Maass form invariants
| Level: | \( 11 \) |
| Weight: | \( 0 \) |
| Character: | 11.1 |
| Symmetry: | odd |
| Fricke sign: | $+1$ |
| Spectral parameter: | \(10.6445164140206035384864299726 \pm 3 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= -1.49534078 \pm 1.4 \cdot 10^{-6} \) | \(a_{3}= +0.66208937 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{4}= +1.23604404 \pm 1.7 \cdot 10^{-6} \) | \(a_{5}= +0.95933433 \pm 1.2 \cdot 10^{-6} \) | \(a_{6}= -0.99004923 \pm 1.5 \cdot 10^{-6} \) |
| \(a_{7}= -1.08290117 \pm 1.2 \cdot 10^{-6} \) | \(a_{8}= -0.35296628 \pm 1.4 \cdot 10^{-6} \) | \(a_{9}= -0.56163767 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{10}= -1.43453174 \pm 1.5 \cdot 10^{-6} \) | \(a_{11}= -0.30151134 \pm 1.0 \cdot 10^{-8} \) | \(a_{12}= +0.81837162 \pm 1.6 \cdot 10^{-6} \) |
| \(a_{13}= +1.08092793 \pm 1.0 \cdot 10^{-6} \) | \(a_{14}= +1.61930627 \pm 1.0 \cdot 10^{-6} \) | \(a_{15}= +0.63516506 \pm 9.6 \cdot 10^{-7} \) |
| \(a_{16}= -0.70823917 \pm 1.2 \cdot 10^{-6} \) | \(a_{17}= +0.91039712 \pm 1.2 \cdot 10^{-6} \) | \(a_{18}= +0.83983971 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{19}= -0.43665861 \pm 9.1 \cdot 10^{-7} \) | \(a_{20}= +1.18577948 \pm 1.6 \cdot 10^{-6} \) | \(a_{21}= -0.71697735 \pm 9.7 \cdot 10^{-7} \) |
| \(a_{22}= +0.45086221 \pm 1.4 \cdot 10^{-6} \) | \(a_{23}= -0.71041971 \pm 1.1 \cdot 10^{-6} \) | \(a_{24}= -0.23369522 \pm 1.6 \cdot 10^{-6} \) |
| \(a_{25}= -0.07967765 \pm 1.0 \cdot 10^{-6} \) | \(a_{26}= -1.61635561 \pm 7.8 \cdot 10^{-7} \) | \(a_{27}= -1.03394370 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{28}= -1.33851353 \pm 1.2 \cdot 10^{-6} \) | \(a_{29}= +1.15519343 \pm 1.1 \cdot 10^{-6} \) | \(a_{30}= -0.94978821 \pm 8.8 \cdot 10^{-7} \) |
| \(a_{31}= +0.65552397 \pm 1.2 \cdot 10^{-6} \) | \(a_{32}= +1.41202519 \pm 1.0 \cdot 10^{-6} \) | \(a_{33}= -0.19962746 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{34}= -1.36135394 \pm 1.5 \cdot 10^{-6} \) | \(a_{35}= -1.03886427 \pm 1.2 \cdot 10^{-6} \) | \(a_{36}= -0.69420889 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{37}= -1.03522985 \pm 1.2 \cdot 10^{-6} \) | \(a_{38}= +0.65295342 \pm 1.2 \cdot 10^{-6} \) | \(a_{39}= +0.71567089 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{40}= -0.33861267 \pm 1.1 \cdot 10^{-6} \) | \(a_{41}= +0.72937665 \pm 8.3 \cdot 10^{-7} \) | \(a_{42}= +1.07212547 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{43}= -1.95358952 \pm 1.2 \cdot 10^{-6} \) | \(a_{44}= -0.37268130 \pm 1.7 \cdot 10^{-6} \) | \(a_{45}= -0.53879830 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{46}= +1.06231956 \pm 1.6 \cdot 10^{-6} \) | \(a_{47}= -0.65726940 \pm 1.0 \cdot 10^{-6} \) | \(a_{48}= -0.46891762 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{49}= +0.17267494 \pm 1.1 \cdot 10^{-6} \) | \(a_{50}= +0.11914523 \pm 1.5 \cdot 10^{-6} \) | \(a_{51}= +0.60276426 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{52}= +1.33607453 \pm 1.0 \cdot 10^{-6} \) | \(a_{53}= -1.46285801 \pm 9.7 \cdot 10^{-7} \) | \(a_{54}= +1.54609817 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{55}= -0.28925018 \pm 1.2 \cdot 10^{-6} \) | \(a_{56}= +0.38222760 \pm 8.6 \cdot 10^{-7} \) | \(a_{57}= -0.28910702 \pm 8.1 \cdot 10^{-7} \) |
