Maass form invariants
| Level: | \( 19 \) |
| Weight: | \( 0 \) |
| Character: | 19.1 |
| Symmetry: | odd |
| Fricke sign: | $-1$ |
| Spectral parameter: | \(3.77688712054364208404997087332 \pm 3 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= -1.78603007 \pm 5.3 \cdot 10^{-8} \) | \(a_{3}= -1.34553914 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{4}= +2.18990339 \pm 5.3 \cdot 10^{-8} \) | \(a_{5}= -1.56215608 \pm 4.3 \cdot 10^{-8} \) | \(a_{6}= +2.40317336 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{7}= -0.69574874 \pm 5.1 \cdot 10^{-8} \) | \(a_{8}= -2.12520324 \pm 6.1 \cdot 10^{-8} \) | \(a_{9}= +0.81047558 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{10}= +2.79005772 \pm 4.8 \cdot 10^{-8} \) | \(a_{11}= -0.40610348 \pm 4.6 \cdot 10^{-8} \) | \(a_{12}= -2.94660073 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{13}= -0.03189416 \pm 4.3 \cdot 10^{-8} \) | \(a_{14}= +1.24262817 \pm 5.6 \cdot 10^{-8} \) | \(a_{15}= +2.10194215 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{16}= +1.60577348 \pm 5.8 \cdot 10^{-8} \) | \(a_{17}= -0.69306348 \pm 4.3 \cdot 10^{-8} \) | \(a_{18}= -1.44753376 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{19}= +0.22941573 \pm 1.0 \cdot 10^{-8} \) | \(a_{20}= -3.42097089 \pm 5.5 \cdot 10^{-8} \) | \(a_{21}= +0.93615716 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{22}= +0.72531302 \pm 4.6 \cdot 10^{-8} \) | \(a_{23}= -1.62803505 \pm 4.8 \cdot 10^{-8} \) | \(a_{24}= +2.85954414 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{25}= +1.44033161 \pm 3.6 \cdot 10^{-8} \) | \(a_{26}= +0.05696393 \pm 4.9 \cdot 10^{-8} \) | \(a_{27}= +0.25501252 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{28}= -1.52362253 \pm 4.8 \cdot 10^{-8} \) | \(a_{29}= +0.62556522 \pm 3.4 \cdot 10^{-8} \) | \(a_{30}= -3.75413187 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{31}= +0.41611287 \pm 4.5 \cdot 10^{-8} \) | \(a_{32}= -0.74275648 \pm 5.2 \cdot 10^{-8} \) | \(a_{33}= +0.54642812 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{34}= +1.23783221 \pm 5.4 \cdot 10^{-8} \) | \(a_{35}= +1.08686813 \pm 3.7 \cdot 10^{-8} \) | \(a_{36}= +1.77486323 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{37}= -0.90304818 \pm 4.2 \cdot 10^{-8} \) | \(a_{38}= -0.40974340 \pm 6.4 \cdot 10^{-8} \) | \(a_{39}= +0.04291484 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{40}= +3.31989915 \pm 6.4 \cdot 10^{-8} \) | \(a_{41}= -0.90116425 \pm 3.4 \cdot 10^{-8} \) | \(a_{42}= -1.67200484 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{43}= -0.21990856 \pm 3.6 \cdot 10^{-8} \) | \(a_{44}= -0.88932738 \pm 4.0 \cdot 10^{-8} \) | \(a_{45}= -1.26608936 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{46}= +2.90771954 \pm 4.9 \cdot 10^{-8} \) | \(a_{47}= +0.44462400 \pm 4.4 \cdot 10^{-8} \) | \(a_{48}= -2.16063107 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{49}= -0.51593369 \pm 5.0 \cdot 10^{-8} \) | \(a_{50}= -2.57247556 \pm 4.5 \cdot 10^{-8} \) | \(a_{51}= +0.93254404 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{52}= -0.06984513 \pm 5.2 \cdot 10^{-8} \) | \(a_{53}= -0.79955463 \pm 4.6 \cdot 10^{-8} \) | \(a_{54}= -0.45546003 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{55}= +0.63439701 \pm 4.2 \cdot 10^{-8} \) | \(a_{56}= +1.47860748 \pm 5.2 \cdot 10^{-8} \) | \(a_{57}= -0.30868785 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{58}= -1.11727829 \pm 4.4 \cdot 10^{-8} \) | \(a_{59}= +1.59324929 \pm 4.4 \cdot 10^{-8} \) | \(a_{60}= +4.60305024 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{61}= -0.23161627 \pm 4.8 \cdot 10^{-8} \) | \(a_{62}= -0.74319010 \pm 4.1 \cdot 10^{-8} \) | \(a_{63}= -0.56388737 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{64}= -0.27918808 \pm 5.1 \cdot 10^{-8} \) | \(a_{65}= +0.04982366 \pm 3.8 \cdot 10^{-8} \) | \(a_{66}= -0.97593705 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{67}= +1.75934415 \pm 4.2 \cdot 10^{-8} \) | \(a_{68}= -1.51774206 \pm 5.6 \cdot 10^{-8} \) | \(a_{69}= +2.19058488 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{70}= -1.94117915 \pm 3.5 \cdot 10^{-8} \) | \(a_{71}= +0.44484195 \pm 4.7 \cdot 10^{-8} \) | \(a_{72}= -1.72242533 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{73}= -0.26583171 \pm 4.8 \cdot 10^{-8} \) | \(a_{74}= +1.61287120 \pm 4.5 \cdot 10^{-8} \) | \(a_{75}= -1.93802256 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{76}= +0.50239829 \pm 6.4 \cdot 10^{-8} \) | \(a_{77}= +0.28254598 \pm 4.8 \cdot 10^{-8} \) | \(a_{78}= -0.07664720 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{79}= -1.79747360 \pm 3.8 \cdot 10^{-8} \) | \(a_{80}= -2.50846880 \pm 5.7 \cdot 10^{-8} \) | \(a_{81}= -1.15360491 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{82}= +1.60950644 \pm 4.0 \cdot 10^{-8} \) | \(a_{83}= +1.29766933 \pm 4.4 \cdot 10^{-8} \) | \(a_{84}= +2.05009375 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{85}= +1.08267332 \pm 3.3 \cdot 10^{-8} \) | \(a_{86}= +0.39276330 \pm 3.5 \cdot 10^{-8} \) | \(a_{87}= -0.84172249 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{88}= +0.86305242 \pm 5.2 \cdot 10^{-8} \) | \(a_{89}= -0.04476606 \pm 4.1 \cdot 10^{-8} \) | \(a_{90}= +2.26127366 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{91}= +0.02219032 \pm 5.2 \cdot 10^{-8} \) | \(a_{92}= -3.56523948 \pm 4.4 \cdot 10^{-8} \) | \(a_{93}= -0.55989616 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{94}= -0.79411184 \pm 5.3 \cdot 10^{-8} \) | \(a_{95}= -0.35838318 \pm 5.3 \cdot 10^{-8} \) | \(a_{96}= +0.99940791 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{97}= -1.13622070 \pm 3.6 \cdot 10^{-8} \) | \(a_{98}= +0.92147308 \pm 5.4 \cdot 10^{-8} \) | \(a_{99}= -0.32913695 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{100}= +3.15418708 \pm 4.3 \cdot 10^{-8} \) | \(a_{101}= +0.24084155 \pm 4.5 \cdot 10^{-8} \) | \(a_{102}= -1.66555169 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{103}= +1.48007850 \pm 5.5 \cdot 10^{-8} \) | \(a_{104}= +0.06778157 \pm 5.3 \cdot 10^{-8} \) | \(a_{105}= -1.46242360 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{106}= +1.42802860 \pm 5.0 \cdot 10^{-8} \) | \(a_{107}= -1.38322001 \pm 4.4 \cdot 10^{-8} \) | \(a_{108}= +0.55845279 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{109}= -0.60514401 \pm 3.9 \cdot 10^{-8} \) | \(a_{110}= -1.13305214 \pm 4.0 \cdot 10^{-8} \) | \(a_{111}= +1.21508667 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{112}= -1.11721488 \pm 5.2 \cdot 10^{-8} \) | \(a_{113}= +0.62923007 \pm 4.8 \cdot 10^{-8} \) | \(a_{114}= +0.55132578 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{115}= +2.54324485 \pm 4.8 \cdot 10^{-8} \) | \(a_{116}= +1.36992740 \pm 4.8 \cdot 10^{-8} \) | \(a_{117}= -0.02584944 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{118}= -2.84559113 \pm 5.5 \cdot 10^{-8} \) | \(a_{119}= +0.48219804 \pm 4.3 \cdot 10^{-8} \) | \(a_{120}= -4.46705425 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{121}= -0.83507997 \pm 4.0 \cdot 10^{-8} \) | \(a_{122}= +0.41367362 \pm 4.1 \cdot 10^{-8} \) | \(a_{123}= +1.21255177 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{124}= +0.91124700 \pm 3.6 \cdot 