Maass form invariants
| Level: | \( 11 \) |
| Weight: | \( 0 \) |
| Character: | 11.1 |
| Symmetry: | even |
| Fricke sign: | $-1$ |
| Spectral parameter: | \(10.6466817416048577250326557316 \pm 3 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= -0.15875754 \pm 9.3 \cdot 10^{-8} \) | \(a_{3}= -1.50974332 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{4}= -0.97479604 \pm 6.9 \cdot 10^{-8} \) | \(a_{5}= -0.87992865 \pm 7.3 \cdot 10^{-8} \) | \(a_{6}= +0.23968314 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{7}= +1.72672168 \pm 5.7 \cdot 10^{-8} \) | \(a_{8}= +0.31351376 \pm 9.4 \cdot 10^{-8} \) | \(a_{9}= +1.27932489 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{10}= +0.13969531 \pm 8.5 \cdot 10^{-8} \) | \(a_{11}= +0.30151134 \pm 1.0 \cdot 10^{-8} \) | \(a_{12}= +1.47169181 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{13}= -1.27847499 \pm 8.2 \cdot 10^{-8} \) | \(a_{14}= -0.27413009 \pm 6.6 \cdot 10^{-8} \) | \(a_{15}= +1.32846640 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{16}= +0.92502337 \pm 9.8 \cdot 10^{-8} \) | \(a_{17}= +0.98531391 \pm 7.2 \cdot 10^{-8} \) | \(a_{18}= -0.20310247 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{19}= -0.37115082 \pm 7.7 \cdot 10^{-8} \) | \(a_{20}= +0.85775097 \pm 9.0 \cdot 10^{-8} \) | \(a_{21}= -2.60690652 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{22}= -0.04786720 \pm 1.0 \cdot 10^{-7} \) | \(a_{23}= +0.64628233 \pm 7.4 \cdot 10^{-8} \) | \(a_{24}= -0.47332531 \pm 9.8 \cdot 10^{-8} \) |
| \(a_{25}= -0.22572557 \pm 6.5 \cdot 10^{-8} \) | \(a_{26}= +0.20296755 \pm 9.0 \cdot 10^{-8} \) | \(a_{27}= -0.42170889 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{28}= -1.68320146 \pm 4.6 \cdot 10^{-8} \) | \(a_{29}= -1.02522627 \pm 8.9 \cdot 10^{-8} \) | \(a_{30}= -0.21090406 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{31}= +1.56938848 \pm 6.9 \cdot 10^{-8} \) | \(a_{32}= -0.46036820 \pm 6.2 \cdot 10^{-8} \) | \(a_{33}= -0.45520474 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{34}= -0.15642601 \pm 7.0 \cdot 10^{-8} \) | \(a_{35}= -1.51939188 \pm 4.9 \cdot 10^{-8} \) | \(a_{36}= -1.24708084 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{37}= -0.21412008 \pm 7.3 \cdot 10^{-8} \) | \(a_{38}= +0.05892299 \pm 7.6 \cdot 10^{-8} \) | \(a_{39}= +1.93016907 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{40}= -0.27586974 \pm 9.7 \cdot 10^{-8} \) | \(a_{41}= +0.12113544 \pm 8.5 \cdot 10^{-8} \) | \(a_{42}= +0.41386607 \pm 8.9 \cdot 10^{-8} \) |
| \(a_{43}= +0.65982502 \pm 7.1 \cdot 10^{-8} \) | \(a_{44}= -0.29391207 \pm 7.9 \cdot 10^{-8} \) | \(a_{45}= -1.12571463 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{46}= -0.10260219 \pm 8.4 \cdot 10^{-8} \) | \(a_{47}= -0.96200393 \pm 8.8 \cdot 10^{-8} \) | \(a_{48}= -1.39654785 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{49}= +1.98156776 \pm 6.0 \cdot 10^{-8} \) | \(a_{50}= +0.03583564 \pm 7.3 \cdot 10^{-8} \) | \(a_{51}= -1.48757109 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{52}= +1.24625236 \pm 4.1 \cdot 10^{-8} \) | \(a_{53}= -0.37182494 \pm 9.1 \cdot 10^{-8} \) | \(a_{54}= +0.06694947 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{55}= -0.26530847 \pm 8.4 \cdot 10^{-8} \) | \(a_{56}= +0.54135101 \pm 6.1 \cdot 10^{-8} \) | \(a_{57}= +0.56034247 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{58}= +0.16276240 \pm 9.3 \cdot 10^{-8} \) | \(a_{59}= +0.97910691 \pm 1.1 \cdot 10^{-7} \) | \(a_{60}= -1.29498379 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{61}= -1.12286365 \pm 6.6 \cdot 10^{-8} \) | \(a_{62}= -0.24915226 \pm 7.1 \cdot 10^{-8} \) | \(a_{63}= +2.20903802 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{64}= -0.85193645 \pm 6.3 \cdot 10^{-8} \) | \(a_{65}= +1.12496677 \pm 5.8 \cdot 10^{-8} \) | \(a_{66}= +0.07226718 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{67}= -0.40784293 \pm 8.3 \cdot 10^{-8} \) | \(a_{68}= -0.96048010 \pm 7.3 \cdot 10^{-8} \) | \(a_{69}= -0.97572042 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{70}= +0.24121492 \pm 5.7 \cdot 10^{-8} \) | \(a_{71}= +0.18691814 \pm 8.7 \cdot 10^{-8} \) | \(a_{72}= +0.40108596 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{73}= -1.45868723 \pm 7.6 \cdot 10^{-8} \) | \(a_{74}= +0.03399318 \pm 6.2 \cdot 10^{-8} \) | \(a_{75}= +0.34078767 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{76}= +0.36179635 \pm 3.7 \cdot 10^{-8} \) | \(a_{77}= +0.52062618 \pm 6.8 \cdot 10^{-8} \) | \(a_{78}= -0.30642890 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{79}= +1.08459490 \pm 9.0 \cdot 10^{-8} \) | \(a_{80}= -0.81395457 \pm 9.0 \cdot 10^{-8} \) | \(a_{81}= -0.64265272 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{82}= -0.01923116 \pm 9.5 \cdot 10^{-8} \) | \(a_{83}= +0.41553939 \pm 7.0 \cdot 10^{-8} \) | \(a_{84}= +2.54120216 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{85}= -0.86700594 \pm 7.1 \cdot 10^{-8} \) | \(a_{86}= -0.10475220 \pm 7.8 \cdot 10^{-8} \) | \(a_{87}= +1.54782852 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{88}= +0.09452796 \pm 1.0 \cdot 10^{-7} \) | \(a_{89}= -0.45968392 \pm 7.1 \cdot 10^{-8} \) | \(a_{90}= +0.17871569 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{91}= -2.20757048 \pm 4.8 \cdot 10^{-8} \) | \(a_{92}= -0.62999345 \pm 4.4 \cdot 10^{-8} \) | \(a_{93}= -2.36937377 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{94}= +0.15272538 \pm 9.9 \cdot 10^{-8} \) | \(a_{95}= +0.32658624 \pm 5.4 \cdot 10^{-8} \) | \(a_{96}= +0.69503781 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{97}= +1.52994610 \pm 1.0 \cdot 10^{-7} \) | \(a_{98}= -0.31458883 \pm 6.9 \cdot 10^{-8} \) | \(a_{99}= +0.38573097 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{100}= +0.22003639 \pm 7.2 \cdot 10^{-8} \) | \(a_{101}= -1.20970019 \pm 1.2 \cdot 10^{-7} \) | \(a_{102}= +0.23616313 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{103}= -0.19536477 \pm 7.6 \cdot 10^{-8} \) | \(a_{104}= -0.40081951 \pm 7.6 \cdot 10^{-8} \) | \(a_{105}= +2.29389174 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{106}= +0.05903001 \pm 8.5 \cdot 10^{-8} \) | \(a_{107}= -0.97971192 \pm 5.1 \cdot 10^{-8} \) | \(a_{108}= +0.41108015 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{109}= -0.49751677 \pm 5.5 \cdot 10^{-8} \) | \(a_{110}= +0.04211972 \pm 1.7 \cdot 10^{-7} \) | \(a_{111}= +0.32326636 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{112}= +1.59725791 \pm 6.6 \cdot 10^{-8} \) | \(a_{113}= -1.32729574 \pm 7.3 \cdot 10^{-8} \) | \(a_{114}= -0.08895859 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{115}= -0.56868234 \pm 5.3 \cdot 10^{-8} \) | \(a_{116}= +0.99938651 \pm 8.1 \cdot 10^{-8} \) | \(a_{117}= -1.63558487 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{118}= -0.15544061 \pm 1.2 \cdot 10^{-7} \) | \(a_{119}= +1.70136288 \pm 4.0 \cdot 10^{-8} \) | \(a_{120}= +0.41649250 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{121}= +0.09090909 \pm 3.1 \cdot 10^{-7} \) | \(a_{122}= +0.17826307 \pm 8.5 \cdot 10^{-8} \) | \(a_{123}= -0.18288342 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{124}= -1.52983368 \pm 6.4 \cdot 10^{-8} \) | \(a_{125}= +1.07855105 \pm 8.0 \cdot 10^{-8} \) | \(a_{126}= -0.35070144 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{127}= -0.83959793 \pm 8.9 \cdot 10^{-8} \) | \(a_{128}= +0.59561953 \pm 9.1 \cdot 10^{-8} \) | \(a_{129}= -0.99616642 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{130}= -0.17859696 \pm 6.3 \cdot 10^{-8} \) | \(a_{131}= -1.12698556 \pm 6.3 \cdot 10^{-8} \) | \(a_{132}= +0.44373178 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{133}= -0.64087417 \pm 5.5 \cdot 10^{-8} \) | \(a_{134}= +0.06474814 \pm 9.6 \cdot 10^{-8} \) | \(a_{135}= +0.37107373 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{136}= +0.30890947 \pm 9.0 \cdot 10^{-8} \) | \(a_{137}= -1.11383067 \pm 5.6 \cdot 10^{-8} \) | \(a_{138}= +0.15490298 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{139}= +1.07490952 \pm 9.2 \cdot 10^{-8} \) | \(a_{140}= +1.48109719 \pm 5.0 \cdot 10^{-8} \) | \(a_{141}= +1.45237900 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{142}= -0.02967467 \pm 9.0 \cdot 10^{-8} \) | \(a_{143}= -0.38547471 \pm 9.3 \cdot 10^{-8} \) | \(a_{144}= +1.18340542 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{145}= +0.90212597 \pm 7.8 \cdot 10^{-8} \) | \(a_{146}= +0.23157760 \pm 8.3 \cdot 10^{-8} \) | \(a_{147}= -2.99165869 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{148}= +0.20872341 \pm 5.5 \cdot 10^{-8} \) | \(a_{149}= +0.71380923 \pm 9.4 \cdot 10^{-8} \) | \(a_{150}= -0.05410261 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{151}= -0.90426318 \pm 5.3 \cdot 10^{-8} \) | \(a_{152}= -0.11636089 \pm 7.7 \cdot 10^{-8} \) | \(a_{153}= +1.26053660 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{154}= -0.08265333 \pm 1.6 \cdot 10^{-7} \) | \(a_{155}= -1.38094989 \pm 6.0 \cdot 10^{-8} \) | \(a_{156}= -1.88152117 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{157}= +0.24333965 \pm 5.9 \cdot 10^{-8} \) | \(a_{158}= -0.17218762 \pm 1.0 \cdot 10^{-7} \) | \(a_{159}= +0.56136021 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{160}= +0.40509117 \pm 6.5 \cdot 10^{-8} \) | \(a_{161}= +1.11594970 \pm 3.3 \cdot 10^{-8} \) | \(a_{162}= +0.10202597 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{163}= -0.85393125 \pm 7.5 \cdot 10^{-8} \) | \(a_{164}= -0.11808234 \pm 5.5 \cdot 10^{-8} \) | \(a_{165}= +0.40054769 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{166}= -0.06597001 \pm 8.5 \cdot 10^{-8} \) | \(a_{167}= +0.35521490 \pm 7.1 \cdot 10^{-8} \) | \(a_{168}= -0.81730108 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{169}= +0.63449829 \pm 7.4 \cdot 10^{-8} \) | \(a_{170}= +0.13764373 \pm 7.6 \cdot 10^{-8} \) | \(a_{171}= -0.47482248 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{172}= -0.64319482 \pm 6.2 \cdot 10^{-8} \) | \(a_{173}= +0.16102910 \pm 8.1 \cdot 10^{-8} \) | \(a_{174}= -0.24572945 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{175}= -0.38976523 \pm 4.5 \cdot 10^{-8} \) | \(a_{176}= +0.27890504 \pm 1.0 \cdot 10^{-7} \) | \(a_{177}= -1.47820012 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{178}= +0.07297829 \pm 7.3 \cdot 10^{-8} \) | \(a_{179}= -0.41223725 \pm 8.8 \cdot 10^{-8} \) | \(a_{180}= +1.09734216 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{181}= +1.35985750 \pm 1.0 \cdot 10^{-7} \) | \(a_{182}= +0.35046846 \pm 5.5 \cdot 10^{-8} \) | \(a_{183}= +1.69523589 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{184}= +0.20261840 \pm 6.9 \cdot 10^{-8} \) | \(a_{185}= +0.18841040 \pm 6.7 \cdot 10^{-8} \) | \(a_{186}= +0.37615595 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{187}= +0.29708332 \pm 8.3 \cdot 10^{-8} \) | \(a_{188}= +0.93775762 \pm 7.5 \cdot 10^{-8} \) | \(a_{189}= -0.72817388 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{190}= -0.05184803 \pm 5.4 \cdot 10^{-8} \) | \(a_{191}= -1.14894850 \pm 6.7 \cdot 10^{-8} \) | \(a_{192}= +1.28620536 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{193}= -0.32852056 \pm 6.9 \cdot 10^{-8} \) | \(a_{194}= -0.24289048 \pm 1.1 \cdot 10^{-7} \) | \(a_{195}= -1.69841107 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{196}= -1.93162441 \pm 6.5 \cdot 10^{-8} \) | \(a_{197}= -0.49357282 \pm 5.5 \cdot 10^{-8} \) | \(a_{198}= -0.06123770 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{199}= +0.99531253 \pm 9.3 \cdot 10^{-8} \) | \(a_{200}= -0.07076807 \pm 8.1 \cdot 10^{-8} \) | \(a_{201}= +0.61573814 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{202}= +0.19204903 \pm 1.3 \cdot 10^{-7} \) | \(a_{203}= -1.77028043 \pm 3.5 \cdot 10^{-8} \) | \(a_{204}= +1.45007841 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{205}= -0.10659054 \pm 6.9 \cdot 10^{-8} \) | \(a_{206}= +0.03101563 \pm 7.9 \cdot 10^{-8} \) | \(a_{207}= +0.82680506 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{208}= -1.18261924 \pm 9.5 \cdot 10^{-8} \) | \(a_{209}= -0.11190618 \pm 8.8 \cdot 10^{-8} \) | \(a_{210}= -0.36417261 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{211}= -1.00465814 \pm 7.2 \cdot 10^{-8} \) | \(a_{212}= +0.36245348 \pm 5.2 \cdot 10^{-8} \) | \(a_{213}= -0.28219842 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{214}= +0.15553666 \pm 5.2 \cdot 10^{-8} \) | \(a_{215}= -0.58059894 \pm 6.5 \cdot 10^{-8} \) | \(a_{216}= -0.13221154 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{217}= +2.70989711 \pm 3.7 \cdot 10^{-8} \) | \(a_{218}= +0.07898454 \pm 7.1 \cdot 10^{-8} \) | \(a_{219}= +2.20224330 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{220}= +0.25862165 \pm 1.5 \cdot 10^{-7} \) | \(a_{221}= -1.25969918 \pm 5.3 \cdot 10^{-8} \) | \(a_{222}= -0.05132097 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{223}= -0.14283028 \pm 7.2 \cdot 10^{-8} \) | \(a_{224}= -0.79492775 \pm 4.0 \cdot 10^{-8} \) | \(a_{225}= -0.28877633 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{226}= +0.21071821 \pm 8.8 \cdot 10^{-8} \) | \(a_{227}= +0.31231610 \pm 7.5 \cdot 10^{-8} \) | \(a_{228}= -0.54621962 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{229}= +1.36179772 \pm 6.8 \cdot 10^{-8} \) | \(a_{230}= +0.09028261 \pm 6.1 \cdot 10^{-8} \) | \(a_{231}= -0.78601189 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{232}= -0.32142255 \pm 1.0 \cdot 10^{-7} \) | \(a_{233}= +1.09621818 \pm 7.1 \cdot 10^{-8} \) | \(a_{234}= +0.25966143 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{235}= +0.84649482 \pm 7.5 \cdot 10^{-8} \) | \(a_{236}= -0.95442955 \pm 3.6 \cdot 10^{-8} \) | \(a_{237}= -1.63745991 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{238}= -0.27010419 \pm 3.6 \cdot 10^{-8} \) | \(a_{239}= -0.55219446 \pm 1.0 \cdot 10^{-7} \) | \(a_{240}= +1.22886247 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{241}= -0.25672201 \pm 4.8 \cdot 10^{-8} \) | \(a_{242}= -0.01443250 \pm 1.0 \cdot 10^{-7} \) | \(a_{243}= +1.39194953 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{244}= +1.09456304 \pm 8.4 \cdot 10^{-8} \) | \(a_{245}= -1.74363825 \pm 5.6 \cdot 10^{-8} \) | \(a_{246}= +0.02903412 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{247}= +0.47450704 \pm 7.0 \cdot 10^{-8} \) | \(a_{248}= +0.49202489 \pm 8.0 \cdot 10^{-8} \) | \(a_{249}= -0.62735782 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{250}= -0.17122811 \pm 7.9 \cdot 10^{-8} \) | \(a_{251}= -1.17231312 \pm 6.7 \cdot 10^{-8} \) | \(a_{252}= -2.15336152 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{253}= +0.19486145 \pm 8.4 \cdot 10^{-8} \) | \(a_{254}= +0.13329250 \pm 8.6 \cdot 10^{-8} \) | \(a_{255}= +1.30895642 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{256}= +0.75737735 \pm 6.7 \cdot 10^{-8} \) | \(a_{257}= -0.11674455 \pm 9.2 \cdot 10^{-8} \) | \(a_{258}= +0.15814893 \pm 9.8 \cdot 10^{-8} \) |