| \(a_{58}= -1.72740784 \pm 1.1 \cdot 10^{-6} \) | \(a_{59}= -0.43967476 \pm 1.4 \cdot 10^{-6} \) | \(a_{60}= +0.78509199 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{61}= -0.34685929 \pm 1.0 \cdot 10^{-6} \) | \(a_{62}= -0.98023172 \pm 1.1 \cdot 10^{-6} \) | \(a_{63}= +0.60819809 \pm 9.6 \cdot 10^{-7} \) |
| \(a_{64}= -1.40321968 \pm 1.3 \cdot 10^{-6} \) | \(a_{65}= +1.03697127 \pm 8.3 \cdot 10^{-7} \) | \(a_{66}= +0.29851107 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{67}= +0.02273319 \pm 1.4 \cdot 10^{-6} \) | \(a_{68}= +1.12529094 \pm 1.9 \cdot 10^{-6} \) | \(a_{69}= -0.47036134 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{70}= +1.55345610 \pm 1.0 \cdot 10^{-6} \) | \(a_{71}= -1.68827456 \pm 9.3 \cdot 10^{-7} \) | \(a_{72}= +0.19823916 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{73}= +1.05952686 \pm 1.1 \cdot 10^{-6} \) | \(a_{74}= +1.54802141 \pm 1.1 \cdot 10^{-6} \) | \(a_{75}= -0.05275372 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{76}= -0.53972927 \pm 1.2 \cdot 10^{-6} \) | \(a_{77}= +0.32650699 \pm 1.2 \cdot 10^{-6} \) | \(a_{78}= -1.07017187 \pm 9.5 \cdot 10^{-7} \) |
| \(a_{79}= -0.80708714 \pm 9.7 \cdot 10^{-7} \) | \(a_{80}= -0.67943815 \pm 7.7 \cdot 10^{-7} \) | \(a_{81}= -0.12292546 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{82}= -1.09066664 \pm 8.3 \cdot 10^{-7} \) | \(a_{83}= -1.80830298 \pm 1.1 \cdot 10^{-6} \) | \(a_{84}= -0.88621558 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{85}= +0.87337521 \pm 9.8 \cdot 10^{-7} \) | \(a_{86}= +2.92128207 \pm 1.3 \cdot 10^{-6} \) | \(a_{87}= +0.76484128 \pm 8.5 \cdot 10^{-7} \) |
| \(a_{88}= +0.10642334 \pm 1.4 \cdot 10^{-6} \) | \(a_{89}= -0.08345722 \pm 1.2 \cdot 10^{-6} \) | \(a_{90}= +0.80568706 \pm 1.6 \cdot 10^{-6} \) |
| \(a_{91}= -1.17053812 \pm 1.1 \cdot 10^{-6} \) | \(a_{92}= -0.87811005 \pm 1.9 \cdot 10^{-6} \) | \(a_{93}= +0.43401545 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{94}= +0.98284173 \pm 1.0 \cdot 10^{-6} \) | \(a_{95}= -0.41890159 \pm 1.0 \cdot 10^{-6} \) | \(a_{96}= +0.93488687 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{97}= +1.01193319 \pm 1.0 \cdot 10^{-6} \) | \(a_{98}= -0.25820788 \pm 1.2 \cdot 10^{-6} \) | \(a_{99}= +0.16934013 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{100}= -0.09848508 \pm 1.7 \cdot 10^{-6} \) | \(a_{101}= -1.57350436 \pm 9.2 \cdot 10^{-7} \) | \(a_{102}= -0.90133797 \pm 1.7 \cdot 10^{-6} \) |
| \(a_{103}= +0.82039953 \pm 1.3 \cdot 10^{-6} \) | \(a_{104}= -0.38153111 \pm 5.7 \cdot 10^{-7} \) | \(a_{105}= -0.68782098 \pm 8.8 \cdot 10^{-7} \) |
| \(a_{106}= +2.18747123 \pm 1.2 \cdot 10^{-6} \) | \(a_{107}= -1.60480040 \pm 1.3 \cdot 10^{-6} \) | \(a_{108}= -1.27799994 \pm 8.8 \cdot 10^{-7} \) |
| \(a_{109}= +0.48550861 \pm 8.7 \cdot 10^{-7} \) | \(a_{110}= +0.43252759 \pm 2.7 \cdot 10^{-6} \) | \(a_{111}= -0.68541468 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{112}= +0.76695302 \pm 1.0 \cdot 10^{-6} \) | \(a_{113}= -0.18641587 \pm 1.5 \cdot 10^{-6} \) | \(a_{114}= +0.43231352 \pm 9.2 \cdot 10^{-7} \) |
| \(a_{115}= -0.68153002 \pm 8.7 \cdot 10^{-7} \) | \(a_{116}= +1.42786995 \pm 1.5 \cdot 10^{-6} \) | \(a_{117}= -0.60708984 \pm 9.4 \cdot 10^{-7} \) |
