm 9.3 \cdot 10^{-8} \) | \(a_{894}= +0.08525578 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{895}= -1.01873699 \pm 7.2 \cdot 10^{-8} \) | \(a_{896}= +0.15477273 \pm 1.0 \cdot 10^{-7} \) | \(a_{897}= -0.08876359 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{898}= -1.40211044 \pm 8.7 \cdot 10^{-8} \) | \(a_{899}= -1.67948221 \pm 4.9 \cdot 10^{-8} \) | \(a_{900}= +0.06352455 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{901}= -0.00614294 \pm 7.4 \cdot 10^{-8} \) | \(a_{902}= -1.44928345 \pm 6.7 \cdot 10^{-8} \) | \(a_{903}= -0.01898697 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{904}= -0.70232251 \pm 1.2 \cdot 10^{-7} \) | \(a_{905}= -2.65515483 \pm 1.0 \cdot 10^{-7} \) | \(a_{906}= +0.14414811 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{907}= -0.48671273 \pm 1.0 \cdot 10^{-7} \) | \(a_{908}= -0.01817625 \pm 8.4 \cdot 10^{-8} \) | \(a_{909}= +0.07381476 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{910}= +0.32958253 \pm 4.7 \cdot 10^{-8} \) | \(a_{911}= +0.92669532 \pm 7.8 \cdot 10^{-8} \) | \(a_{912}= +0.03840841 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{913}= -1.73120247 \pm 7.9 \cdot 10^{-8} \) | \(a_{914}= -1.34584274 \pm 1.1 \cdot 10^{-7} \) | \(a_{915}= +0.15687175 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{916}= -0.03088781 \pm 1.2 \cdot 10^{-7} \) | \(a_{917}= -0.16787221 \pm 1.1 \cdot 10^{-7} \) | \(a_{918}= -0.02115171 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{919}= -1.02818381 \pm 9.8 \cdot 10^{-8} \) | \(a_{920}= +0.58113995 \pm 1.2 \cdot 10^{-7} \) | \(a_{921}= +0.17416093 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{922}= +1.42815476 \pm 9.1 \cdot 10^{-8} \) | \(a_{923}= +0.42044013 \pm 6.8 \cdot 10^{-8} \) | \(a_{924}= -0.00239753 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{925}= +0.95398435 \pm 6.9 \cdot 10^{-8} \) | \(a_{926}= +0.92940690 \pm 7.8 \cdot 10^{-8} \) | \(a_{927}= -1.59756307 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{928}= +0.12050361 \pm 1.0 \cdot 10^{-7} \) | \(a_{929}= +0.62723513 \pm 7.3 \cdot 10^{-8} \) | \(a_{930}= +0.37445906 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{931}= -0.22285622 \pm 1.0 \cdot 10^{-7} \) | \(a_{932}= -0.06902364 \pm 9.9 \cdot 10^{-8} \) | \(a_{933}= +0.31341274 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{934}= +1.16326599 \pm 7.7 \cdot 10^{-8} \) | \(a_{935}= +0.14495272 \pm 4.8 \cdot 10^{-8} \) | \(a_{936}= -1.31931127 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{937}= +0.43599642 \pm 8.7 \cdot 10^{-8} \) | \(a_{938}= -0.01591400 \pm 9.9 \cdot 10^{-8} \) | \(a_{939}= +0.05980731 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{940}= +0.00453063 \pm 7.7 \cdot 10^{-8} \) | \(a_{941}= +0.15153038 \pm 8.9 \cdot 10^{-8} \) | \(a_{942}= -0.13693511 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{943}= +0.36304867 \pm 4.9 \cdot 10^{-8} \) | \(a_{944}= -0.32317893 \pm 9.3 \cdot 10^{-8} \) | \(a_{945}= -0.08872200 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{946}= +0.95427913 \pm 7.4 \cdot 10^{-8} \) | \(a_{947}= +0.30172286 \pm 9.3 \cdot 10^{-8} \) | \(a_{948}= +0.01290277 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{949}= -2.37909301 \pm 8.8 \cdot 10^{-8} \) | \(a_{950}= -0.28274001 \pm 1.7 \cdot 10^{-7} \) | \(a_{951}= -0.05870248 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{952}= -0.01079195 \pm 8.3 \cdot 10^{-8} \) | \(a_{953}= -0.86800810 \pm 8.8 \cdot 10^{-8} \) | \(a_{954}= -0.09298199 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{955}= -0.78030931 \pm 9.4 \cdot 10^{-8} \) | \(a_{956}= +0.08952120 \pm 1.0 \cdot 10^{-7} \) | \(a_{957}= +0.31852074 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{958}= -0.65149841 \pm 8.4 \cdot 10^{-8} \) | \(a_{959}= +0.23682554 \pm 9.4 \cdot 10^{-8} \) | \(a_{960}= -0.27886768 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{961}= +1.08179192 \pm 1.0 \cdot 10^{-7} \) | \(a_{962}= -0.97603639 \pm 8.3 \cdot 10^{-8} \) | \(a_{963}= +0.23898306 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{964}= -0.01216363 \pm 1.0 \cdot 10^{-7} \) | \(a_{965}= +1.74271125 \pm 8.1 \cdot 10^{-8} \) | \(a_{966}= -0.01099030 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{967}= +0.96699393 \pm 8.1 \cdot 10^{-8} \) | \(a_{968}= +1.42184248 \pm 8.2 \cdot 10^{-8} \) | \(a_{969}= -0.00253136 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{970}= +1.60918959 \pm 7.7 \cdot 10^{-8} \) | \(a_{971}= +0.17941642 \pm 8.3 \cdot 10^{-8} \) | \(a_{972}= +0.02638300 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{973}= +0.08335677 \pm 6.5 \cdot 10^{-8} \) | \(a_{974}= +1.07709565 \pm 8.7 \cdot 10^{-8} \) | \(a_{975}= -0.29802673 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{976}= +0.55650229 \pm 7.9 \cdot 10^{-8} \) | \(a_{977}= -1.76532042 \pm 8.1 \cdot 10^{-8} \) | \(a_{978}= -0.15205627 \pm 8.9 \cdot 10^{-8} \) |
| \(a_{979}= -1.62419348 \pm 8.1 \cdot 10^{-8} \) | \(a_{980}= +0.07576309 \pm 7.4 \cdot 10^{-8} \) | \(a_{981}= -1.29239141 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{982}= +0.35033538 \pm 1.0 \cdot 10^{-7} \) | \(a_{983}= -1.37195160 \pm 7.7 \cdot 10^{-8} \) | \(a_{984}= -0.17466073 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{985}= -1.02761550 \pm 5.6 \cdot 10^{-8} \) | \(a_{986}= +0.07063058 \pm 9.2 \cdot 10^{-8} \) | \(a_{987}= -0.00173928 \pm 9.8 \cdot 10^{-8} \) |
| \(a_{988}= -0.01580803 \pm 1.9 \cdot 10^{-7} \) | \(a_{989}= -0.23904901 \pm 4.4 \cdot 10^{-8} \) | \(a_{990}= +2.19406071 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{991}= -0.89343573 \pm 8.7 \cdot 10^{-8} \) | \(a_{992}= -0.14936951 \pm 8.0 \cdot 10^{-8} \) | \(a_{993}= +0.00287797 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{994}= +0.05205698 \pm 8.2 \cdot 10^{-8} \) | \(a_{995}= +1.71184867 \pm 7.7 \cdot 10^{-8} \) | \(a_{996}= -0.01027801 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{997}= +1.37931542 \pm 1.0 \cdot 10^{-7} \) | \(a_{998}= +0.58077330 \pm 1.2 \cdot 10^{-7} \) | \(a_{999}= +0.26274420 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{1000}= +0.40955505 \pm 9.8 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000