| \(a_{259}= -0.36972579 \pm 4.2 \cdot 10^{-8} \) | \(a_{260}= -1.09661316 \pm 4.0 \cdot 10^{-8} \) | \(a_{261}= -1.31159749 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{262}= +0.17891746 \pm 6.3 \cdot 10^{-8} \) | \(a_{263}= +0.35829856 \pm 8.3 \cdot 10^{-8} \) | \(a_{264}= -0.14271295 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{265}= +0.32717941 \pm 7.6 \cdot 10^{-8} \) | \(a_{266}= +0.10174361 \pm 6.0 \cdot 10^{-8} \) | \(a_{267}= +0.69400472 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{268}= +0.39756368 \pm 5.9 \cdot 10^{-8} \) | \(a_{269}= -0.95900921 \pm 7.7 \cdot 10^{-8} \) | \(a_{270}= -0.05891075 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{271}= -1.34361288 \pm 7.5 \cdot 10^{-8} \) | \(a_{272}= +0.91143839 \pm 7.2 \cdot 10^{-8} \) | \(a_{273}= +3.33286478 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{274}= +0.17682902 \pm 6.2 \cdot 10^{-8} \) | \(a_{275}= -0.06805882 \pm 7.6 \cdot 10^{-8} \) | \(a_{276}= +0.95112841 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{277}= +0.17460094 \pm 4.6 \cdot 10^{-8} \) | \(a_{278}= -0.17064999 \pm 1.1 \cdot 10^{-7} \) | \(a_{279}= +2.00775774 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{280}= -0.47635027 \pm 5.1 \cdot 10^{-8} \) | \(a_{281}= -1.28958663 \pm 7.3 \cdot 10^{-8} \) | \(a_{282}= -0.23057612 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{283}= +0.61091034 \pm 9.9 \cdot 10^{-8} \) | \(a_{284}= -0.18220707 \pm 5.2 \cdot 10^{-8} \) | \(a_{285}= -0.49306140 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{286}= +0.06119702 \pm 1.8 \cdot 10^{-7} \) | \(a_{287}= +0.20916719 \pm 7.2 \cdot 10^{-8} \) | \(a_{288}= -0.58896050 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{289}= -0.02915651 \pm 7.9 \cdot 10^{-8} \) | \(a_{290}= -0.14321930 \pm 9.1 \cdot 10^{-8} \) | \(a_{291}= -2.30982590 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{292}= +1.42192254 \pm 4.3 \cdot 10^{-8} \) | \(a_{293}= -1.44527212 \pm 6.9 \cdot 10^{-8} \) | \(a_{294}= +0.47494838 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{295}= -0.86154423 \pm 7.9 \cdot 10^{-8} \) | \(a_{296}= -0.06712959 \pm 7.3 \cdot 10^{-8} \) | \(a_{297}= -0.12715001 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{298}= -0.11332260 \pm 1.0 \cdot 10^{-7} \) | \(a_{299}= -0.82625579 \pm 1.0 \cdot 10^{-7} \) | \(a_{300}= -0.33219847 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{301}= +1.13933417 \pm 5.7 \cdot 10^{-8} \) | \(a_{302}= +0.14355860 \pm 5.3 \cdot 10^{-8} \) | \(a_{303}= +1.82633677 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{304}= -0.34332318 \pm 7.4 \cdot 10^{-8} \) | \(a_{305}= +0.98803989 \pm 6.4 \cdot 10^{-8} \) | \(a_{306}= -0.20011969 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{307}= -1.07033369 \pm 1.0 \cdot 10^{-7} \) | \(a_{308}= -0.50750434 \pm 1.3 \cdot 10^{-7} \) | \(a_{309}= +0.29495065 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{310}= +0.21923621 \pm 7.3 \cdot 10^{-8} \) | \(a_{311}= +0.18366799 \pm 6.8 \cdot 10^{-8} \) | \(a_{312}= +0.60513457 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{313}= -1.37187307 \pm 9.6 \cdot 10^{-8} \) | \(a_{314}= -0.03863200 \pm 6.1 \cdot 10^{-8} \) | \(a_{315}= -1.94379585 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{316}= -1.05725882 \pm 8.8 \cdot 10^{-8} \) | \(a_{317}= +1.81320669 \pm 7.5 \cdot 10^{-8} \) | \(a_{318}= -0.08912017 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{319}= -0.30911735 \pm 9.9 \cdot 10^{-8} \) | \(a_{320}= +0.74964329 \pm 4.8 \cdot 10^{-8} \) | \(a_{321}= +1.47911353 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{322}= -0.17716543 \pm 3.9 \cdot 10^{-8} \) | \(a_{323}= -0.36570006 \pm 8.6 \cdot 10^{-8} \) | \(a_{324}= +0.62645533 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{325}= +0.28858449 \pm 5.8 \cdot 10^{-8} \) | \(a_{326}= +0.13556803 \pm 8.9 \cdot 10^{-8} \) | \(a_{327}= +0.75112261 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{328}= +0.03797763 \pm 8.4 \cdot 10^{-8} \) | \(a_{329}= -1.66111304 \pm 3.5 \cdot 10^{-8} \) | \(a_{330}= -0.06358997 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{331}= +1.39125835 \pm 1.1 \cdot 10^{-7} \) | \(a_{332}= -0.40506615 \pm 9.6 \cdot 10^{-8} \) | \(a_{333}= -0.27392915 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{334}= -0.05639304 \pm 8.7 \cdot 10^{-8} \) | \(a_{335}= +0.35887268 \pm 6.4 \cdot 10^{-8} \) | \(a_{336}= -2.41144945 \pm 8.9 \cdot 10^{-8} \) |
| \(a_{337}= +1.01526146 \pm 1.0 \cdot 10^{-7} \) | \(a_{338}= -0.10073139 \pm 8.4 \cdot 10^{-8} \) | \(a_{339}= +2.00387588 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{340}= +0.84515396 \pm 1.0 \cdot 10^{-7} \) | \(a_{341}= +0.47318843 \pm 8.0 \cdot 10^{-8} \) | \(a_{342}= +0.07538165 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{343}= +1.69489434 \pm 7.4 \cdot 10^{-8} \) | \(a_{344}= +0.20686423 \pm 7.9 \cdot 10^{-8} \) | \(a_{345}= +0.85856436 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{346}= -0.02556458 \pm 8.1 \cdot 10^{-8} \) | \(a_{347}= -1.18203622 \pm 6.8 \cdot 10^{-8} \) | \(a_{348}= -1.50881711 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{349}= -0.78947880 \pm 1.0 \cdot 10^{-7} \) | \(a_{350}= +0.06187817 \pm 4.8 \cdot 10^{-8} \) | \(a_{351}= +0.53914426 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{352}= -0.13880623 \pm 7.3 \cdot 10^{-8} \) | \(a_{353}= -1.79635694 \pm 5.8 \cdot 10^{-8} \) | \(a_{354}= +0.23467542 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{355}= -0.16447463 \pm 6.2 \cdot 10^{-8} \) | \(a_{356}= +0.44809806 \pm 4.6 \cdot 10^{-8} \) | \(a_{357}= -2.56862124 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{358}= +0.06544577 \pm 9.1 \cdot 10^{-8} \) | \(a_{359}= -1.81405419 \pm 1.0 \cdot 10^{-7} \) | \(a_{360}= -0.35292703 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{361}= -0.86224707 \pm 7.9 \cdot 10^{-8} \) | \(a_{362}= -0.21588763 \pm 1.2 \cdot 10^{-7} \) | \(a_{363}= -0.13724939 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{364}= +2.15193097 \pm 3.6 \cdot 10^{-8} \) | \(a_{365}= +1.28354069 \pm 5.6 \cdot 10^{-8} \) | \(a_{366}= -0.26913148 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{367}= -0.42307963 \pm 9.3 \cdot 10^{-8} \) | \(a_{368}= +0.59782625 \pm 9.0 \cdot 10^{-8} \) | \(a_{369}= +0.15497158 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{370}= -0.02991157 \pm 5.7 \cdot 10^{-8} \) | \(a_{371}= -0.64203818 \pm 6.0 \cdot 10^{-8} \) | \(a_{372}= +2.30965618 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{373}= +1.10377199 \pm 9.7 \cdot 10^{-8} \) | \(a_{374}= -0.04716422 \pm 1.7 \cdot 10^{-7} \) | \(a_{375}= -1.62833524 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{376}= -0.30160147 \pm 9.7 \cdot 10^{-8} \) | \(a_{377}= +1.31072615 \pm 9.3 \cdot 10^{-8} \) | \(a_{378}= +0.11560309 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{379}= -0.10336208 \pm 9.1 \cdot 10^{-8} \) | \(a_{380}= -0.31835498 \pm 3.5 \cdot 10^{-8} \) | \(a_{381}= +1.26757737 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{382}= +0.18240424 \pm 7.2 \cdot 10^{-8} \) | \(a_{383}= -0.24794961 \pm 9.7 \cdot 10^{-8} \) | \(a_{384}= -0.89923261 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{385}= -0.45811389 \pm 1.4 \cdot 10^{-7} \) | \(a_{386}= +0.05215512 \pm 6.8 \cdot 10^{-8} \) | \(a_{387}= +0.84413057 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{388}= -1.49138541 \pm 6.4 \cdot 10^{-8} \) | \(a_{389}= -1.55084038 \pm 8.1 \cdot 10^{-8} \) | \(a_{390}= +0.26963557 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{391}= +0.63679096 \pm 3.9 \cdot 10^{-8} \) | \(a_{392}= +0.62124877 \pm 7.5 \cdot 10^{-8} \) | \(a_{393}= +1.70145891 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{394}= +0.07835841 \pm 7.8 \cdot 10^{-8} \) | \(a_{395}= -0.95436613 \pm 8.2 \cdot 10^{-8} \) | \(a_{396}= -0.37600902 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{397}= +1.58567910 \pm 1.0 \cdot 10^{-7} \) | \(a_{398}= -0.15801337 \pm 1.1 \cdot 10^{-7} \) | \(a_{399}= +0.96755549 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{400}= -0.20880142 \pm 8.0 \cdot 10^{-8} \) | \(a_{401}= -1.18014648 \pm 7.2 \cdot 10^{-8} \) | \(a_{402}= -0.09775307 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{403}= -2.00642391 \pm 5.7 \cdot 10^{-8} \) | \(a_{404}= +1.17921095 \pm 7.7 \cdot 10^{-8} \) | \(a_{405}= +0.56548854 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{406}= +0.28104537 \pm 4.1 \cdot 10^{-8} \) | \(a_{407}= -0.06455963 \pm 8.4 \cdot 10^{-8} \) | \(a_{408}= -0.46637401 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{409}= +0.28528898 \pm 7.6 \cdot 10^{-8} \) | \(a_{410}= +0.01692205 \pm 8.2 \cdot 10^{-8} \) | \(a_{411}= +1.68159841 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{412}= +0.19044080 \pm 3.2 \cdot 10^{-8} \) | \(a_{413}= +1.69064514 \pm 9.0 \cdot 10^{-8} \) | \(a_{414}= -0.13126154 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{415}= -0.36564502 \pm 8.7 \cdot 10^{-8} \) | \(a_{416}= +0.58856923 \pm 5.0 \cdot 10^{-8} \) | \(a_{417}= -1.62283746 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{418}= +0.01776595 \pm 1.8 \cdot 10^{-7} \) | \(a_{419}= -1.20083614 \pm 7.0 \cdot 10^{-8} \) | \(a_{420}= -2.23607659 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{421}= +0.35046299 \pm 7.8 \cdot 10^{-8} \) | \(a_{422}= +0.15949706 \pm 6.2 \cdot 10^{-8} \) | \(a_{423}= -1.23071557 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{424}= -0.11657224 \pm 8.2 \cdot 10^{-8} \) | \(a_{425}= -0.22241054 \pm 6.8 \cdot 10^{-8} \) | \(a_{426}= +0.04480113 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{427}= -1.93887300 \pm 4.2 \cdot 10^{-8} \) | \(a_{428}= +0.95501931 \pm 5.2 \cdot 10^{-8} \) | \(a_{429}= +0.58196787 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{430}= +0.09217446 \pm 7.6 \cdot 10^{-8} \) | \(a_{431}= +0.22983703 \pm 7.9 \cdot 10^{-8} \) | \(a_{432}= -0.39009057 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{433}= +0.96705505 \pm 6.6 \cdot 10^{-8} \) | \(a_{434}= -0.43021660 \pm 4.0 \cdot 10^{-8} \) | \(a_{435}= -1.36197866 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{436}= +0.48497738 \pm 7.6 \cdot 10^{-8} \) | \(a_{437}= -0.23986821 \pm 4.7 \cdot 10^{-8} \) | \(a_{438}= -0.34962273 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{439}= +1.03204007 \pm 5.0 \cdot 10^{-8} \) | \(a_{440}= -0.08317786 \pm 1.7 \cdot 10^{-7} \) | \(a_{441}= +2.53506896 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{442}= +0.19998674 \pm 4.8 \cdot 10^{-8} \) | \(a_{443}= -1.06718087 \pm 6.9 \cdot 10^{-8} \) | \(a_{444}= -0.31511877 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{445}= +0.40448905 \pm 6.4 \cdot 10^{-8} \) | \(a_{446}= +0.02267538 \pm 7.7 \cdot 10^{-8} \) | \(a_{447}= -1.07766872 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{448}= -1.47105713 \pm 5.2 \cdot 10^{-8} \) | \(a_{449}= +1.54821622 \pm 6.3 \cdot 10^{-8} \) | \(a_{450}= +0.04584542 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{451}= +0.03652371 \pm 9.6 \cdot 10^{-8} \) | \(a_{452}= +1.29384263 \pm 8.0 \cdot 10^{-8} \) | \(a_{453}= +1.36520529 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{454}= -0.04958254 \pm 7.4 \cdot 10^{-8} \) | \(a_{455}= +1.94250452 \pm 4.1 \cdot 10^{-8} \) | \(a_{456}= +0.17567508 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{457}= -0.60115316 \pm 7.8 \cdot 10^{-8} \) | \(a_{458}= -0.21619566 \pm 7.8 \cdot 10^{-8} \) | \(a_{459}= -0.41551563 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{460}= +0.55434929 \pm 5.3 \cdot 10^{-8} \) | \(a_{461}= -1.56328231 \pm 5.8 \cdot 10^{-8} \) | \(a_{462}= +0.12478532 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{463}= -1.52847592 \pm 9.2 \cdot 10^{-8} \) | \(a_{464}= -0.94835826 \pm 9.7 \cdot 10^{-8} \) | \(a_{465}= +2.08487987 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{466}= -0.17403290 \pm 8.6 \cdot 10^{-8} \) | \(a_{467}= +1.43895219 \pm 4.3 \cdot 10^{-8} \) | \(a_{468}= +1.59436166 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{469}= -0.70423123 \pm 6.2 \cdot 10^{-8} \) | \(a_{470}= -0.13438744 \pm 9.1 \cdot 10^{-8} \) | \(a_{471}= -0.36738041 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{472}= +0.30696349 \pm 9.8 \cdot 10^{-8} \) | \(a_{473}= +0.19894473 \pm 8.1 \cdot 10^{-8} \) | \(a_{474}= +0.25995911 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{475}= +0.08377823 \pm 5.4 \cdot 10^{-8} \) | \(a_{476}= -1.65848181 \pm 3.1 \cdot 10^{-8} \) | \(a_{477}= -0.47568489 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{478}= +0.08766503 \pm 1.1 \cdot 10^{-7} \) | \(a_{479}= -0.09708262 \pm 5.6 \cdot 10^{-8} \) | \(a_{480}= -0.61158369 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{481}= +0.27374717 \pm 4.5 \cdot 10^{-8} \) | \(a_{482}= +0.04075656 \pm 6.2 \cdot 10^{-8} \) | \(a_{483}= -1.68479761 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{484}= -0.08861782 \pm 7.9 \cdot 10^{-8} \) | \(a_{485}= -1.34624341 \pm 8.5 \cdot 10^{-8} \) | \(a_{486}= -0.22098248 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{487}= -0.17267488 \pm 1.1 \cdot 10^{-7} \) | \(a_{488}= -0.35203321 \pm 9.9 \cdot 10^{-8} \) | \(a_{489}= +1.28921700 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{490}= +0.27681572 \pm 7.4 \cdot 10^{-8} \) | \(a_{491}= +0.20444649 \pm 8.0 \cdot 10^{-8} \) | \(a_{492}= +0.17827403 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{493}= -1.01016970 \pm 8.3 \cdot 10^{-8} \) | \(a_{494}= -0.07533157 \pm 7.2 \cdot 10^{-8} \) | \(a_{495}= -0.33941573 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{496}= +1.45172102 \pm 7.2 \cdot 10^{-8} \) | \(a_{497}= +0.32275561 \pm 6.4 \cdot 10^{-8} \) | \(a_{498}= +0.09959778 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{499}= +0.80382734 \pm 1.0 \cdot 10^{-7} \) | \(a_{500}= -1.05136729 \pm 4.0 \cdot 10^{-8} \) | \(a_{501}= -0.53628333 