10^{-8} \) | \(a_{125}= -0.68786670 \pm 3.9 \cdot 10^{-8} \) | \(a_{126}= +1.00711979 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{127}= -0.70051707 \pm 4.5 \cdot 10^{-8} \) | \(a_{128}= +1.24139478 \pm 5.2 \cdot 10^{-8} \) | \(a_{129}= +0.29589557 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{130}= -0.08898655 \pm 3.8 \cdot 10^{-8} \) | \(a_{131}= +0.50670821 \pm 4.7 \cdot 10^{-8} \) | \(a_{132}= +1.19662480 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{133}= -0.15961571 \pm 6.1 \cdot 10^{-8} \) | \(a_{134}= -3.14224154 \pm 5.1 \cdot 10^{-8} \) | \(a_{135}= -0.39836936 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{136}= +1.47290074 \pm 6.8 \cdot 10^{-8} \) | \(a_{137}= +0.70775170 \pm 4.6 \cdot 10^{-8} \) | \(a_{138}= -3.91245046 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{139}= +0.14229910 \pm 4.5 \cdot 10^{-8} \) | \(a_{140}= +2.38013620 \pm 4.0 \cdot 10^{-8} \) | \(a_{141}= -0.59825900 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{142}= -0.79450109 \pm 5.6 \cdot 10^{-8} \) | \(a_{143}= +0.01295233 \pm 3.7 \cdot 10^{-8} \) | \(a_{144}= +1.30144020 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{145}= -0.97723051 \pm 3.5 \cdot 10^{-8} \) | \(a_{146}= +0.47478342 \pm 4.4 \cdot 10^{-8} \) | \(a_{147}= +0.69420897 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{148}= -1.97758827 \pm 3.9 \cdot 10^{-8} \) | \(a_{149}= +0.83493016 \pm 3.6 \cdot 10^{-8} \) | \(a_{150}= +3.46136656 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{151}= +0.52741405 \pm 3.2 \cdot 10^{-8} \) | \(a_{152}= -0.48755506 \pm 7.2 \cdot 10^{-8} \) | \(a_{153}= -0.56171103 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{154}= -0.50463562 \pm 4.5 \cdot 10^{-8} \) | \(a_{155}= -0.65003326 \pm 4.7 \cdot 10^{-8} \) | \(a_{156}= +0.09397936 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{157}= -0.14063844 \pm 4.5 \cdot 10^{-8} \) | \(a_{158}= +3.21034189 \pm 5.4 \cdot 10^{-8} \) | \(a_{159}= +1.07583204 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{160}= +1.16030154 \pm 5.1 \cdot 10^{-8} \) | \(a_{161}= +1.13270334 \pm 3.4 \cdot 10^{-8} \) | \(a_{162}= +2.06037306 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{163}= +0.12381781 \pm 4.5 \cdot 10^{-8} \) | \(a_{164}= -1.97346265 \pm 4.5 \cdot 10^{-8} \) | \(a_{165}= -0.85360601 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{166}= -2.31767644 \pm 4.8 \cdot 10^{-8} \) | \(a_{167}= -0.85966919 \pm 5.3 \cdot 10^{-8} \) | \(a_{168}= -1.98952424 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{169}= -0.99898276 \pm 4.4 \cdot 10^{-8} \) | \(a_{170}= -1.93368711 \pm 4.8 \cdot 10^{-8} \) | \(a_{171}= +0.18593585 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{172}= -0.48157850 \pm 3.9 \cdot 10^{-8} \) | \(a_{173}= +0.87901572 \pm 5.0 \cdot 10^{-8} \) | \(a_{174}= +1.50334167 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{175}= -1.00210890 \pm 4.2 \cdot 10^{-8} \) | \(a_{176}= -0.65211019 \pm 4.6 \cdot 10^{-8} \) | \(a_{177}= -2.14377928 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{178}= +0.07995353 \pm 4.8 \cdot 10^{-8} \) | \(a_{179}= -1.58571575 \pm 4.6 \cdot 10^{-8} \) | \(a_{180}= -2.77261338 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{181}= +0.37687655 \pm 4.8 \cdot 10^{-8} \) | \(a_{182}= -0.03963258 \pm 5.4 \cdot 10^{-8} \) | \(a_{183}= +0.31164876 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{184}= +3.45990535 \pm 5.6 \cdot 10^{-8} \) | \(a_{185}= +1.41070220 \pm 3.5 \cdot 10^{-8} \) | \(a_{186}= +0.99999137 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{187}= +0.28145549 \pm 3.9 \cdot 10^{-8} \) | \(a_{188}= +0.97368362 \pm 5.3 \cdot 10^{-8} \) | \(a_{189}= -0.17742464 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{190}= +0.64008314 \pm 1.0 \cdot 10^{-7} \) | \(a_{191}= +1.73815404 \pm 5.0 \cdot 10^{-8} \) | \(a_{192}= +0.37565849 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{193}= +1.70640791 \pm 5.0 \cdot 10^{-8} \) | \(a_{194}= +2.02932433 \pm 4.6 \cdot 10^{-8} \) | \(a_{195}= -0.06703968 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{196}= -1.12984493 \pm 4.4 \cdot 10^{-8} \) | \(a_{197}= -0.77081711 \pm 3.9 \cdot 10^{-8} \) | \(a_{198}= +0.58784849 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{199}= +0.61735399 \pm 3.9 \cdot 10^{-8} \) | \(a_{200}= -3.06099740 \pm 4.5 \cdot 10^{-8} \) | \(a_{201}= -2.36726641 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{202}= -0.43015025 \pm 5.9 \cdot 10^{-8} \) | \(a_{203}= -0.43523621 \pm 3.4 \cdot 10^{-8} \) | \(a_{204}= +2.04218135 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{205}= +1.40775921 \pm 3.4 \cdot 10^{-8} \) | \(a_{206}= -2.64346470 \pm 6.9 \cdot 10^{-8} \) | \(a_{207}= -1.31948265 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{208}= -0.05121480 \pm 5.9 \cdot 10^{-8} \) | \(a_{209}= -0.09316653 \pm 5.6 \cdot 10^{-8} \) | \(a_{210}= +2.61193253 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{211}= +0.60452833 \pm 3.4 \cdot 10^{-8} \) | \(a_{212}= -1.75094739 \pm 4.0 \cdot 10^{-8} \) | \(a_{213}= -0.59855225 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{214}= +2.47047252 \pm 5.3 \cdot 10^{-8} \) | \(a_{215}= +0.34353149 \pm 3.1 \cdot 10^{-8} \) | \(a_{216}= -0.54195344 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{217}= -0.28951001 \pm 2.8 \cdot 10^{-8} \) | \(a_{218}= +1.08080540 \pm 3.5 \cdot 10^{-8} \) | \(a_{219}= +0.35768697 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{220}= +1.38926817 \pm 3.4 \cdot 10^{-8} \) | \(a_{221}= +0.02210468 \pm 3.9 \cdot 10^{-8} \) | \(a_{222}= -2.17018133 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{223}= -0.66151254 \pm 4.1 \cdot 10^{-8} \) | \(a_{224}= +0.51677188 \pm 4.1 \cdot 10^{-8} \) | \(a_{225}= +1.16735360 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{226}= -1.12382382 \pm 6.0 \cdot 10^{-8} \) | \(a_{227}= +1.28830417 \pm 3.5 \cdot 10^{-8} \) | \(a_{228}= -0.67599657 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{229}= -1.42537762 \pm 4.3 \cdot 10^{-8} \) | \(a_{230}= -4.54231176 \pm 5.4 \cdot 10^{-8} \) | \(a_{231}= -0.38017668 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{232}= -1.32945323 \pm 5.9 \cdot 10^{-8} \) | \(a_{233}= -0.22291861 \pm 5.0 \cdot 10^{-8} \) | \(a_{234}= +0.04616787 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{235}= -0.69457209 \pm 3.4 \cdot 10^{-8} \) | \(a_{236}= +3.48906202 \pm 5.4 \cdot 10^{-8} \) | \(a_{237}= +2.41857109 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{238}= -0.86122020 \pm 4.8 \cdot 10^{-8} \) | \(a_{239}= -0.85414892 \pm 4.7 \cdot 10^{-8} \) | \(a_{240}= +3.37524296 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{241}= +0.39360559 \pm 4.4 \cdot 10^{-8} \) | \(a_{242}= +1.49147793 \pm 4.1 \cdot 10^{-8} \) | \(a_{243}= +1.29720804 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{244}= -0.50721726 \pm 4.0 \cdot 10^{-8} \) | \(a_{245}= +0.80596895 \pm 3.7 \cdot 10^{-8} \) | \(a_{246}= -2.16565392 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{247}= -0.00731702 \pm 5.4 \cdot 10^{-8} \) | \(a_{248}= -0.88432443 \pm 4.8 \cdot 10^{-8} \) | \(a_{249}= -1.74606488 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{250}= +1.22855061 \pm 4.0 \cdot 10^{-8} \) | \(a_{251}= -1.03974222 \pm 5.0 \cdot 10^{-8} \) | \(a_{252}= -1.23485886 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{253}= +0.66115069 \pm 4.4 \cdot 10^{-8} \) | \(a_{254}= +1.25114455 \pm 4.7 \cdot 10^{-8} \) | \(a_{255}= -1.45677933 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{256}= -1.93798032 \pm 4.9 \cdot 10^{-8} \) | \(a_{257}= +0.16068395 \pm 3.3 \cdot 10^{-8} \) | \(a_{258}= -0.52847839 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{259}= +0.62829463 \pm 5.8 \cdot 10^{-8} \) | \(a_{260}= +0.10910900 \pm 4.5 \cdot 10^{-8} \) | \(a_{261}= +0.50700534 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{262}= -0.90499609 \pm 5.3 \cdot 10^{-8} \) | \(a_{263}= -0.03538956 \pm 5.2 \cdot 10^{-8} \) | \(a_{264}= -1.16127081 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{265}= +1.24902912 \pm 3.6 \cdot 10^{-8} \) | \(a_{266}= +0.28507845 \pm 1.1 \cdot 10^{-7} \) | \(a_{267}= +0.06023448 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{268}= +3.85279372 \pm 5.2 \cdot 10^{-8} \) | \(a_{269}= -1.11510487 \pm 5.1 \cdot 10^{-8} \) | \(a_{270}= +0.71149966 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{271}= +0.12835658 \pm 5.0 \cdot 10^{-8} \) | \(a_{272}= -1.11290295 \pm 7.4 \cdot 10^{-8} \) | \(a_{273}= -0.02985795 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{274}= -1.26406581 \pm 5.8 \cdot 10^{-8} \) | \(a_{275}= -0.58492367 \pm 3.1 \cdot 10^{-8} \) | \(a_{276}= +4.79716927 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{277}= +0.02452773 \pm 5.4 \cdot 10^{-8} \) | \(a_{278}= -0.25415047 \pm 4.2 \cdot 10^{-8} \) | \(a_{279}= +0.33724932 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{280}= -2.30981566 \pm 4.4 \cdot 10^{-8} \) | \(a_{281}= -1.15230223 \pm 5.5 \cdot 10^{-8} \) | \(a_{282}= +1.06850856 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{283}= +0.20820787 \pm 4.7 \cdot 10^{-8} \) | \(a_{284}= +0.97416089 \pm 5.9 \cdot 10^{-8} \) | \(a_{285}= +0.48221860 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{286}= -0.02313325 \pm 3.7 \cdot 10^{-8} \) | \(a_{287}= +0.62698389 \pm 3.7 \cdot 10^{-8} \) | \(a_{288}= -0.60198599 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{289}= -0.51966302 \pm 4.5 \cdot 10^{-8} \) | \(a_{290}= +1.74536307 \pm 4.6 \cdot 10^{-8} \) | \(a_{291}= +1.52882942 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{292}= -0.58214576 \pm 2.9 \cdot 10^{-8} \) | \(a_{293}= +0.90985958 \pm 4.9 \cdot 10^{-8} \) | \(a_{294}= -1.23987810 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{295}= -2.48890406 \pm 3.8 \cdot 10^{-8} \) | \(a_{296}= +1.91916091 \pm 4.7 \cdot 10^{-8} \) | \(a_{297}= -0.10356147 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{298}= -1.49121038 \pm 3.9 \cdot 10^{-8} \) | \(a_{299}= +0.05192481 \pm 2.4 \cdot 10^{-8} \) | \(a_{300}= -4.24408218 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{301}= +0.15300110 \pm 4.3 \cdot 10^{-8} \) | \(a_{302}= -0.94197735 \pm 3.4 \cdot 10^{-8} \) | \(a_{303}= -0.32406173 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{304}= +0.36838970 \pm 6.8 \cdot 10^{-8} \) | \(a_{305}= +0.36182076 \pm 4.2 \cdot 10^{-8} \) | \(a_{306}= +1.00323278 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{307}= +1.88558555 \pm 5.5 \cdot 10^{-8} \) | \(a_{308}= +0.61874841 \pm 4.3 \cdot 10^{-8} \) | \(a_{309}= -1.99150356 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{310}= +1.16097894 \pm 4.1 \cdot 10^{-8} \) | \(a_{311}= +0.27387354 \pm 4.8 \cdot 10^{-8} \) | \(a_{312}= -0.09120276 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{313}= +1.00843962 \pm 4.0 \cdot 10^{-8} \) | \(a_{314}= +0.25118449 \pm 4.9 \cdot 10^{-8} \) | \(a_{315}= +0.88088008 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{316}= -3.93629354 \pm 5.8 \cdot 10^{-8} \) | \(a_{317}= -0.31182187 \pm 3.5 \cdot 10^{-8} \) | \(a_{318}= -1.92146838 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{319}= -0.25404421 \pm 3.7 \cdot 10^{-8} \) | \(a_{320}= +0.43613536 \pm 4.8 \cdot 10^{-8} \) | \(a_{321}= +1.86117666 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{322}= -2.02304221 \pm 3.9 \cdot 10^{-8} \) | \(a_{323}= -0.15899967 \pm 5.4 \cdot 10^{-8} \) | \(a_{324}= -2.52628331 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{325}= -0.04593817 \pm 3.2 \cdot 10^{-8} \) | \(a_{326}= -0.22114233 \pm 5.7 \cdot 10^{-8} \) | \(a_{327}= +0.81424495 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{328}= +1.91515718 \pm 4.2 \cdot 10^{-8} \) | \(a_{329}= -0.30934659 \pm 4.0 \cdot 10^{-8} \) | \(a_{330}= +1.52456600 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{331}= -0.36473346 \pm 4.6 \cdot 10^{-8} \) | \(a_{332}= +2.84177047 \pm 4.8 \cdot 10^{-8} \) | \(a_{333}= -0.73189850 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{334}= +1.53539502 \pm 5.5 \cdot 10^{-8} \) | \(a_{335}= -2.74837015 \pm 4.2 \cdot 10^{-8} \) | \(a_{336}= +1.50325635 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{337}= +1.02126237 \pm 4.1 \cdot 10^{-8} \) | \(a_{338}= +1.78421325 \pm 4.3 \cdot 10^{-8} \) | \(a_{339}= -0.84665369 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{340}= +2.37094999 \pm 6.1 \cdot 10^{-8} \) | \(a_{341}= -0.16898488 \pm 3.8 \cdot 10^{-8} \) | \(a_{342}= -0.33208702 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{343}= +1.05470896 \pm 4.3 \cdot 10^{-8} \) | \(a_{344}= +0.46735038 \pm 4.3 \cdot 10^{-8} \) | \(a_{345}= -3.42203549 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{346}= -1.56994850 \pm 6.0 \cdot 10^{-8} \) | \(a_{347}= -0.46828562 \pm 5.1 \cdot 10^{-8} \) | \(a_{348}= -1.84329093 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{349}= +0.51363883 \pm 4.4 \cdot 10^{-8} \) | \(a_{350}= +1.78979663 \pm 5.0 \cdot 10^{-8} \) | \(a_{351}= -0.00813341 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{352}= +0.30163599 \pm 4.0 \cdot 10^{-8} \) | \(a_{353}= -0.31956465 \pm 4.1 \cdot 10^{-8} \) | \(a_{354}= +3.82885424 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{355}= -0.69491255 \pm 4.2 \cdot 10^{-8} \) | \(a_{356}= -0.09803334 \pm 5.1 \cdot 10^{-8} \) | \(a_{357}= -0.64881634 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{358}= +2.83213601 \pm 5.9 \cdot 10^{-8} \) | \(a_{359}= -1.60233478 \pm 5.3 \cdot 10^{-8} \) | \(a_{360}= +2.69069720 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{361}= +0.05263158 \pm 7.5 \cdot 10^{-7} \) | \(a_{362}= -0.67311285 \pm 4.2 \cdot 10^{-8} \) | \(a_{363}= +1.12363278 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{364}= +0.04859466 \pm 4.6 \cdot 10^{-8} \) | \(a_{365}= +0.41527062 \pm 4.6 \cdot 10^{-8} \) | \(a_{366}= -0.55661405 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{367}= -0.84480393 \pm 5.1 \cdot 10^{-8} \) | \(a_{368}= -2.61425550 \pm 4.4 \cdot 10^{-8} \) | \(a_{369}= -0.73037162 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{370}= -2.51955654 \pm 3.8 \cdot 10^{-8} \) | \(a_{371}= +0.55628912 \pm 6.4 \cdot 10^{-8} \) | \(a_{372}= -1.22611850 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{373}= +1.25755503 \pm 5.4 \cdot 10^{-8} \) | \(a_{374}= -0.50268796 \pm 4.5 \cdot 10^{-8} \) | \(a_{375}= +0.92555157 