| \(a_{118}= +0.65746359 \pm 1.7 \cdot 10^{-6} \) | \(a_{119}= -0.98587011 \pm 1.1 \cdot 10^{-6} \) | \(a_{120}= -0.22419185 \pm 8.9 \cdot 10^{-7} \) |
| \(a_{121}= +0.09090909 \pm 3.1 \cdot 10^{-7} \) | \(a_{122}= +0.51867284 \pm 1.4 \cdot 10^{-6} \) | \(a_{123}= +0.48291252 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{124}= +0.81025650 \pm 1.1 \cdot 10^{-6} \) | \(a_{125}= -1.03577183 \pm 1.1 \cdot 10^{-6} \) | \(a_{126}= -0.90946340 \pm 8.6 \cdot 10^{-7} \) |
| \(a_{127}= +1.57398049 \pm 1.2 \cdot 10^{-6} \) | \(a_{128}= +0.68626641 \pm 1.2 \cdot 10^{-6} \) | \(a_{129}= -1.29345085 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{130}= -1.55062543 \pm 6.8 \cdot 10^{-7} \) | \(a_{131}= +1.86260544 \pm 1.4 \cdot 10^{-6} \) | \(a_{132}= -0.24674833 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{133}= +0.47285812 \pm 8.0 \cdot 10^{-7} \) | \(a_{134}= -0.03399387 \pm 1.6 \cdot 10^{-6} \) | \(a_{135}= -0.99189768 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{136}= -0.32133948 \pm 1.7 \cdot 10^{-6} \) | \(a_{137}= +1.00904250 \pm 1.1 \cdot 10^{-6} \) | \(a_{138}= +0.70335049 \pm 2.0 \cdot 10^{-6} \) |
| \(a_{139}= -0.23707289 \pm 9.6 \cdot 10^{-7} \) | \(a_{140}= -1.28408198 \pm 1.2 \cdot 10^{-6} \) | \(a_{141}= -0.43517108 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{142}= +2.52454579 \pm 7.5 \cdot 10^{-7} \) | \(a_{143}= -0.32591203 \pm 1.0 \cdot 10^{-6} \) | \(a_{144}= +0.39777380 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{145}= +1.10821671 \pm 1.0 \cdot 10^{-6} \) | \(a_{146}= -1.58435372 \pm 1.3 \cdot 10^{-6} \) | \(a_{147}= +0.11432624 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{148}= -1.27958969 \pm 1.5 \cdot 10^{-6} \) | \(a_{149}= -1.78123289 \pm 9.2 \cdot 10^{-7} \) | \(a_{150}= +0.07888479 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{151}= -1.39310371 \pm 1.6 \cdot 10^{-6} \) | \(a_{152}= +0.15412576 \pm 9.4 \cdot 10^{-7} \) | \(a_{153}= -0.51131332 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{154}= -0.48823921 \pm 2.7 \cdot 10^{-6} \) | \(a_{155}= +0.62886665 \pm 1.1 \cdot 10^{-6} \) | \(a_{156}= +0.88460074 \pm 8.6 \cdot 10^{-7} \) |
| \(a_{157}= +0.34995149 \pm 1.0 \cdot 10^{-6} \) | \(a_{158}= +1.20687031 \pm 9.8 \cdot 10^{-7} \) | \(a_{159}= -0.96854273 \pm 8.4 \cdot 10^{-7} \) |
| \(a_{160}= +1.35460424 \pm 1.0 \cdot 10^{-6} \) | \(a_{161}= +0.76931433 \pm 9.4 \cdot 10^{-7} \) | \(a_{162}= +0.18381545 \pm 1.5 \cdot 10^{-6} \) |
| \(a_{163}= -0.48614744 \pm 1.1 \cdot 10^{-6} \) | \(a_{164}= +0.90154166 \pm 7.3 \cdot 10^{-7} \) | \(a_{165}= -0.19150947 \pm 2.5 \cdot 10^{-6} \) |
| \(a_{166}= +2.70402918 \pm 1.0 \cdot 10^{-6} \) | \(a_{167}= +1.17913084 \pm 1.5 \cdot 10^{-6} \) | \(a_{168}= +0.25306883 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{169}= +0.16840519 \pm 1.0 \cdot 10^{-6} \) | \(a_{170}= -1.30599357 \pm 1.0 \cdot 10^{-6} \) | \(a_{171}= +0.24524392 \pm 8.7 \cdot 10^{-7} \) |