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{502}= +0.18611355 \pm 7.1 \cdot 10^{-8} \) | \(a_{503}= +1.23410280 \pm 9.0 \cdot 10^{-8} \) | \(a_{504}= +0.69256383 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{505}= +1.06444986 \pm 1.0 \cdot 10^{-7} \) | \(a_{506}= -0.03093573 \pm 1.7 \cdot 10^{-7} \) | \(a_{507}= -0.95792956 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{508}= +0.81843674 \pm 6.5 \cdot 10^{-8} \) | \(a_{509}= -0.96842697 \pm 7.4 \cdot 10^{-8} \) | \(a_{510}= -0.20780670 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{511}= -2.51874686 \pm 4.9 \cdot 10^{-8} \) | \(a_{512}= -0.71585890 \pm 7.2 \cdot 10^{-8} \) | \(a_{513}= +0.15651760 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{514}= +0.01853408 \pm 1.1 \cdot 10^{-7} \) | \(a_{515}= +0.17190706 \pm 5.5 \cdot 10^{-8} \) | \(a_{516}= +0.97105908 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{517}= -0.29005510 \pm 9.9 \cdot 10^{-8} \) | \(a_{518}= +0.05869676 \pm 4.7 \cdot 10^{-8} \) | \(a_{519}= -0.24311261 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{520}= +0.35269257 \pm 5.6 \cdot 10^{-8} \) | \(a_{521}= -1.42559703 \pm 7.8 \cdot 10^{-8} \) | \(a_{522}= +0.20822599 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{523}= +0.69354732 \pm 8.4 \cdot 10^{-8} \) | \(a_{524}= +1.09858106 \pm 4.7 \cdot 10^{-8} \) | \(a_{525}= +0.58844545 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{526}= -0.05688260 \pm 9.5 \cdot 10^{-8} \) | \(a_{527}= +1.54634029 \pm 6.7 \cdot 10^{-8} \) | \(a_{528}= -0.42107502 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{529}= -0.58231916 \pm 1.0 \cdot 10^{-7} \) | \(a_{530}= -0.05194220 \pm 6.5 \cdot 10^{-8} \) | \(a_{531}= +1.25259584 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{532}= +0.62472160 \pm 3.4 \cdot 10^{-8} \) | \(a_{533}= -0.15486863 \pm 6.3 \cdot 10^{-8} \) | \(a_{534}= -0.11017848 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{535}= +0.86207659 \pm 5.3 \cdot 10^{-8} \) | \(a_{536}= -0.12786437 \pm 8.9 \cdot 10^{-8} \) | \(a_{537}= +0.62237243 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{538}= +0.15224994 \pm 8.1 \cdot 10^{-8} \) | \(a_{539}= +0.59746516 \pm 7.1 \cdot 10^{-8} \) | \(a_{540}= -0.36172121 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{541}= +0.38436403 \pm 8.0 \cdot 10^{-8} \) | \(a_{542}= +0.21330868 \pm 6.4 \cdot 10^{-8} \) | \(a_{543}= -2.05303577 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{544}= -0.45360719 \pm 6.1 \cdot 10^{-8} \) | \(a_{545}= +0.43777926 \pm 5.7 \cdot 10^{-8} \) | \(a_{546}= -0.52911742 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{547}= +0.18018651 \pm 1.0 \cdot 10^{-7} \) | \(a_{548}= +1.08575773 \pm 5.6 \cdot 10^{-8} \) | \(a_{549}= -1.43650741 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{550}= +0.01080485 \pm 1.6 \cdot 10^{-7} \) | \(a_{551}= +0.38051357 \pm 6.9 \cdot 10^{-8} \) | \(a_{552}= -0.30590178 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{553}= +1.87279353 \pm 5.2 \cdot 10^{-8} \) | \(a_{554}= -0.02771922 \pm 4.7 \cdot 10^{-8} \) | \(a_{555}= -0.28445134 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{556}= -1.04781754 \pm 9.7 \cdot 10^{-8} \) | \(a_{557}= -0.59166491 \pm 7.0 \cdot 10^{-8} \) | \(a_{558}= -0.31874668 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{559}= -0.84356978 \pm 5.2 \cdot 10^{-8} \) | \(a_{560}= -1.40547300 \pm 4.9 \cdot 10^{-8} \) | \(a_{561}= -0.44851956 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{562}= +0.20473160 \pm 8.3 \cdot 10^{-8} \) | \(a_{563}= +0.33507490 \pm 5.4 \cdot 10^{-8} \) | \(a_{564}= -1.41577330 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{565}= +1.16792555 \pm 5.6 \cdot 10^{-8} \) | \(a_{566}= -0.09698662 \pm 1.0 \cdot 10^{-7} \) | \(a_{567}= -1.10968238 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{568}= +0.05860141 \pm 8.8 \cdot 10^{-8} \) | \(a_{569}= -1.16271836 \pm 7.9 \cdot 10^{-8} \) | \(a_{570}= +0.07827721 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{571}= +0.06151458 \pm 9.6 \cdot 10^{-8} \) | \(a_{572}= +0.37575922 \pm 1.6 \cdot 10^{-7} \) | \(a_{573}= +1.73461732 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{574}= -0.03320687 \pm 8.6 \cdot 10^{-8} \) | \(a_{575}= -0.14588244 \pm 5.5 \cdot 10^{-8} \) | \(a_{576}= -1.08990350 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{577}= +0.84978307 \pm 9.9 \cdot 10^{-8} \) | \(a_{578}= +0.00462882 \pm 8.2 \cdot 10^{-8} \) | \(a_{579}= +0.49598172 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{580}= -0.87938883 \pm 1.0 \cdot 10^{-7} \) | \(a_{581}= +0.71752087 \pm 4.7 \cdot 10^{-8} \) | \(a_{582}= +0.36670228 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{583}= -0.11210944 \pm 1.0 \cdot 10^{-7} \) | \(a_{584}= -0.45731852 \pm 7.3 \cdot 10^{-8} \) | \(a_{585}= +1.43919799 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{586}= +0.22944785 \pm 7.5 \cdot 10^{-8} \) | \(a_{587}= -0.49403173 \pm 5.0 \cdot 10^{-8} \) | \(a_{588}= +2.91625705 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{589}= -0.58247982 \pm 4.9 \cdot 10^{-8} \) | \(a_{590}= +0.13677664 \pm 8.3 \cdot 10^{-8} \) | \(a_{591}= +0.74516826 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{592}= -0.19806608 \pm 5.5 \cdot 10^{-8} \) | \(a_{593}= +0.74216416 \pm 6.8 \cdot 10^{-8} \) | \(a_{594}= +0.02018602 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{595}= -1.49707795 \pm 3.7 \cdot 10^{-8} \) | \(a_{596}= -0.69581842 \pm 7.8 \cdot 10^{-8} \) | \(a_{597}= -1.50266644 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{598}= +0.13117434 \pm 1.2 \cdot 10^{-7} \) | \(a_{599}= -1.52165873 \pm 1.0 \cdot 10^{-7} \) | \(a_{600}= +0.10684162 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{601}= +0.00742498 \pm 6.0 \cdot 10^{-8} \) | \(a_{602}= -0.18087789 \pm 7.3 \cdot 10^{-8} \) | \(a_{603}= -0.52176361 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{604}= +0.88147217 \pm 3.5 \cdot 10^{-8} \) | \(a_{605}= -0.07999351 \pm 8.4 \cdot 10^{-8} \) | \(a_{606}= -0.28994474 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{607}= +0.91430025 \pm 9.5 \cdot 10^{-8} \) | \(a_{608}= +0.17086603 \pm 4.7 \cdot 10^{-8} \) | \(a_{609}= +2.67266906 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{610}= -0.15685878 \pm 9.4 \cdot 10^{-8} \) | \(a_{611}= +1.22989796 \pm 1.1 \cdot 10^{-7} \) | \(a_{612}= -1.22876609 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{613}= -0.82070411 \pm 1.2 \cdot 10^{-7} \) | \(a_{614}= +0.16992354 \pm 1.1 \cdot 10^{-7} \) | \(a_{615}= +0.16092436 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{616}= +0.16322347 \pm 1.6 \cdot 10^{-7} \) | \(a_{617}= +0.81942889 \pm 8.2 \cdot 10^{-8} \) | \(a_{618}= -0.04682564 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{619}= -1.35549367 \pm 7.1 \cdot 10^{-8} \) | \(a_{620}= +1.34614449 \pm 8.5 \cdot 10^{-8} \) | \(a_{621}= -0.27254300 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{622}= -0.02915868 \pm 9.1 \cdot 10^{-8} \) | \(a_{623}= -0.79374619 \pm 5.5 \cdot 10^{-8} \) | \(a_{624}= +1.78545150 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{625}= -0.72332240 \pm 4.4 \cdot 10^{-8} \) | \(a_{626}= +0.21779520 \pm 9.1 \cdot 10^{-8} \) | \(a_{627}= +0.16894961 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{628}= -0.23720653 \pm 6.9 \cdot 10^{-8} \) | \(a_{629}= -0.21097550 \pm 8.2 \cdot 10^{-8} \) | \(a_{630}= +0.30859225 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{631}= -0.52161675 \pm 5.8 \cdot 10^{-8} \) | \(a_{632}= +0.34003543 \pm 1.0 \cdot 10^{-7} \) | \(a_{633}= +1.51677592 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{634}= -0.28786024 \pm 9.7 \cdot 10^{-8} \) | \(a_{635}= +0.73878628 \pm 7.7 \cdot 10^{-8} \) | \(a_{636}= -0.54721171 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{637}= -2.53338482 \pm 6.3 \cdot 10^{-8} \) | \(a_{638}= +0.04907471 \pm 1.9 \cdot 10^{-7} \) | \(a_{639}= +0.23912904 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{640}= -0.52410269 \pm 7.5 \cdot 10^{-8} \) | \(a_{641}= -0.39670553 \pm 6.3 \cdot 10^{-8} \) | \(a_{642}= -0.23482043 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{643}= -0.17927495 \pm 8.5 \cdot 10^{-8} \) | \(a_{644}= -1.08782336 \pm 2.9 \cdot 10^{-8} \) | \(a_{645}= +0.87655537 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{646}= +0.05805764 \pm 7.3 \cdot 10^{-8} \) | \(a_{647}= +0.58772932 \pm 8.6 \cdot 10^{-8} \) | \(a_{648}= -0.20148047 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{649}= +0.29521184 \pm 1.2 \cdot 10^{-7} \) | \(a_{650}= -0.04581496 \pm 6.2 \cdot 10^{-8} \) | \(a_{651}= -4.09124906 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{652}= +0.83240881 \pm 7.7 \cdot 10^{-8} \) | \(a_{653}= -0.93338730 \pm 8.2 \cdot 10^{-8} \) | \(a_{654}= -0.11924638 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{655}= +0.99166688 \pm 5.9 \cdot 10^{-8} \) | \(a_{656}= +0.11205311 \pm 9.8 \cdot 10^{-8} \) | \(a_{657}= -1.86613488 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{658}= +0.26371422 \pm 3.9 \cdot 10^{-8} \) | \(a_{659}= +0.81912064 \pm 7.5 \cdot 10^{-8} \) | \(a_{660}= -0.39045231 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{661}= -0.38765407 \pm 8.0 \cdot 10^{-8} \) | \(a_{662}= -0.22087275 \pm 1.1 \cdot 10^{-7} \) | \(a_{663}= +1.90182242 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{664}= +0.13027732 \pm 1.0 \cdot 10^{-7} \) | \(a_{665}= +0.56392354 \pm 4.2 \cdot 10^{-8} \) | \(a_{666}= +0.04348832 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{667}= -0.66258562 \pm 9.6 \cdot 10^{-8} \) | \(a_{668}= -0.34626208 \pm 7.4 \cdot 10^{-8} \) | \(a_{669}= +0.21563706 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{670}= -0.05697374 \pm 8.1 \cdot 10^{-8} \) | \(a_{671}= -0.33855613 \pm 7.7 \cdot 10^{-8} \) | \(a_{672}= +1.20013686 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{673}= +1.95848883 \pm 7.5 \cdot 10^{-8} \) | \(a_{674}= -0.16118041 \pm 1.2 \cdot 10^{-7} \) | \(a_{675}= +0.09519048 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{676}= -0.61850643 \pm 5.7 \cdot 10^{-8} \) | \(a_{677}= +1.24719518 \pm 7.8 \cdot 10^{-8} \) | \(a_{678}= -0.31813041 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{679}= +2.64179110 \pm 7.4 \cdot 10^{-8} \) | \(a_{680}= -0.27181829 \pm 1.0 \cdot 10^{-7} \) | \(a_{681}= -0.47151714 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{682}= -0.07512223 \pm 1.7 \cdot 10^{-7} \) | \(a_{683}= +1.35213487 \pm 1.1 \cdot 10^{-7} \) | \(a_{684}= +0.46285508 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{685}= +0.98009152 \pm 5.4 \cdot 10^{-8} \) | \(a_{686}= -0.26907726 \pm 7.5 \cdot 10^{-8} \) | \(a_{687}= -2.05596501 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{688}= +0.61035356 \pm 7.7 \cdot 10^{-8} \) | \(a_{689}= +0.47536888 \pm 6.7 \cdot 10^{-8} \) | \(a_{690}= -0.13630357 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{691}= -1.72546341 \pm 6.3 \cdot 10^{-8} \) | \(a_{692}= -0.15697053 \pm 3.9 \cdot 10^{-8} \) | \(a_{693}= +0.66605002 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{694}= +0.18765716 \pm 7.4 \cdot 10^{-8} \) | \(a_{695}= -0.94584368 \pm 8.5 \cdot 10^{-8} \) | \(a_{696}= +0.48526554 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{697}= +0.11935643 \pm 4.7 \cdot 10^{-8} \) | \(a_{698}= +0.12533571 \pm 1.1 \cdot 10^{-7} \) | \(a_{699}= -1.65500807 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{700}= +0.37994160 \pm 4.4 \cdot 10^{-8} \) | \(a_{701}= -1.26737985 \pm 1.0 \cdot 10^{-7} \) | \(a_{702}= -0.08559322 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{703}= +0.07947084 \pm 7.5 \cdot 10^{-8} \) | \(a_{704}= -0.25686850 \pm 7.4 \cdot 10^{-8} \) | \(a_{705}= -1.27798990 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{706}= +0.28518521 \pm 6.6 \cdot 10^{-8} \) | \(a_{707}= -2.08881554 \pm 8.0 \cdot 10^{-8} \) | \(a_{708}= +1.44094363 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{709}= +1.27314485 \pm 1.1 \cdot 10^{-7} \) | \(a_{710}= +0.02611159 \pm 6.7 \cdot 10^{-8} \) | \(a_{711}= +1.38754925 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{712}= -0.14411724 \pm 6.8 \cdot 10^{-8} \) | \(a_{713}= +1.01426804 \pm 4.8 \cdot 10^{-8} \) | \(a_{714}= +0.40778799 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{715}= +0.33919024 \pm 1.6 \cdot 10^{-7} \) | \(a_{716}= +0.40184724 \pm 6.8 \cdot 10^{-8} \) | \(a_{717}= +0.83367189 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{718}= +0.28799478 \pm 1.0 \cdot 10^{-7} \) | \(a_{719}= +0.12990241 \pm 9.1 \cdot 10^{-8} \) | \(a_{720}= -1.04131234 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{721}= -0.33734058 \pm 5.7 \cdot 10^{-8} \) | \(a_{722}= +0.13688822 \pm 8.0 \cdot 10^{-8} \) | \(a_{723}= +0.38758434 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{724}= -1.32558371 \pm 9.9 \cdot 10^{-8} \) | \(a_{725}= +0.23141978 \pm 5.7 \cdot 10^{-8} \) | \(a_{726}= +0.02178938 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{727}= -0.93450195 \pm 8.2 \cdot 10^{-8} \) | \(a_{728}= -0.69210373 \pm 5.4 \cdot 10^{-8} \) | \(a_{729}= -1.45883379 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{730}= -0.20377176 \pm 6.2 \cdot 10^{-8} \) | \(a_{731}= +0.65013477 \pm 5.7 \cdot 10^{-8} \) | \(a_{732}= -1.65250923 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{733}= -1.65330938 \pm 1.1 \cdot 10^{-7} \) | \(a_{734}= +0.06716708 \pm 8.7 \cdot 10^{-8} \) | \(a_{735}= +2.63244620 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{736}= -0.29752783 \pm 4.8 \cdot 10^{-8} \) | \(a_{737}= -0.12296927 \pm 9.4 \cdot 10^{-8} \) | \(a_{738}= -0.02460291 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{739}= +1.59186922 \pm 1.0 \cdot 10^{-7} \) | \(a_{740}= -0.18366171 \pm 6.6 \cdot 10^{-8} \) | \(a_{741}= -0.71638383 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{742}= +0.10192840 \pm 6.5 \cdot 10^{-8} \) | \(a_{743}= +0.56100298 \pm 7.1 \cdot 10^{-8} \) | \(a_{744}= -0.74283129 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{745}= -0.62810120 \pm 8.8 \cdot 10^{-8} \) | \(a_{746}= -0.17523213 \pm 1.0 \cdot 10^{-7} \) | \(a_{747}= +0.53160988 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{748}= -0.28959565 \pm 1.5 \cdot 10^{-7} \) | \(a_{749}= -1.69168982 \pm 3.4 \cdot 10^{-8} \) | \(a_{750}= +0.25851050 \pm 9.8 \cdot 10^{-8} \) |