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{376}= -0.94491637 \pm 5.9 \cdot 10^{-8} \) | \(a_{377}= -0.01995188 \pm 3.4 \cdot 10^{-8} \) | \(a_{378}= +0.31688574 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{379}= +1.93824561 \pm 4.7 \cdot 10^{-8} \) | \(a_{380}= -0.78482455 \pm 1.0 \cdot 10^{-7} \) | \(a_{381}= +0.94257314 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{382}= -3.10439537 \pm 6.1 \cdot 10^{-8} \) | \(a_{383}= -0.68766166 \pm 3.9 \cdot 10^{-8} \) | \(a_{384}= -1.67034527 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{385}= -0.44138092 \pm 3.8 \cdot 10^{-8} \) | \(a_{386}= -3.04769583 \pm 6.6 \cdot 10^{-8} \) | \(a_{387}= -0.17823052 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{388}= -2.48821356 \pm 4.4 \cdot 10^{-8} \) | \(a_{389}= +1.24575767 \pm 4.8 \cdot 10^{-8} \) | \(a_{390}= +0.11973489 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{391}= +1.12833163 \pm 4.8 \cdot 10^{-8} \) | \(a_{392}= +1.09646394 \pm 5.4 \cdot 10^{-8} \) | \(a_{393}= -0.68179573 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{394}= +1.37670253 \pm 4.5 \cdot 10^{-8} \) | \(a_{395}= +2.80793431 \pm 4.1 \cdot 10^{-8} \) | \(a_{396}= -0.72077813 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{397}= -1.43183772 \pm 4.1 \cdot 10^{-8} \) | \(a_{398}= -1.10261278 \pm 4.4 \cdot 10^{-8} \) | \(a_{399}= +0.21476918 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{400}= +2.31284630 \pm 4.1 \cdot 10^{-8} \) | \(a_{401}= +0.87538323 \pm 4.3 \cdot 10^{-8} \) | \(a_{402}= +4.22800899 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{403}= -0.01327157 \pm 3.4 \cdot 10^{-8} \) | \(a_{404}= +0.52741973 \pm 6.3 \cdot 10^{-8} \) | \(a_{405}= +1.80211093 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{406}= +0.77734496 \pm 3.7 \cdot 10^{-8} \) | \(a_{407}= +0.36673100 \pm 4.4 \cdot 10^{-8} \) | \(a_{408}= -1.98184560 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{409}= +0.65654735 \pm 4.2 \cdot 10^{-8} \) | \(a_{410}= -2.51430027 \pm 3.6 \cdot 10^{-8} \) | \(a_{411}= -0.95230761 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{412}= +3.24122893 \pm 7.4 \cdot 10^{-8} \) | \(a_{413}= -1.10850119 \pm 4.7 \cdot 10^{-8} \) | \(a_{414}= +2.35663569 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{415}= -2.02716203 \pm 4.4 \cdot 10^{-8} \) | \(a_{416}= +0.02368959 \pm 5.0 \cdot 10^{-8} \) | \(a_{417}= -0.19146901 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{418}= +0.16639822 \pm 1.1 \cdot 10^{-7} \) | \(a_{419}= +0.26576144 \pm 5.0 \cdot 10^{-8} \) | \(a_{420}= -3.20256641 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{421}= +0.29081470 \pm 4.5 \cdot 10^{-8} \) | \(a_{422}= -1.07970577 \pm 3.7 \cdot 10^{-8} \) | \(a_{423}= +0.36035690 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{424}= +1.69921608 \pm 4.6 \cdot 10^{-8} \) | \(a_{425}= -0.99824123 \pm 3.2 \cdot 10^{-8} \) | \(a_{426}= +1.06903232 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{427}= +0.16114673 \pm 4.6 \cdot 10^{-8} \) | \(a_{428}= -3.02911818 \pm 4.8 \cdot 10^{-8} \) | \(a_{429}= -0.01742787 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{430}= -0.61355757 \pm 3.0 \cdot 10^{-8} \) | \(a_{431}= +0.93433474 \pm 4.6 \cdot 10^{-8} \) | \(a_{432}= +0.40949234 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{433}= -1.27871126 \pm 4.6 \cdot 10^{-8} \) | \(a_{434}= +0.51707358 \pm 3.1 \cdot 10^{-8} \) | \(a_{435}= +1.31490190 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{436}= -1.32520692 \pm 3.9 \cdot 10^{-8} \) | \(a_{437}= -0.37349686 \pm 5.9 \cdot 10^{-8} \) | \(a_{438}= -0.63883968 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{439}= +0.54863423 \pm 4.7 \cdot 10^{-8} \) | \(a_{440}= -1.34822258 \pm 4.9 \cdot 10^{-8} \) | \(a_{441}= -0.41815166 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{442}= -0.03947962 \pm 4.9 \cdot 10^{-8} \) | \(a_{443}= +1.74066704 \pm 4.4 \cdot 10^{-8} \) | \(a_{444}= +2.66092243 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{445}= +0.06993157 \pm 3.6 \cdot 10^{-8} \) | \(a_{446}= +1.18148129 \pm 5.1 \cdot 10^{-8} \) | \(a_{447}= -1.12343122 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{448}= +0.19424476 \pm 4.5 \cdot 10^{-8} \) | \(a_{449}= +0.25095920 \pm 4.9 \cdot 10^{-8} \) | \(a_{450}= -2.08492863 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{451}= +0.36596593 \pm 3.2 \cdot 10^{-8} \) | \(a_{452}= +1.37795306 \pm 5.8 \cdot 10^{-8} \) | \(a_{453}= -0.70965625 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{454}= -2.30094998 \pm 4.2 \cdot 10^{-8} \) | \(a_{455}= -0.03466475 \pm 3.5 \cdot 10^{-8} \) | \(a_{456}= +0.65602442 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{457}= -1.75416575 \pm 4.7 \cdot 10^{-8} \) | \(a_{458}= +2.54576729 \pm 5.5 \cdot 10^{-8} \) | \(a_{459}= -0.17673987 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{460}= +5.56946052 \pm 5.9 \cdot 10^{-8} \) | \(a_{461}= +0.55422632 \pm 4.3 \cdot 10^{-8} \) | \(a_{462}= +0.67900698 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{463}= -1.12607012 \pm 3.4 \cdot 10^{-8} \) | \(a_{464}= +1.00451604 \pm 5.8 \cdot 10^{-8} \) | \(a_{465}= +0.87464519 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{466}= +0.39813933 \pm 5.6 \cdot 10^{-8} \) | \(a_{467}= -0.49010449 \pm 4.2 \cdot 10^{-8} \) | \(a_{468}= -0.05660777 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{469}= -1.22406148 \pm 4.9 \cdot 10^{-8} \) | \(a_{470}= +1.24052664 \pm 3.6 \cdot 10^{-8} \) | \(a_{471}= +0.18923453 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{472}= -3.38597854 \pm 5.5 \cdot 10^{-8} \) | \(a_{473}= +0.08930563 \pm 4.5 \cdot 10^{-8} \) | \(a_{474}= -4.31964067 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{475}= +0.33043473 \pm 4.6 \cdot 10^{-8} \) | \(a_{476}= +1.05596713 \pm 3.5 \cdot 10^{-8} \) | \(a_{477}= -0.64801950 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{478}= +1.52553565 \pm 5.0 \cdot 10^{-8} \) | \(a_{479}= +0.16258064 \pm 4.7 \cdot 10^{-8} \) | \(a_{480}= -1.56123114 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{481}= +0.02880196 \pm 3.8 \cdot 10^{-8} \) | \(a_{482}= -0.70299141 \pm 5.1 \cdot 10^{-8} \) | \(a_{483}= -1.52409668 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{484}= -1.82874445 \pm 3.6 \cdot 10^{-8} \) | \(a_{485}= +1.77495407 \pm 3.3 \cdot 10^{-8} \) | \(a_{486}= -2.31685256 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{487}= -0.24738241 \pm 5.0 \cdot 10^{-8} \) | \(a_{488}= +0.49223165 \pm 4.6 \cdot 10^{-8} \) | \(a_{489}= -0.16660171 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{490}= -1.43948477 \pm 3.6 \cdot 10^{-8} \) | \(a_{491}= -1.76959102 \pm 4.8 \cdot 10^{-8} \) | \(a_{492}= +2.65537124 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{493}= -0.43355641 \pm 3.1 \cdot 10^{-8} \) | \(a_{494}= +0.01306842 \pm 1.0 \cdot 10^{-7} \) | \(a_{495}= +0.51416329 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{496}= +0.66818302 \pm 3.6 \cdot 10^{-8} \) | \(a_{497}= -0.30949822 \pm 4.1 \cdot 10^{-8} \) | \(a_{498}= +3.11852436 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{499}= -1.57233377 \pm 4.9 \cdot 10^{-8} \) | \(a_{500}= -1.50636162 \pm 4.2 \cdot 