| \(a_{172}= -2.41472268 \pm 1.6 \cdot 10^{-6} \) | \(a_{173}= -1.54787175 \pm 1.2 \cdot 10^{-6} \) | \(a_{174}= -1.14369836 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{175}= +0.08628301 \pm 7.0 \cdot 10^{-7} \) | \(a_{176}= +0.21354214 \pm 1.2 \cdot 10^{-6} \) | \(a_{177}= -0.29110398 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{178}= +0.12479698 \pm 1.7 \cdot 10^{-6} \) | \(a_{179}= -0.00858461 \pm 1.3 \cdot 10^{-6} \) | \(a_{180}= -0.66597842 \pm 1.6 \cdot 10^{-6} \) |
| \(a_{181}= -0.42201881 \pm 1.1 \cdot 10^{-6} \) | \(a_{182}= +1.75035338 \pm 8.8 \cdot 10^{-7} \) | \(a_{183}= -0.22965185 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{184}= +0.25075420 \pm 1.8 \cdot 10^{-6} \) | \(a_{185}= -0.99313153 \pm 1.2 \cdot 10^{-6} \) | \(a_{186}= -0.64900100 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{187}= -0.27449506 \pm 1.2 \cdot 10^{-6} \) | \(a_{188}= -0.81241392 \pm 1.1 \cdot 10^{-6} \) | \(a_{189}= +1.11965884 \pm 9.9 \cdot 10^{-7} \) |
| \(a_{190}= +0.62640063 \pm 1.5 \cdot 10^{-6} \) | \(a_{191}= +1.18369127 \pm 1.2 \cdot 10^{-6} \) | \(a_{192}= -0.92905683 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{193}= +0.38567630 \pm 1.2 \cdot 10^{-6} \) | \(a_{194}= -1.51318497 \pm 1.6 \cdot 10^{-6} \) | \(a_{195}= +0.68656765 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{196}= +0.21343383 \pm 1.3 \cdot 10^{-6} \) | \(a_{197}= +1.49750033 \pm 9.1 \cdot 10^{-7} \) | \(a_{198}= -0.25322120 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{199}= +0.30976623 \pm 1.3 \cdot 10^{-6} \) | \(a_{200}= +0.02812352 \pm 1.4 \cdot 10^{-6} \) | \(a_{201}= +0.01505140 \pm 8.3 \cdot 10^{-7} \) |
| \(a_{202}= +2.35292524 \pm 1.4 \cdot 10^{-6} \) | \(a_{203}= -1.25096031 \pm 1.2 \cdot 10^{-6} \) | \(a_{204}= +0.74504317 \pm 2.0 \cdot 10^{-6} \) |
| \(a_{205}= +0.69971606 \pm 7.1 \cdot 10^{-7} \) | \(a_{206}= -1.22677687 \pm 1.0 \cdot 10^{-6} \) | \(a_{207}= +0.39899847 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{208}= -0.76555550 \pm 9.5 \cdot 10^{-7} \) | \(a_{209}= +0.13165752 \pm 9.2 \cdot 10^{-7} \) | \(a_{210}= +1.02852677 \pm 8.7 \cdot 10^{-7} \) |
| \(a_{211}= -0.67493918 \pm 1.4 \cdot 10^{-6} \) | \(a_{212}= -1.80815692 \pm 1.2 \cdot 10^{-6} \) | \(a_{213}= -1.11778864 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{214}= +2.39972348 \pm 2.0 \cdot 10^{-6} \) | \(a_{215}= -1.87414549 \pm 1.1 \cdot 10^{-6} \) | \(a_{216}= +0.36494726 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{217}= -0.70986767 \pm 1.4 \cdot 10^{-6} \) | \(a_{218}= -0.72600082 \pm 9.9 \cdot 10^{-7} \) | \(a_{219}= +0.70150147 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{220}= -0.35752597 \pm 3.0 \cdot 10^{-6} \) | \(a_{221}= +0.98407368 \pm 9.5 \cdot 10^{-7} \) | \(a_{222}= +1.02492851 \pm 8.9 \cdot 10^{-7} \) |
| \(a_{223}= -0.32481819 \pm 1.2 \cdot 10^{-6} \) | \(a_{224}= -1.52908373 \pm 1.0 \cdot 10^{-6} \) | \(a_{225}= +0.04474997 \pm 9.1 \cdot 10^{-7} \) |
| \(a_{226}= +0.27875525 \pm 1.6 \cdot 10^{-6} \) | \(a_{227}= +0.84446029 \pm 1.0 \cdot 10^{-6} \) | \(a_{228}= -0.35734901 \pm 9.1 \cdot 10^{-7} \) |
| \(a_{229}= -0.34502546 \pm 1.0 \cdot 10^{-6} \) | \(a_{230}= +1.01911962 \pm 9.3 \cdot 10^{-7} \) | \(a_{231}= +0.21617680 \pm 2.5 \cdot 10^{-6} \) |