| \(a_{751}= -0.06169404 \pm 1.1 \cdot 10^{-7} \) | \(a_{752}= -0.88987611 \pm 1.0 \cdot 10^{-7} \) | \(a_{753}= +1.76989190 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{754}= -0.20808766 \pm 1.0 \cdot 10^{-7} \) | \(a_{755}= +0.79568708 \pm 4.5 \cdot 10^{-8} \) | \(a_{756}= +0.70982101 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{757}= +1.31114390 \pm 1.0 \cdot 10^{-7} \) | \(a_{758}= +0.01640951 \pm 9.9 \cdot 10^{-8} \) | \(a_{759}= -0.29419078 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{760}= +0.10238928 \pm 5.4 \cdot 10^{-8} \) | \(a_{761}= +1.28148510 \pm 6.0 \cdot 10^{-8} \) | \(a_{762}= -0.20123747 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{763}= -0.85907299 \pm 3.8 \cdot 10^{-8} \) | \(a_{764}= +1.11999045 \pm 7.7 \cdot 10^{-8} \) | \(a_{765}= -1.10918227 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{766}= +0.03936387 \pm 1.0 \cdot 10^{-7} \) | \(a_{767}= -1.25176370 \pm 8.6 \cdot 10^{-8} \) | \(a_{768}= -1.14344540 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{769}= +0.27295065 \pm 9.6 \cdot 10^{-8} \) | \(a_{770}= +0.07272903 \pm 2.3 \cdot 10^{-7} \) | \(a_{771}= +0.17625430 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{772}= +0.32024054 \pm 5.0 \cdot 10^{-8} \) | \(a_{773}= +0.60059695 \pm 7.1 \cdot 10^{-8} \) | \(a_{774}= -0.13401209 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{775}= -0.35425110 \pm 5.0 \cdot 10^{-8} \) | \(a_{776}= +0.47965916 \pm 1.0 \cdot 10^{-7} \) | \(a_{777}= +0.55819104 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{778}= +0.24620761 \pm 9.0 \cdot 10^{-8} \) | \(a_{779}= -0.04495952 \pm 7.0 \cdot 10^{-8} \) | \(a_{780}= +1.65560439 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{781}= +0.05635794 \pm 9.8 \cdot 10^{-8} \) | \(a_{782}= -0.10109537 \pm 4.1 \cdot 10^{-8} \) | \(a_{783}= +0.43234703 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{784}= +1.83299649 \pm 7.1 \cdot 10^{-8} \) | \(a_{785}= -0.21412153 \pm 6.4 \cdot 10^{-8} \) | \(a_{786}= -0.27011943 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{787}= +1.47385905 \pm 6.2 \cdot 10^{-8} \) | \(a_{788}= +0.48113283 \pm 9.0 \cdot 10^{-8} \) | \(a_{789}= -0.54093886 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{790}= +0.15151282 \pm 1.0 \cdot 10^{-7} \) | \(a_{791}= -2.29187033 \pm 5.2 \cdot 10^{-8} \) | \(a_{792}= +0.12093197 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{793}= +1.43555308 \pm 5.8 \cdot 10^{-8} \) | \(a_{794}= -0.25173852 \pm 1.2 \cdot 10^{-7} \) | \(a_{795}= -0.49395694 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{796}= -0.97022671 \pm 9.4 \cdot 10^{-8} \) | \(a_{797}= -0.30388383 \pm 6.5 \cdot 10^{-8} \) | \(a_{798}= -0.15360673 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{799}= -0.94787585 \pm 6.5 \cdot 10^{-8} \) | \(a_{800}= +0.10391687 \pm 5.2 \cdot 10^{-8} \) | \(a_{801}= -0.58808508 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{802}= +0.18735715 \pm 7.8 \cdot 10^{-8} \) | \(a_{803}= -0.43981075 \pm 8.6 \cdot 10^{-8} \) | \(a_{804}= -0.60021910 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{805}= -0.98195612 \pm 2.8 \cdot 10^{-8} \) | \(a_{806}= +0.31853493 \pm 5.9 \cdot 10^{-8} \) | \(a_{807}= +1.44785775 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{808}= -0.37925766 \pm 1.2 \cdot 10^{-7} \) | \(a_{809}= -1.46273525 \pm 1.1 \cdot 10^{-7} \) | \(a_{810}= -0.08977557 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{811}= +0.02993733 \pm 7.4 \cdot 10^{-8} \) | \(a_{812}= +1.72566236 \pm 3.4 \cdot 10^{-8} \) | \(a_{813}= +2.02851057 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{814}= +0.01024933 \pm 1.7 \cdot 10^{-7} \) | \(a_{815}= +0.75139858 \pm 6.7 \cdot 10^{-8} \) | \(a_{816}= -1.37603802 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{817}= -0.24489460 \pm 6.2 \cdot 10^{-8} \) | \(a_{818}= -0.04529178 \pm 6.6 \cdot 10^{-8} \) | \(a_{819}= -2.82419986 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{820}= +0.10390404 \pm 7.3 \cdot 10^{-8} \) | \(a_{821}= -0.21330969 \pm 7.2 \cdot 10^{-8} \) | \(a_{822}= -0.26696643 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{823}= -0.83769801 \pm 5.4 \cdot 10^{-8} \) | \(a_{824}= -0.06124954 \pm 6.8 \cdot 10^{-8} \) | \(a_{825}= +0.10275135 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{826}= -0.26840266 \pm 9.9 \cdot 10^{-8} \) | \(a_{827}= +0.06682806 \pm 6.6 \cdot 10^{-8} \) | \(a_{828}= -0.80596631 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{829}= -1.57568314 \pm 6.4 \cdot 10^{-8} \) | \(a_{830}= +0.05804890 \pm 1.0 \cdot 10^{-7} \) | \(a_{831}= -0.26360260 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{832}= +1.08917944 \pm 6.0 \cdot 10^{-8} \) | \(a_{833}= +1.95246627 \pm 5.5 \cdot 10^{-8} \) | \(a_{834}= +0.25763768 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{835}= -0.31256377 \pm 6.1 \cdot 10^{-8} \) | \(a_{836}= +0.10908570 \pm 1.5 \cdot 10^{-7} \) | \(a_{837}= -0.66182507 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{838}= +0.19064179 \pm 7.8 \cdot 10^{-8} \) | \(a_{839}= +0.66256210 \pm 9.7 \cdot 10^{-8} \) | \(a_{840}= +0.71916663 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{841}= +0.05108891 \pm 9.5 \cdot 10^{-8} \) | \(a_{842}= -0.05563864 \pm 7.7 \cdot 10^{-8} \) | \(a_{843}= +1.94694480 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{844}= +0.97933678 \pm 6.7 \cdot 10^{-8} \) | \(a_{845}= -0.55831323 \pm 6.1 \cdot 10^{-8} \) | \(a_{846}= +0.19538538 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{847}= +0.15697470 \pm 6.8 \cdot 10^{-8} \) | \(a_{848}= -0.34394675 \pm 8.5 \cdot 10^{-8} \) | \(a_{849}= -0.92231781 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{850}= +0.03530935 \pm 6.7 \cdot 10^{-8} \) | \(a_{851}= -0.13838203 \pm 2.7 \cdot 10^{-8} \) | \(a_{852}= +0.27508590 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{853}= +0.08331431 \pm 7.8 \cdot 10^{-8} \) | \(a_{854}= +0.30781071 \pm 5.1 \cdot 10^{-8} \) | \(a_{855}= +0.41780991 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{856}= -0.30715317 \pm 6.1 \cdot 10^{-8} \) | \(a_{857}= -1.63530060 \pm 9.2 \cdot 10^{-8} \) | \(a_{858}= -0.09239179 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{859}= +0.79250254 \pm 7.1 \cdot 10^{-8} \) | \(a_{860}= +0.56596555 \pm 7.9 \cdot 10^{-8} \) | \(a_{861}= -0.31578876 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{862}= -0.03648836 \pm 7.7 \cdot 10^{-8} \) | \(a_{863}= -0.39611226 \pm 6.7 \cdot 10^{-8} \) | \(a_{864}= +0.19414136 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{865}= -0.14169412 \pm 6.6 \cdot 10^{-8} \) | \(a_{866}= -0.15352728 \pm 6.0 \cdot 10^{-8} \) | \(a_{867}= +0.04401884 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{868}= -2.64159698 \pm 2.7 \cdot 10^{-8} \) | \(a_{869}= +0.32701767 \pm 1.0 \cdot 10^{-7} \) | \(a_{870}= +0.21622438 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{871}= +0.52141699 \pm 8.1 \cdot 10^{-8} \) | \(a_{872}= -0.15597835 \pm 8.6 \cdot 10^{-8} \) | \(a_{873}= +1.95729813 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{874}= +0.03808089 \pm 5.2 \cdot 10^{-8} \) | \(a_{875}= +1.86235747 \pm 5.3 \cdot 10^{-8} \) | \(a_{876}= -2.14673805 