10^{-8} \) | \(a_{501}= +1.15671854 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{502}= +1.85701086 \pm 5.3 \cdot 10^{-8} \) | \(a_{503}= +0.06803418 \pm 4.3 \cdot 10^{-8} \) | \(a_{504}= +1.19837526 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{505}= -0.37623209 \pm 3.8 \cdot 10^{-8} \) | \(a_{506}= -1.18083501 \pm 4.3 \cdot 10^{-8} \) | \(a_{507}= +1.34417041 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{508}= -1.53406472 \pm 4.0 \cdot 10^{-8} \) | \(a_{509}= -0.30132253 \pm 4.7 \cdot 10^{-8} \) | \(a_{510}= +2.60185169 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{511}= +0.18495208 \pm 5.4 \cdot 10^{-8} \) | \(a_{512}= +2.21989634 \pm 3.8 \cdot 10^{-8} \) | \(a_{513}= +0.05850388 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{514}= -0.28698636 \pm 4.3 \cdot 10^{-8} \) | \(a_{515}= -2.31211362 \pm 5.3 \cdot 10^{-8} \) | \(a_{516}= +0.64798272 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{517}= -0.18056335 \pm 4.4 \cdot 10^{-8} \) | \(a_{518}= -1.12215311 \pm 5.6 \cdot 10^{-8} \) | \(a_{519}= -1.18275006 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{520}= -0.10588540 \pm 4.9 \cdot 10^{-8} \) | \(a_{521}= -0.45393733 \pm 3.8 \cdot 10^{-8} \) | \(a_{522}= -0.90552677 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{523}= +0.61765541 \pm 4.4 \cdot 10^{-8} \) | \(a_{524}= +1.10964202 \pm 5.3 \cdot 10^{-8} \) | \(a_{525}= +1.34837676 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{526}= +0.06320683 \pm 6.4 \cdot 10^{-8} \) | \(a_{527}= -0.28839264 \pm 3.6 \cdot 10^{-8} \) | \(a_{528}= +0.87743979 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{529}= +1.65049812 \pm 5.3 \cdot 10^{-8} \) | \(a_{530}= -2.23080355 \pm 3.7 \cdot 10^{-8} \) | \(a_{531}= +1.29128964 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{532}= -0.34954298 \pm 1.1 \cdot 10^{-7} \) | \(a_{533}= +0.02874188 \pm 4.2 \cdot 10^{-8} \) | \(a_{534}= -0.10758060 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{535}= +2.16080554 \pm 3.8 \cdot 10^{-8} \) | \(a_{536}= -3.73896387 \pm 5.5 \cdot 10^{-8} \) | \(a_{537}= +2.13364261 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{538}= +1.99161083 \pm 5.1 \cdot 10^{-8} \) | \(a_{539}= +0.20952246 \pm 4.3 \cdot 10^{-8} \) | \(a_{540}= -0.87239042 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{541}= +0.98078951 \pm 4.2 \cdot 10^{-8} \) | \(a_{542}= -0.22924871 \pm 5.6 \cdot 10^{-8} \) | \(a_{543}= -0.50710215 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{544}= +0.51477739 \pm 6.1 \cdot 10^{-8} \) | \(a_{545}= +0.94532940 \pm 4.2 \cdot 10^{-8} \) | \(a_{546}= +0.05332719 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{547}= -0.33799983 \pm 5.8 \cdot 10^{-8} \) | \(a_{548}= +1.54990785 \pm 6.0 \cdot 10^{-8} \) | \(a_{549}= -0.18771933 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{550}= +1.04469127 \pm 3.4 \cdot 10^{-8} \) | \(a_{551}= +0.14351450 \pm 4.5 \cdot 10^{-8} \) | \(a_{552}= -4.65543808 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{553}= +1.25059000 \pm 3.6 \cdot 10^{-8} \) | \(a_{554}= -0.04380726 \pm 6.4 \cdot 10^{-8} \) | \(a_{555}= -1.89815503 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{556}= +0.31162128 \pm 4.5 \cdot 10^{-8} \) | \(a_{557}= -0.25391116 \pm 3.8 \cdot 10^{-8} \) | \(a_{558}= -0.60233743 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{559}= +0.00701380 \pm 3.2 \cdot 10^{-8} \) | \(a_{560}= +1.74526401 \pm 4.0 \cdot 10^{-8} \) | \(a_{561}= -0.37870937 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{562}= +2.05804642 \pm 7.0 \cdot 10^{-8} \) | \(a_{563}= -0.09476228 \pm 4.1 \cdot 10^{-8} \) | \(a_{564}= -1.31012942 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{565}= -0.98295558 \pm 3.5 \cdot 10^{-8} \) | \(a_{566}= -0.37186552 \pm 4.7 \cdot 10^{-8} \) | \(a_{567}= +0.80261917 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{568}= -0.94537954 \pm 7.3 \cdot 10^{-8} \) | \(a_{569}= +1.92593406 \pm 4.7 \cdot 10^{-8} \) | \(a_{570}= -0.86125692 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{571}= +0.42478428 \pm 4.8 \cdot 10^{-8} \) | \(a_{572}= +0.02836435 \pm 3.9 \cdot 10^{-8} \) | \(a_{573}= -2.33875429 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{574}= -1.11981208 \pm 4.5 \cdot 10^{-8} \) | \(a_{575}= -2.34491034 \pm 3.5 \cdot 10^{-8} \) | \(a_{576}= -0.22627512 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{577}= -0.18554713 \pm 5.4 \cdot 10^{-8} \) | \(a_{578}= +0.92813377 \pm 5.4 \cdot 10^{-8} \) | \(a_{579}= -2.29603863 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{580}= -2.14004041 \pm 5.2 \cdot 10^{-8} \) | \(a_{581}= -0.90285180 \pm 4.0 \cdot 10^{-8} \) | \(a_{582}= -2.73053531 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{583}= +0.32470191 \pm 3.9 \cdot 10^{-8} \) | \(a_{584}= +0.56494640 \pm 4.5 \cdot 10^{-8} \) | \(a_{585}= +0.04038086 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{586}= -1.62503657 \pm 5.3 \cdot 10^{-8} \) | \(a_{587}= +1.72633987 \pm 4.1 \cdot 10^{-8} \) | \(a_{588}= +1.52025058 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{589}= +0.09546284 \pm 5.5 \cdot 10^{-8} \) | \(a_{590}= +4.44525747 \pm 5.2 \cdot 10^{-8} \) | \(a_{591}= +1.03716459 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{592}= -1.45009082 \pm 4.4 \cdot 10^{-8} \) | \(a_{593}= +0.26513703 \pm 6.2 \cdot 10^{-8} \) | \(a_{594}= +0.18496390 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{595}= -0.75326860 \pm 2.6 \cdot 10^{-8} \) | \(a_{596}= +1.82841640 \pm 4.3 \cdot 10^{-8} \) | \(a_{597}= -0.83067395 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{598}= -0.09273927 \pm 2.1 \cdot 10^{-8} \) | \(a_{599}= -1.40575995 \pm 4.9 \cdot 10^{-8} \) | \(a_{600}= +4.11869181 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{601}= +1.70890671 \pm 4.6 \cdot 10^{-8} \) | \(a_{602}= -0.27326457 \pm 3.9 \cdot 10^{-8} \) | \(a_{603}= +1.42590547 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{604}= +1.15498582 \pm 3.7 \cdot 10^{-8} \) | \(a_{605}= +1.30452525 \pm 3.9 \cdot 10^{-8} \) | \(a_{606}= +0.57878400 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{607}= -0.23615868 \pm 3.8 \cdot 10^{-8} \) | \(a_{608}= -0.17040002 \pm 6.2 \cdot 10^{-8} \) | \(a_{609}= +0.58562736 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{610}= -0.64622276 \pm 3.3 \cdot 10^{-8} \) | \(a_{611}= -0.01418091 \pm 3.2 \cdot 10^{-8} \) | \(a_{612}= -1.23009288 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{613}= -0.65962731 \pm 5.4 \cdot 10^{-8} \) | \(a_{614}= -3.36771248 \pm 6.1 \cdot 10^{-8} \) | \(a_{615}= -1.89419512 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{616}= -0.60046764 \pm 5.0 \cdot 10^{-8} \) | \(a_{617}= +1.24195850 \pm 4.9 \cdot 10^{-8} \) | \(a_{618}= +3.55688522 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{619}= -0.30469614 \pm 3.3 \cdot 10^{-8} \) | \(a_{620}= -1.42351003 \pm 3.9 \cdot 10^{-8} \) | \(a_{621}= -0.41516932 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{622}= -0.48914637 \pm 5.8 \cdot 10^{-8} \) | \(a_{623}= +0.03114593 \pm 4.2 \cdot 10^{-8} \) | \(a_{624}= +0.06891151 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{625}= -0.36577646 \pm 4.3 \cdot 