| \(a_{232}= -0.40774433 \pm 1.1 \cdot 10^{-6} \) | \(a_{233}= -0.73785906 \pm 1.4 \cdot 10^{-6} \) | \(a_{234}= +0.90780620 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{235}= -0.63054110 \pm 8.1 \cdot 10^{-7} \) | \(a_{236}= -0.54345736 \pm 2.0 \cdot 10^{-6} \) | \(a_{237}= -0.53436381 \pm 9.0 \cdot 10^{-7} \) |
| \(a_{238}= +1.47421177 \pm 7.7 \cdot 10^{-7} \) | \(a_{239}= -0.53988409 \pm 1.1 \cdot 10^{-6} \) | \(a_{240}= -0.44984877 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{241}= +0.31887908 \pm 1.7 \cdot 10^{-6} \) | \(a_{242}= -0.13594007 \pm 1.4 \cdot 10^{-6} \) | \(a_{243}= +0.95255606 \pm 8.8 \cdot 10^{-7} \) |
| \(a_{244}= -0.42873336 \pm 1.5 \cdot 10^{-6} \) | \(a_{245}= +0.16565300 \pm 1.1 \cdot 10^{-6} \) | \(a_{246}= -0.72211879 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{247}= -0.47199649 \pm 4.7 \cdot 10^{-7} \) | \(a_{248}= -0.23137786 \pm 8.7 \cdot 10^{-7} \) | \(a_{249}= -1.19725818 \pm 1.5 \cdot 10^{-6} \) |
| \(a_{250}= +1.54883185 \pm 1.0 \cdot 10^{-6} \) | \(a_{251}= +1.28055230 \pm 1.4 \cdot 10^{-6} \) | \(a_{252}= +0.75175962 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{253}= +0.21419960 \pm 1.1 \cdot 10^{-6} \) | \(a_{254}= -2.35363722 \pm 1.4 \cdot 10^{-6} \) | \(a_{255}= +0.57825244 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{256}= +0.37701753 \pm 1.5 \cdot 10^{-6} \) | \(a_{257}= +0.30556966 \pm 1.0 \cdot 10^{-6} \) | \(a_{258}= +1.93414980 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{259}= +1.12105161 \pm 1.2 \cdot 10^{-6} \) | \(a_{260}= +1.28174216 \pm 8.7 \cdot 10^{-7} \) | \(a_{261}= -0.64880014 \pm 9.4 \cdot 10^{-7} \) |
| \(a_{262}= -2.78522986 \pm 1.5 \cdot 10^{-6} \) | \(a_{263}= +1.10051503 \pm 1.6 \cdot 10^{-6} \) | \(a_{264}= +0.07046176 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{265}= -1.40336990 \pm 1.1 \cdot 10^{-6} \) | \(a_{266}= -0.70708402 \pm 1.0 \cdot 10^{-6} \) | \(a_{267}= -0.05525613 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{268}= +0.02809923 \pm 1.9 \cdot 10^{-6} \) | \(a_{269}= -0.42792680 \pm 1.1 \cdot 10^{-6} \) | \(a_{270}= +1.48322505 \pm 8.2 \cdot 10^{-7} \) |
| \(a_{271}= +1.48052375 \pm 1.2 \cdot 10^{-6} \) | \(a_{272}= -0.64477890 \pm 1.5 \cdot 10^{-6} \) | \(a_{273}= -0.77500084 \pm 8.6 \cdot 10^{-7} \) |
| \(a_{274}= -1.50886240 \pm 1.1 \cdot 10^{-6} \) | \(a_{275}= +0.02402371 \pm 1.0 \cdot 10^{-6} \) | \(a_{276}= -0.58138733 \pm 2.3 \cdot 10^{-6} \) |
| \(a_{277}= +0.60297034 \pm 1.7 \cdot 10^{-6} \) | \(a_{278}= +0.35450477 \pm 1.2 \cdot 10^{-6} \) | \(a_{279}= -0.36816696 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{280}= +0.36668405 \pm 9.1 \cdot 10^{-7} \) | \(a_{281}= -0.56371247 \pm 1.4 \cdot 10^{-6} \) | \(a_{282}= +0.65072906 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{283}= +0.46014694 \pm 1.0 \cdot 10^{-6} \) | \(a_{284}= -2.08678171 \pm 9.1 \cdot 10^{-7} \) | \(a_{285}= -0.27735029 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{286}= +0.48734955 \pm 2.4 \cdot 10^{-6} \) | \(a_{287}= -0.78984282 \pm 8.2 \cdot 10^{-7} \) | \(a_{288}= -0.79304654 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{289}= -0.17117708 \pm 7.7 \cdot 10^{-7} \) | \(a_{290}= -1.65716164 \pm 1.0 \cdot 10^{-6} \) | \(a_{291}= +0.66999021 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{292}= +1.30962186 \pm 