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{877}= -1.55152258 \pm 8.3 \cdot 10^{-8} \) | \(a_{878}= -0.16384414 \pm 6.3 \cdot 10^{-8} \) | \(a_{879}= +2.18198993 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{880}= -0.24541654 \pm 1.8 \cdot 10^{-7} \) | \(a_{881}= +1.45509905 \pm 7.5 \cdot 10^{-8} \) | \(a_{882}= -0.40246131 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{883}= +1.06852351 \pm 8.9 \cdot 10^{-8} \) | \(a_{884}= +1.22794978 \pm 3.4 \cdot 10^{-8} \) | \(a_{885}= +1.30071064 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{886}= +0.16942301 \pm 9.1 \cdot 10^{-8} \) | \(a_{887}= -0.40279896 \pm 9.7 \cdot 10^{-8} \) | \(a_{888}= +0.10134845 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{889}= -1.44975195 \pm 5.9 \cdot 10^{-8} \) | \(a_{890}= -0.06421569 \pm 6.0 \cdot 10^{-8} \) | \(a_{891}= -0.19376708 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{892}= +0.13923039 \pm 5.5 \cdot 10^{-8} \) | \(a_{893}= +0.35704855 \pm 5.9 \cdot 10^{-8} \) | \(a_{894}= +0.17108804 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{895}= +0.36273936 \pm 8.7 \cdot 10^{-8} \) | \(a_{896}= +1.02846916 \pm 6.7 \cdot 10^{-8} \) | \(a_{897}= +1.24743416 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{898}= -0.24579100 \pm 7.0 \cdot 10^{-8} \) | \(a_{899}= -1.60897830 \pm 8.4 \cdot 10^{-8} \) | \(a_{900}= +0.28149803 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{901}= -0.36636428 \pm 7.6 \cdot 10^{-8} \) | \(a_{902}= -0.00579841 \pm 1.9 \cdot 10^{-7} \) | \(a_{903}= -1.72010215 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{904}= -0.41612548 \pm 1.0 \cdot 10^{-7} \) | \(a_{905}= -1.19657757 \pm 9.6 \cdot 10^{-8} \) | \(a_{906}= -0.21673664 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{907}= +1.03345739 \pm 8.7 \cdot 10^{-8} \) | \(a_{908}= -0.30444450 \pm 5.2 \cdot 10^{-8} \) | \(a_{909}= -1.54759956 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{910}= -0.30838724 \pm 4.6 \cdot 10^{-8} \) | \(a_{911}= -0.17298878 \pm 1.0 \cdot 10^{-7} \) | \(a_{912}= +0.51832988 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{913}= +0.12528984 \pm 8.1 \cdot 10^{-8} \) | \(a_{914}= +0.09543760 \pm 7.4 \cdot 10^{-8} \) | \(a_{915}= -1.49168663 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{916}= -1.32747503 \pm 8.1 \cdot 10^{-8} \) | \(a_{917}= -1.94599039 \pm 3.3 \cdot 10^{-8} \) | \(a_{918}= +0.06596624 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{919}= -0.40978188 \pm 9.2 \cdot 10^{-8} \) | \(a_{920}= -0.17828974 \pm 6.1 \cdot 10^{-8} \) | \(a_{921}= +1.61592913 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{922}= +0.24818286 \pm 5.7 \cdot 10^{-8} \) | \(a_{923}= -0.23897017 \pm 7.7 \cdot 10^{-8} \) | \(a_{924}= +0.76620128 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{925}= +0.04833238 \pm 4.6 \cdot 10^{-8} \) | \(a_{926}= +0.24265708 \pm 1.0 \cdot 10^{-7} \) | \(a_{927}= -0.24993501 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{928}= +0.47198157 \pm 7.9 \cdot 10^{-8} \) | \(a_{929}= +1.33834401 \pm 6.2 \cdot 10^{-8} \) | \(a_{930}= -0.33099040 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{931}= -0.73546050 \pm 4.7 \cdot 10^{-8} \) | \(a_{932}= -1.06858914 \pm 6.5 \cdot 10^{-8} \) | \(a_{933}= -0.27729151 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{934}= -0.22844451 \pm 4.4 \cdot 10^{-8} \) | \(a_{935}= -0.26141213 \pm 1.5 \cdot 10^{-7} \) | \(a_{936}= -0.51277837 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{937}= +0.99250821 \pm 9.2 \cdot 10^{-8} \) | \(a_{938}= +0.11180202 \pm 7.0 \cdot 10^{-8} \) | \(a_{939}= +2.07117621 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{940}= -0.82515980 \pm 1.0 \cdot 10^{-7} \) | \(a_{941}= -0.31417540 \pm 8.3 \cdot 10^{-8} \) | \(a_{942}= +0.05832441 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{943}= +0.07828769 \pm 2.8 \cdot 10^{-8} \) | \(a_{944}= +0.90569678 \pm 1.2 \cdot 10^{-7} \) | \(a_{945}= +0.64074106 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{946}= -0.03158398 \pm 1.7 \cdot 10^{-7} \) | \(a_{947}= -0.38172845 \pm 6.5 \cdot 10^{-8} \) | \(a_{948}= +1.59618944 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{949}= +1.86489514 \pm 8.9 \cdot 10^{-8} \) | \(a_{950}= -0.01330043 \pm 5.5 \cdot 10^{-8} \) | \(a_{951}= -2.73747669 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{952}= +0.53340068 \pm 4.2 \cdot 10^{-8} \) | \(a_{953}= +1.18233511 \pm 6.2 \cdot 10^{-8} \) | \(a_{954}= +0.07551856 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{955}= +1.01099270 \pm 6.5 \cdot 10^{-8} \) | \(a_{956}= +0.53827697 \pm 7.0 \cdot 10^{-8} \) | \(a_{957}= +0.46668786 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{958}= +0.01541260 \pm 6.0 \cdot 10^{-8} \) | \(a_{959}= -1.92327556 \pm 3.8 \cdot 10^{-8} \) | \(a_{960}= -1.13176895 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{961}= +1.46298020 \pm 6.8 \cdot 10^{-8} \) | \(a_{962}= -0.04345943 \pm 4.1 \cdot 10^{-8} \) | \(a_{963}= -1.25336985 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{964}= +0.25025160 \pm 6.7 \cdot 10^{-8} \) | \(a_{965}= +0.28907465 \pm 6.9 \cdot 10^{-8} \) | \(a_{966}= +0.26747433 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{967}= -0.58299465 \pm 8.7 \cdot 10^{-8} \) | \(a_{968}= +0.02850125 \pm 1.0 \cdot 10^{-7} \) | \(a_{969}= +0.55211323 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{970}= +0.21372629 \pm 9.6 \cdot 10^{-8} \) | \(a_{971}= +1.10399954 \pm 7.3 \cdot 10^{-8} \) | \(a_{972}= -1.35686690 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{973}= +1.85606956 \pm 6.7 \cdot 10^{-8} \) | \(a_{974}= +0.02741344 \pm 1.2 \cdot 10^{-7} \) | \(a_{975}= -0.43568851 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{976}= -1.03867511 \pm 9.5 \cdot 10^{-8} \) | \(a_{977}= -1.76716281 \pm 1.1 \cdot 10^{-7} \) | \(a_{978}= -0.20467292 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{979}= -0.13859992 \pm 8.2 \cdot 10^{-8} \) | \(a_{980}= +1.69969167 \pm 8.6 \cdot 10^{-8} \) | \(a_{981}= -0.63648558 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{982}= -0.03245742 \pm 7.3 \cdot 10^{-8} \) | \(a_{983}= -0.93234288 \pm 1.0 \cdot 10^{-7} \) | \(a_{984}= -0.05733647 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{985}= +0.43430886 \pm 5.8 \cdot 10^{-8} \) | \(a_{986}= +0.16037206 \pm 7.7 \cdot 10^{-8} \) | \(a_{987}= +2.50785431 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{988}= -0.46254758 \pm 2.8 \cdot 10^{-8} \) | \(a_{989}= +0.42643325 \pm 2.8 \cdot 10^{-8} \) | \(a_{990}= +0.05388481 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{991}= -0.82989177 \pm 8.3 \cdot 10^{-8} \) | \(a_{992}= -0.72249655 \pm 5.6 \cdot 10^{-8} \) | \(a_{993}= -2.10044299 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{994}= -0.05123989 \pm 7.3 \cdot 10^{-8} \) | \(a_{995}= -0.87580401 \pm 8.2 \cdot 10^{-8} \) | \(a_{996}= +0.61154592 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{997}= +1.32767037 \pm 8.8 \cdot 10^{-8} \) | \(a_{998}= -0.12761365 \pm 1.2 \cdot 10^{-7} \) | \(a_{999}= +0.09029634 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{1000}= +0.33814060 \pm 7.1 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000