10^{-8} \) | \(a_{626}= -1.80110348 \pm 4.3 \cdot 10^{-8} \) | \(a_{627}= +0.12535921 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{628}= -0.30798460 \pm 5.0 \cdot 10^{-8} \) | \(a_{629}= +0.62586971 \pm 2.9 \cdot 10^{-8} \) | \(a_{630}= -1.57327830 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{631}= +1.44889009 \pm 4.6 \cdot 10^{-8} \) | \(a_{632}= +3.81999671 \pm 5.8 \cdot 10^{-8} \) | \(a_{633}= -0.81341653 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{634}= +0.55692323 \pm 4.3 \cdot 10^{-8} \) | \(a_{635}= +1.09431700 \pm 3.5 \cdot 10^{-8} \) | \(a_{636}= +2.35596824 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{637}= +0.01645527 \pm 5.0 \cdot 10^{-8} \) | \(a_{638}= +0.45373060 \pm 3.8 \cdot 10^{-8} \) | \(a_{639}= +0.36053354 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{640}= -1.93925241 \pm 4.2 \cdot 10^{-8} \) | \(a_{641}= +0.01486067 \pm 5.1 \cdot 10^{-8} \) | \(a_{642}= -3.32411747 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{643}= +1.62082229 \pm 5.3 \cdot 10^{-8} \) | \(a_{644}= +2.48051088 \pm 3.4 \cdot 10^{-8} \) | \(a_{645}= -0.46223507 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{646}= +0.28397818 \pm 1.0 \cdot 10^{-7} \) | \(a_{647}= -1.05458323 \pm 4.0 \cdot 10^{-8} \) | \(a_{648}= +2.45164489 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{649}= -0.64702407 \pm 4.1 \cdot 10^{-8} \) | \(a_{650}= +0.08204695 \pm 3.7 \cdot 10^{-8} \) | \(a_{651}= +0.38954705 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{652}= +0.27114904 \pm 6.6 \cdot 10^{-8} \) | \(a_{653}= -1.71727137 \pm 3.2 \cdot 10^{-8} \) | \(a_{654}= -1.45426597 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{655}= -0.79155731 \pm 3.8 \cdot 10^{-8} \) | \(a_{656}= -1.44706565 \pm 3.9 \cdot 10^{-8} \) | \(a_{657}= -0.21545011 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{658}= +0.55250231 \pm 5.1 \cdot 10^{-8} \) | \(a_{659}= +1.61997551 \pm 4.3 \cdot 10^{-8} \) | \(a_{660}= -1.86931470 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{661}= -0.78183415 \pm 4.3 \cdot 10^{-8} \) | \(a_{662}= +0.65142492 \pm 4.2 \cdot 10^{-8} \) | \(a_{663}= -0.02974271 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{664}= -2.75781106 \pm 4.8 \cdot 10^{-8} \) | \(a_{665}= +0.24934465 \pm 1.0 \cdot 10^{-7} \) | \(a_{666}= +1.30719272 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{667}= -1.01844210 \pm 2.5 \cdot 10^{-8} \) | \(a_{668}= -1.88259247 \pm 5.0 \cdot 10^{-8} \) | \(a_{669}= +0.89009102 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{670}= +4.90867172 \pm 5.8 \cdot 10^{-8} \) | \(a_{671}= +0.09406017 \pm 4.9 \cdot 10^{-8} \) | \(a_{672}= -0.69533680 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{673}= -0.77322566 \pm 5.4 \cdot 10^{-8} \) | \(a_{674}= -1.82400530 \pm 5.4 \cdot 10^{-8} \) | \(a_{675}= +0.36730260 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{676}= -2.18767574 \pm 4.7 \cdot 10^{-8} \) | \(a_{677}= -1.51930731 \pm 5.0 \cdot 10^{-8} \) | \(a_{678}= +1.51214894 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{679}= +0.79052412 \pm 4.0 \cdot 10^{-8} \) | \(a_{680}= -2.30090085 \pm 7.0 \cdot 10^{-8} \) | \(a_{681}= -1.73346369 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{682}= +0.30181208 \pm 3.6 \cdot 10^{-8} \) | \(a_{683}= +0.66297669 \pm 5.3 \cdot 10^{-8} \) | \(a_{684}= +0.40718155 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{685}= -1.10561862 \pm 3.9 \cdot 10^{-8} \) | \(a_{686}= -1.88374191 \pm 4.9 \cdot 10^{-8} \) | \(a_{687}= +1.91790138 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{688}= -0.35312333 \pm 3.7 \cdot 10^{-8} \) | \(a_{689}= +0.02550112 \pm 5.0 \cdot 10^{-8} \) | \(a_{690}= +6.11185826 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{691}= +1.42480555 \pm 5.1 \cdot 10^{-8} \) | \(a_{692}= +1.92495951 \pm 5.7 \cdot 10^{-8} \) | \(a_{693}= +0.22899662 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{694}= +0.83637219 \pm 6.1 \cdot 10^{-8} \) | \(a_{695}= -0.22229340 \pm 4.6 \cdot 10^{-8} \) | \(a_{696}= +1.78883136 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{697}= +0.62456403 \pm 2.6 \cdot 10^{-8} \) | \(a_{698}= -0.91737440 \pm 4.5 \cdot 10^{-8} \) | \(a_{699}= +0.29994571 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{700}= -2.19452169 \pm 4.4 \cdot 10^{-8} \) | \(a_{701}= +0.00773663 \pm 4.5 \cdot 10^{-8} \) | \(a_{702}= +0.01452652 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{703}= -0.20717346 \pm 5.3 \cdot 10^{-8} \) | \(a_{704}= +0.11337925 \pm 4.6 \cdot 10^{-8} \) | \(a_{705}= +0.93457393 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{706}= +0.57075208 \pm 4.8 \cdot 10^{-8} \) | \(a_{707}= -0.16756521 \pm 4.6 \cdot 10^{-8} \) | \(a_{708}= -4.69466952 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{709}= -0.48449813 \pm 4.3 \cdot 10^{-8} \) | \(a_{710}= +1.24113471 \pm 4.8 \cdot 10^{-8} \) | \(a_{711}= -1.45680846 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{712}= +0.09513697 \pm 5.5 \cdot 10^{-8} \) | \(a_{713}= -0.67744634 \pm 6.2 \cdot 10^{-8} \) | \(a_{714}= +1.15880549 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{715}= -0.02023356 \pm 4.0 \cdot 10^{-8} \) | \(a_{716}= -3.47256430 \pm 5.8 \cdot 10^{-8} \) | \(a_{717}= +1.14929081 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{718}= +2.86181809 \pm 5.3 \cdot 10^{-8} \) | \(a_{719}= -0.72317062 \pm 4.6 \cdot 10^{-8} \) | \(a_{720}= -2.03305271 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{721}= -1.02976275 \pm 5.2 \cdot 10^{-8} \) | \(a_{722}= -0.09400158 \pm 6.4 \cdot 10^{-8} \) | \(a_{723}= -0.52961172 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{724}= +0.82532324 \pm 4.3 \cdot 10^{-8} \) | \(a_{725}= +0.90102136 \pm 2.6 \cdot 10^{-8} \) | \(a_{726}= -2.00684193 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{727}= +0.66913651 \pm 4.5 \cdot 10^{-8} \) | \(a_{728}= -0.04715894 \pm 4.2 \cdot 10^{-8} \) | \(a_{729}= -0.59183928 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{730}= -0.74168580 \pm 3.7 \cdot 10^{-8} \) | \(a_{731}= +0.15241059 \pm 2.6 \cdot 10^{-8} \) | \(a_{732}= +0.68248067 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{733}= +1.31552801 \pm 4.4 \cdot 10^{-8} \) | \(a_{734}= +1.50884521 \pm 6.0 \cdot 10^{-8} \) | \(a_{735}= -1.08446276 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{736}= +1.20923358 \pm 3.9 \cdot 10^{-8} \) | \(a_{737}= -0.71447577 \pm 4.1 \cdot 10^{-8} \) | \(a_{738}= +1.30446567 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{739}= -0.86084837 \pm 4.6 \cdot 10^{-8} \) | \(a_{740}= +3.08930154 \pm 4.4 \cdot 10^{-8} \) | \(a_{741}= +0.00984534 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{742}= -0.99354910 \pm 6.9 \cdot 10^{-8} \) | \(a_{743}= -0.35314072 \pm 4.4 \cdot 10^{-8} \) | \(a_{744}= +1.18989313 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{745}= -1.30429123 \pm 3.7 \cdot 10^{-8} \) | \(a_{746}= -2.24603109 \pm 5.2 \cdot 10^{-8} \) | \(a_{747}= +1.05172931 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{748}= +0.61636033 \pm 3.7 \cdot 10^{-8} \) | \(a_{749}= +0.96237358 \pm 4.4 \cdot 10^{-8} \) | \(a_{750}= -1.65306293 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{751}= +0.00264299 \pm 4.8 \cdot 10^{-8} \) | \(a_{752}= +0.71396543 \pm 5.2 \cdot 10^{-8} \) | \(a_{753}= +1.39901385 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{754}= +0.03563465 \pm 4.5 \cdot 10^{-8} \) | \(a_{755}= -0.82390306 \pm 3.2 \cdot 10^{-8} \) | \(a_{756}= -0.38854282 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{757}= -0.13855774 \pm 5.8 \cdot 10^{-8} \) | \(a_{758}= -3.46176493 \pm 6.1 \cdot 10^{-8} \) | \(a_{759}= -0.88960413 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{760}= +0.76163710 \pm 1.1 \cdot 10^{-7} \) | \(a_{761}= +0.21113460 \pm 4.8 \cdot 10^{-8} \) | \(a_{762}= -1.68346397 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{763}= +0.42102818 \pm 3.6 \cdot 10^{-8} \) | \(a_{764}= +3.80638942 \pm 6.7 \cdot 10^{-8} \) | \(a_{765}= +0.87748029 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{766}= +1.22818440 \pm 4.2 \cdot 10^{-8} \) | \(a_{767}= -0.05081535 \pm 3.8 \cdot 10^{-8} \) | \(a_{768}= +2.60762838 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{769}= +1.58763252 \pm 4.4 \cdot 10^{-8} \) | \(a_{770}= +0.78831960 \pm 3.0 \cdot 10^{-8} \) | \(a_{771}= -0.21620654 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{772}= +3.73686847 \pm 6.5 \cdot 10^{-8} \) | \(a_{773}= -1.04938459 \pm 3.3 \cdot 10^{-8} \) | \(a_{774}= +0.31832506 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{775}= +0.59934053 \pm 3.0 \cdot 10^{-8} \) | \(a_{776}= +2.41469990 \pm 4.4 \cdot 10^{-8} \) | \(a_{777}= -0.84539502 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{778}= -2.22496065 \pm 5.9 \cdot 10^{-8} \) | \(a_{779}= -0.20674126 \pm 4.5 \cdot 10^{-8} \) | \(a_{780}= -0.14681042 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{781}= -0.18065186 \pm 4.7 \cdot 10^{-8} \) | \(a_{782}= -2.01523422 \pm 5.2 \cdot 10^{-8} \) | \(a_{783}= +0.15952696 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{784}= -0.82847263 \pm 5.7 \cdot 10^{-8} \) | \(a_{785}= +0.21969920 \pm 3.7 \cdot 10^{-8} \) | \(a_{786}= +1.21770767 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{787}= +0.32854179 \pm 4.2 \cdot 10^{-8} \) | \(a_{788}= -1.68801501 \pm 3.4 \cdot 10^{-8} \) | \(a_{789}= +0.04761804 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{790}= -5.01505510 \pm 5.7 \cdot 10^{-8} \) | \(a_{791}= -0.43778603 \pm 5.0 \cdot 10^{-8} \) | \(a_{792}= +0.69948291 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{793}= +0.00738721 \pm 4.5 \cdot 10^{-8} \) | \(a_{794}= +2.55730521 \pm 5.3 \cdot 10^{-8} \) | \(a_{795}= -1.68061757 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{796}= +1.35194559 \pm 4.9 \cdot 10^{-8} \) | \(a_{797}= +1.16246771 \pm 4.8 \cdot 10^{-8} \) | \(a_{798}= -0.38358422 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{799}= -0.30815266 \pm 4.7 \cdot 10^{-8} \) | \(a_{800}= -1.06981563 \pm 2.7 \cdot 10^{-8} \) | \(a_{801}= -0.03628180 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{802}= -1.56346077 \pm 4.1 \cdot 10^{-8} \) | \(a_{803}= +0.10795518 \pm 4.1 \cdot 10^{-8} \) | \(a_{804}= -5.18408475 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{805}= -1.76945940 \pm 2.9 \cdot 10^{-8} \) | \(a_{806}= +0.02370342 \pm 3.8 \cdot 10^{-8} \) | \(a_{807}= +1.50041726 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{808}= -0.51183724 \pm 7.8 \cdot 10^{-8} \) | \(a_{809}= +0.03639333 \pm 5.2 \cdot 10^{-8} \) | \(a_{810}= -3.21862429 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{811}= +0.48933304 \pm 5.2 \cdot 10^{-8} \) | \(a_{812}= -0.95312526 \pm 3.3 \cdot 10^{-8} \) | \(a_{813}= -0.17270881 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{814}= -0.65499260 \pm 3.7 \cdot 10^{-8} \) | \(a_{815}= -0.19342274 \pm 4.2 \cdot 10^{-8} \) | \(a_{816}= +1.49745448 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{817}= -0.05045048 \pm 4.7 \cdot 10^{-8} \) | \(a_{818}= -1.17261331 \pm 5.2 \cdot 10^{-8} \) | \(a_{819}= +0.01798471 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{820}= +3.08285667 \pm 4.2 \cdot 10^{-8} \) | \(a_{821}= +0.39991819 \pm 4.8 \cdot 10^{-8} \) | \(a_{822}= +1.70085003 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{823}= +0.16181590 \pm 4.0 \cdot 10^{-8} \) | \(a_{824}= -3.14546762 \pm 8.2 \cdot 10^{-8} \) | \(a_{825}= +0.78703770 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{826}= +1.97981645 \pm 5.8 \cdot 10^{-8} \) | \(a_{827}= +0.16340317 \pm 4.6 \cdot 10^{-8} \) | \(a_{828}= -2.88953954 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{829}= -0.58704377 \pm 4.8 \cdot 10^{-8} \) | \(a_{830}= +3.62057233 \pm 4.7 \cdot 10^{-8} \) | \(a_{831}= -0.03300302 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{832}= +0.00890447 \pm 5.2 \cdot 10^{-8} \) | \(a_{833}= +0.35757480 \pm 4.0 \cdot 10^{-8} \) | \(a_{834}= +0.34196940 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{835}= +1.34293745 \pm 4.4 \cdot 10^{-8} \) | \(a_{836}= -0.20402569 \pm 1.1 \cdot 10^{-7} \) | \(a_{837}= +0.10611399 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{838}= -0.47465793 \pm 5.0 \cdot 10^{-8} \) | \(a_{839}= -0.78138848 \pm 4.7 \cdot 10^{-8} \) | \(a_{840}= +3.10794738 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{841}= -0.60866816 \pm 3.6 \cdot 10^{-8} \) | \(a_{842}= -0.51940380 \pm 5.4 \cdot 10^{-8} \) | \(a_{843}= +1.55046775 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{844}= +1.32385864 \pm 3.9 \cdot 10^{-8} \) | \(a_{845}= +1.56056699 \pm 4.3 \cdot 10^{-8} \) | \(a_{846}= -0.64360826 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{847}= +0.58100584 \pm 4.5 \cdot 10^{-8} \) | \(a_{848}= -1.28390361 \pm 4.9 \cdot 10^{-8} \) | \(a_{849}= -0.28015184 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{850}= +1.78288886 \pm 3.9 \cdot 10^{-8} \) | \(a_{851}= +1.47019409 \pm 2.7 \cdot 10^{-8} \) | \(a_{852}= -1.31077161 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{853}= +0.08686951 \pm 5.2 \cdot 10^{-8} \) | \(a_{854}= -0.28781290 \pm 3.4 \cdot 10^{-8} \) | \(a_{855}= -0.29046082 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{856}= +2.93962363 \pm 6.0 \cdot 10^{-8} \) | \(a_{857}= -1.64156208 \pm 6.1 \cdot 10^{-8} \) | \(a_{858}= +0.03112669 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{859}= +1.12740557 \pm 4.6 \cdot 10^{-8} \) | \(a_{860}= +0.75230078 \pm 3.3 \cdot 10^{-8} \) | \(a_{861}= -0.84363137 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{862}= -1.66874994 \pm 5.4 \cdot 10^{-8} \) | \(a_{863}= -1.47312213 \pm 4.9 \cdot 10^{-8} \) | \(a_{864}= -0.18941220 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{865}= -1.37315975 \pm 4.1 \cdot 10^{-8} \) | \(a_{866}= +2.28381676 \pm 4.5 \cdot 10^{-8} \) | \(a_{867}= +0.69922693 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{868}= -0.63399895 \pm 2.6 \cdot 10^{-8} \) | \(a_{869}= +0.72996028 \pm 3.6 \cdot 10^{-8} \) | \(a_{870}= -2.34845433 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{871}= -0.05611281 \pm 4.0 \cdot 10^{-8} \) | \(a_{872}= +1.28605401 \pm 4.0 \cdot 10^{-8} \) | \(a_{873}= -0.92087913 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{874}= +0.66707661 \pm 1.1 \cdot 10^{-7} \) | \(a_{875}= +0.47858239 \pm 4.0 \cdot 10^{-8} \) | \(a_{876}= +0.78329990 