1.5 \cdot 10^{-6} \) | \(a_{293}= +0.06864872 \pm 1.2 \cdot 10^{-6} \) | \(a_{294}= -0.17095669 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{295}= -0.42179509 \pm 1.5 \cdot 10^{-6} \) | \(a_{296}= +0.36540123 \pm 9.0 \cdot 10^{-7} \) | \(a_{297}= +0.31174575 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{298}= +2.66355017 \pm 9.1 \cdot 10^{-7} \) | \(a_{299}= -0.76791251 \pm 7.1 \cdot 10^{-7} \) | \(a_{300}= -0.06520592 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{301}= +2.11554437 \pm 1.2 \cdot 10^{-6} \) | \(a_{302}= +2.08316478 \pm 1.9 \cdot 10^{-6} \) | \(a_{303}= -1.04180051 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{304}= +0.30925873 \pm 7.8 \cdot 10^{-7} \) | \(a_{305}= -0.33275402 \pm 1.3 \cdot 10^{-6} \) | \(a_{306}= +0.76458766 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{307}= +0.20997561 \pm 1.4 \cdot 10^{-6} \) | \(a_{308}= +0.40357702 \pm 3.0 \cdot 10^{-6} \) | \(a_{309}= +0.54317780 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{310}= -0.94036994 \pm 1.1 \cdot 10^{-6} \) | \(a_{311}= -0.10342812 \pm 1.4 \cdot 10^{-6} \) | \(a_{312}= -0.25260769 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{313}= +0.30497265 \pm 1.1 \cdot 10^{-6} \) | \(a_{314}= -0.52329673 \pm 1.1 \cdot 10^{-6} \) | \(a_{315}= +0.58346530 \pm 8.9 \cdot 10^{-7} \) |
| \(a_{316}= -0.99759525 \pm 1.1 \cdot 10^{-6} \) | \(a_{317}= -1.26640985 \pm 1.3 \cdot 10^{-6} \) | \(a_{318}= +1.44830144 \pm 9.0 \cdot 10^{-7} \) |
| \(a_{319}= -0.34830392 \pm 1.1 \cdot 10^{-6} \) | \(a_{320}= -1.34615681 \pm 1.5 \cdot 10^{-6} \) | \(a_{321}= -1.06252128 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{322}= -1.15038709 \pm 1.0 \cdot 10^{-6} \) | \(a_{323}= -0.39753274 \pm 7.2 \cdot 10^{-7} \) | \(a_{324}= -0.15194128 \pm 1.8 \cdot 10^{-6} \) |
| \(a_{325}= -0.08612579 \pm 4.9 \cdot 10^{-7} \) | \(a_{326}= +0.72695609 \pm 1.6 \cdot 10^{-6} \) | \(a_{327}= +0.32145009 \pm 9.3 \cdot 10^{-7} \) |
| \(a_{328}= -0.25744536 \pm 6.0 \cdot 10^{-7} \) | \(a_{329}= +0.71175780 \pm 7.5 \cdot 10^{-7} \) | \(a_{330}= +0.28637192 \pm 3.9 \cdot 10^{-6} \) |
| \(a_{331}= -0.92126904 \pm 9.2 \cdot 10^{-7} \) | \(a_{332}= -2.23514212 \pm 1.2 \cdot 10^{-6} \) | \(a_{333}= +0.58142408 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{334}= -1.76320243 \pm 1.6 \cdot 10^{-6} \) | \(a_{335}= +0.02180873 \pm 1.5 \cdot 10^{-6} \) | \(a_{336}= +0.50779144 \pm 8.5 \cdot 10^{-7} \) |
| \(a_{337}= +1.79280746 \pm 1.2 \cdot 10^{-6} \) | \(a_{338}= -0.25182315 \pm 1.3 \cdot 10^{-6} \) | \(a_{339}= -0.12342397 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{340}= +1.07953023 \pm 1.2 \cdot 10^{-6} \) | \(a_{341}= -0.19764791 \pm 1.2 \cdot 10^{-6} \) | \(a_{342}= -0.36672324 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{343}= +0.89591127 \pm 1.0 \cdot 10^{-6} \) | \(a_{344}= +0.68955122 \pm 1.4 \cdot 10^{-6} \) | \(a_{345}= -0.45123378 \pm 9.2 \cdot 10^{-7} \) |
| \(a_{346}= +2.31459574 \pm 1.5 \cdot 10^{-6} \) | \(a_{347}= +0.78620683 \pm 1.0 \cdot 10^{-6} \) | \(a_{348}= +0.94537751 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{349}= +0.30225440 \pm 1.2 \cdot 10^{-6} \) | \(a_{350}= -0.12902251 \pm 8.6 \cdot 10^{-7} \) | \(a_{351}= -1.11761862 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{352}= -0.42574161 \pm 1.0 \cdot 10^{-6} \) | \(a_{353}= +0.61152067 \pm 1.3 \cdot 10^{-6} \) | \(a_{354}= +0.43529965 \pm 1.5 \cdot 10^{-6} \) |
| \(a_{355}= -1.61961974 \pm 9.0 \cdot 10^{-7} \) | \(a_{356}= -0.10315679 \pm 2.2 \cdot 10^{-6} \) | \(a_{357}= -0.65273412 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{358}= +0.01283691 \pm 1.9 \cdot 10^{-6} \) | \(a_{359}= -1.31176731 \pm 1.2 \cdot 10^{-6} \) | \(a_{360}= +0.19017763 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{361}= -0.80932926 \pm 1.0 \cdot 10^{-6} \) | \(a_{362}= +0.63106194 \pm 6.9 \cdot 10^{-7} \) | \(a_{363}= +0.06018994 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{364}= -1.44683667 \pm 1.1 \cdot 10^{-6} \) | \(a_{365}= +1.01644049 \pm 1.4 \cdot 10^{-6} \) | \(a_{366}= +0.34340777 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{367}= -0.22170068 \pm 1.2 \cdot 10^{-6} \) | \(a_{368}= +0.50314707 \pm 1.5 \cdot 10^{-6} \) | \(a_{369}= -0.40964540 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{370}= +1.48507008 \pm 1.5 \cdot 10^{-6} \) | \(a_{371}= +1.58413064 \pm 1.0 \cdot 10^{-6} \) | \(a_{372}= +0.53646221 \pm 9.2 \cdot 10^{-7} \) |
| \(a_{373}= -0.45437034 \pm 8.4 \cdot 10^{-7} \) | \(a_{374}= +0.41046366 \pm 2.7 \cdot 10^{-6} \) | \(a_{375}= -0.68577352 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{376}= +0.23199393 \pm 1.2 \cdot 10^{-6} \) | \(a_{377}= +1.24868084 \pm 1.0 \cdot 10^{-6} \) | \(a_{378}= -1.67427152 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{379}= -0.59879017 \pm 1.1 \cdot 10^{-6} \) | \(a_{380}= -0.51778082 \pm 1.5 \cdot 10^{-6} \) | \(a_{381}= +1.04211575 \pm 9.5 \cdot 10^{-7} \) |
| \(a_{382}= -1.77002182 \pm 1.0 \cdot 10^{-6} \) | \(a_{383}= -0.57833653 \pm 1.3 \cdot 10^{-6} \) | \(a_{384}= +0.45436969 \pm 9.0 \cdot 10^{-7} \) |
| \(a_{385}= +0.31322936 \pm 2.5 \cdot 10^{-6} \) | \(a_{386}= -0.57671749 \pm 1.6 \cdot 10^{-6} \) | \(a_{387}= +1.09720947 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{388}= +1.25079399 \pm 1.7 \cdot 10^{-6} \) | \(a_{389}= -0.25276537 \pm 1.2 \cdot 10^{-6} \) | \(a_{390}= -1.02665261 \pm 8.0 \cdot 10^{-7} \) |
| \(a_{391}= -0.64676406 \pm 1.3 \cdot 10^{-6} \) | \(a_{392}= -0.06094843 \pm 1.3 \cdot 10^{-6} \) | \(a_{393}= +1.23321126 \pm 1.6 \cdot 10^{-6} \) |
| \(a_{394}= -2.23927331 \pm 1.3 \cdot 10^{-6} \) | \(a_{395}= -0.77426640 \pm 8.5 \cdot 10^{-7} \) | \(a_{396}= +0.20931186 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{397}= +0.41800457 \pm 1.5 \cdot 10^{-6} \) | \(a_{398}= -0.46320608 \pm 1.5 \cdot 10^{-6} \) | \(a_{399}= +0.31307433 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{400}= +0.05643083 \pm 1.0 \cdot 10^{-6} \) | \(a_{401}= +0.64401611 \pm 1.0 \cdot 10^{-6} \) | \(a_{402}= -0.02250698 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{403}= +0.70857417 \pm 8.3 \cdot 10^{-7} \) | \(a_{404}= -1.94492069 \pm 1.5 \cdot 10^{-6} \) | \(a_{405}= -0.11792661 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{406}= +1.87061196 \pm 7.4 \cdot 10^{-7} \) | \(a_{407}= +0.31213354 \pm 1.2 \cdot 10^{-6} \) | \(a_{408}= -0.21275546 \pm 2.1 \cdot 10^{-6} \) |