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{877}= -1.33175914 \pm 5.0 \cdot 10^{-8} \) | \(a_{878}= -0.97987724 \pm 5.2 \cdot 10^{-8} \) | \(a_{879}= -1.22425168 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{880}= +1.01869790 \pm 4.4 \cdot 10^{-8} \) | \(a_{881}= +0.84902193 \pm 4.2 \cdot 10^{-8} \) | \(a_{882}= +0.74683143 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{883}= -1.32233341 \pm 4.9 \cdot 10^{-8} \) | \(a_{884}= +0.04840711 \pm 5.9 \cdot 10^{-8} \) | \(a_{885}= +3.34891783 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{886}= -3.10888367 \pm 5.4 \cdot 10^{-8} \) | \(a_{887}= -0.71609103 \pm 5.0 \cdot 10^{-8} \) | \(a_{888}= -2.58230613 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{889}= +0.48738387 \pm 5.9 \cdot 10^{-8} \) | \(a_{890}= -0.12489989 \pm 3.7 \cdot 10^{-8} \) | \(a_{891}= +0.46848296 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{892}= -1.44864856 \pm 5.9 \cdot 10^{-8} \) | \(a_{893}= +0.10200374 \pm 5.5 \cdot 10^{-8} \) | \(a_{894}= +2.00648193 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{895}= +2.47713550 \pm 3.9 \cdot 10^{-8} \) | \(a_{896}= -0.86369886 \pm 5.7 \cdot 10^{-8} \) | \(a_{897}= -0.06986687 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{898}= -0.44822068 \pm 4.7 \cdot 10^{-8} \) | \(a_{899}= +0.26030574 \pm 2.6 \cdot 10^{-8} \) | \(a_{900}= +2.55639161 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{901}= +0.55414211 \pm 3.9 \cdot 10^{-8} \) | \(a_{902}= -0.65362616 \pm 3.6 \cdot 10^{-8} \) | \(a_{903}= -0.20586897 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{904}= -1.33724178 \pm 6.6 \cdot 10^{-8} \) | \(a_{905}= -0.58873999 \pm 5.3 \cdot 10^{-8} \) | \(a_{906}= +1.26746739 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{907}= -0.79124681 \pm 5.4 \cdot 10^{-8} \) | \(a_{908}= +2.82126167 \pm 4.5 \cdot 10^{-8} \) | \(a_{909}= +0.19519620 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{910}= +0.06191228 \pm 2.5 \cdot 10^{-8} \) | \(a_{911}= +0.66378359 \pm 4.1 \cdot 10^{-8} \) | \(a_{912}= -0.49568276 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{913}= -0.52698802 \pm 4.2 \cdot 10^{-8} \) | \(a_{914}= +3.13299277 \pm 5.9 \cdot 10^{-8} \) | \(a_{915}= -0.48684400 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{916}= -3.12143929 \pm 6.6 \cdot 10^{-8} \) | \(a_{917}= -0.35254160 \pm 6.1 \cdot 10^{-8} \) | \(a_{918}= +0.31566271 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{919}= +0.14222492 \pm 5.2 \cdot 10^{-8} \) | \(a_{920}= -5.40491217 \pm 6.7 \cdot 10^{-8} \) | \(a_{921}= -2.53712916 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{922}= -0.98986487 \pm 4.9 \cdot 10^{-8} \) | \(a_{923}= -0.01418786 \pm 3.6 \cdot 10^{-8} \) | \(a_{924}= -0.83255020 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{925}= -1.30068884 \pm 3.7 \cdot 10^{-8} \) | \(a_{926}= +2.01119509 \pm 4.1 \cdot 10^{-8} \) | \(a_{927}= +1.19956748 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{928}= -0.46464262 \pm 5.4 \cdot 10^{-8} \) | \(a_{929}= -0.85530330 \pm 3.9 \cdot 10^{-8} \) | \(a_{930}= -1.56214260 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{931}= -0.11836331 \pm 6.0 \cdot 10^{-8} \) | \(a_{932}= -0.48817021 \pm 5.3 \cdot 10^{-8} \) | \(a_{933}= -0.36850756 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{934}= +0.87534135 \pm 4.1 \cdot 10^{-8} \) | \(a_{935}= -0.43967740 \pm 2.6 \cdot 10^{-8} \) | \(a_{936}= +0.05493531 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{937}= +1.70857200 \pm 4.6 \cdot 10^{-8} \) | \(a_{938}= +2.18621060 \pm 5.3 \cdot 10^{-8} \) | \(a_{939}= -1.35689498 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{940}= -1.52104578 \pm 4.1 \cdot 10^{-8} \) | \(a_{941}= +1.05505311 \pm 4.7 \cdot 10^{-8} \) | \(a_{942}= -0.33797856 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{943}= +1.46712698 \pm 2.6 \cdot 10^{-8} \) | \(a_{944}= +2.55839745 \pm 5.0 \cdot 10^{-8} \) | \(a_{945}= +0.27716498 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{946}= -0.15950254 \pm 3.9 \cdot 10^{-8} \) | \(a_{947}= -0.91570322 \pm 5.0 \cdot 10^{-8} \) | \(a_{948}= +5.29643703 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{949}= +0.00847848 \pm 4.7 \cdot 10^{-8} \) | \(a_{950}= -0.59016637 \pm 1.0 \cdot 10^{-7} \) | \(a_{951}= +0.41956853 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{952}= -1.02476884 \pm 4.4 \cdot 10^{-8} \) | \(a_{953}= +1.09914474 \pm 4.7 \cdot 10^{-8} \) | \(a_{954}= +1.15738231 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{955}= -2.71526789 \pm 5.0 \cdot 10^{-8} \) | \(a_{956}= -1.87050362 \pm 5.6 \cdot 10^{-8} \) | \(a_{957}= +0.34182643 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{958}= -0.29037390 \pm 4.5 \cdot 10^{-8} \) | \(a_{959}= -0.49241735 \pm 5.0 \cdot 10^{-8} \) | \(a_{960}= -0.58683720 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{961}= -0.82685008 \pm 5.3 \cdot 10^{-8} \) | \(a_{962}= -0.05144117 \pm 4.4 \cdot 10^{-8} \) | \(a_{963}= -1.12106604 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{964}= +0.86195821 \pm 5.4 \cdot 10^{-8} \) | \(a_{965}= -2.66567548 \pm 4.3 \cdot 10^{-8} \) | \(a_{966}= +2.72208249 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{967}= -0.12626011 \pm 4.3 \cdot 10^{-8} \) | \(a_{968}= +1.77471465 \pm 4.4 \cdot 10^{-8} \) | \(a_{969}= +0.21394027 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{970}= -3.17012133 \pm 4.1 \cdot 10^{-8} \) | \(a_{971}= -0.30915207 \pm 4.4 \cdot 10^{-8} \) | \(a_{972}= +2.84076029 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{973}= -0.09900442 \pm 3.4 \cdot 10^{-8} \) | \(a_{974}= +0.44183243 \pm 4.7 \cdot 10^{-8} \) | \(a_{975}= +0.06181160 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{976}= -0.37192326 \pm 4.2 \cdot 10^{-8} \) | \(a_{977}= +1.66353709 \pm 4.3 \cdot 10^{-8} \) | \(a_{978}= +0.29755566 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{979}= +0.01817965 \pm 4.3 \cdot 10^{-8} \) | \(a_{980}= +1.76499413 \pm 3.9 \cdot 10^{-8} \) | \(a_{981}= -0.49045445 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{982}= +3.16054277 \pm 5.8 \cdot 10^{-8} \) | \(a_{983}= -0.60702578 \pm 4.1 \cdot 10^{-8} \) | \(a_{984}= -2.57691895 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{985}= +1.20413663 \pm 3.0 \cdot 10^{-8} \) | \(a_{986}= +0.77434478 \pm 4.9 \cdot 10^{-8} \) | \(a_{987}= +0.41623795 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{988}= -0.01602357 \pm 1.0 \cdot 10^{-7} \) | \(a_{989}= +0.35801884 \pm 2.3 \cdot 10^{-8} \) | \(a_{990}= -0.91831109 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{991}= -0.77555000 \pm 4.6 \cdot 10^{-8} \) | \(a_{992}= -0.30907053 \pm 4.2 \cdot 10^{-8} \) | \(a_{993}= +0.49076315 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{994}= +0.55277313 \pm 4.4 \cdot 10^{-8} \) | \(a_{995}= -0.96440328 \pm 4.1 \cdot 10^{-8} \) | \(a_{996}= -3.82371340 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{997}= -0.83691287 \pm 5.6 \cdot 10^{-8} \) | \(a_{998}= +2.80823538 \pm 6.7 \cdot 10^{-8} \) | \(a_{999}= -0.23028859 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{1000}= +1.46185654 \pm 5.2 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000