| \(a_{409}= -0.22183541 \pm 1.3 \cdot 10^{-6} \) | \(a_{410}= -1.04631395 \pm 7.0 \cdot 10^{-7} \) | \(a_{411}= +0.66807631 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{412}= +1.01404995 \pm 1.3 \cdot 10^{-6} \) | \(a_{413}= +0.47612431 \pm 1.2 \cdot 10^{-6} \) | \(a_{414}= -0.59663868 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{415}= -1.73476713 \pm 1.0 \cdot 10^{-6} \) | \(a_{416}= +1.52629747 \pm 7.2 \cdot 10^{-7} \) | \(a_{417}= -0.15696344 \pm 9.1 \cdot 10^{-7} \) |
| \(a_{418}= -0.19687286 \pm 2.4 \cdot 10^{-6} \) | \(a_{419}= -1.54134380 \pm 1.1 \cdot 10^{-6} \) | \(a_{420}= -0.85017703 \pm 8.3 \cdot 10^{-7} \) |
| \(a_{421}= -0.31738852 \pm 8.7 \cdot 10^{-7} \) | \(a_{422}= +1.00926408 \pm 1.4 \cdot 10^{-6} \) | \(a_{423}= +0.36914725 \pm 1.5 \cdot 10^{-6} \) |
| \(a_{424}= +0.51633955 \pm 1.0 \cdot 10^{-6} \) | \(a_{425}= -0.07253830 \pm 9.6 \cdot 10^{-7} \) | \(a_{426}= +1.67147493 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{427}= +0.37561433 \pm 8.8 \cdot 10^{-7} \) | \(a_{428}= -1.98360397 \pm 2.2 \cdot 10^{-6} \) | \(a_{429}= -0.21578289 \pm 2.2 \cdot 10^{-6} \) |
| \(a_{430}= +2.80248618 \pm 1.2 \cdot 10^{-6} \) | \(a_{431}= -0.27493959 \pm 1.5 \cdot 10^{-6} \) | \(a_{432}= +0.73227943 \pm 8.3 \cdot 10^{-7} \) |
| \(a_{433}= +0.52349712 \pm 1.4 \cdot 10^{-6} \) | \(a_{434}= +1.06149408 \pm 1.2 \cdot 10^{-6} \) | \(a_{435}= +0.73373850 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{436}= +0.60011003 \pm 9.2 \cdot 10^{-7} \) | \(a_{437}= +0.31021088 \pm 9.3 \cdot 10^{-7} \) | \(a_{438}= -1.04898375 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{439}= +1.08795241 \pm 1.5 \cdot 10^{-6} \) | \(a_{440}= +0.10209556 \pm 2.7 \cdot 10^{-6} \) | \(a_{441}= -0.09698075 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{442}= -1.47152550 \pm 6.0 \cdot 10^{-7} \) | \(a_{443}= -1.34868023 \pm 1.5 \cdot 10^{-6} \) | \(a_{444}= -0.84720273 \pm 8.5 \cdot 10^{-7} \) |
| \(a_{445}= -0.08006337 \pm 8.4 \cdot 10^{-7} \) | \(a_{446}= +0.48571389 \pm 1.3 \cdot 10^{-6} \) | \(a_{447}= -1.17933536 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{448}= +1.51954823 \pm 1.1 \cdot 10^{-6} \) | \(a_{449}= -0.31187045 \pm 9.3 \cdot 10^{-7} \) | \(a_{450}= -0.06691645 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{451}= -0.21991533 \pm 8.4 \cdot 10^{-7} \) | \(a_{452}= -0.23041823 \pm 2.2 \cdot 10^{-6} \) | \(a_{453}= -0.92235915 \pm 1.5 \cdot 10^{-6} \) |
| \(a_{454}= -1.26275590 \pm 1.6 \cdot 10^{-6} \) | \(a_{455}= -1.12293740 \pm 9.8 \cdot 10^{-7} \) | \(a_{456}= +0.10204503 \pm 9.2 \cdot 10^{-7} \) |
| \(a_{457}= +0.14449444 \pm 1.0 \cdot 10^{-6} \) | \(a_{458}= +0.51593064 \pm 1.4 \cdot 10^{-6} \) | \(a_{459}= -0.94129937 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{460}= -0.84240111 \pm 9.3 \cdot 10^{-7} \) | \(a_{461}= +0.56409317 \pm 8.0 \cdot 10^{-7} \) | \(a_{462}= -0.32325799 \pm 3.9 \cdot 10^{-6} \) |
| \(a_{463}= -0.64690520 \pm 9.9 \cdot 10^{-7} \) | \(a_{464}= -0.81815323 \pm 1.2 \cdot 10^{-6} \) | \(a_{465}= +0.41636592 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{466}= +1.10335075 \pm 1.1 \cdot 10^{-6} \) | \(a_{467}= -0.08631336 \pm 1.2 \cdot 10^{-6} \) | \(a_{468}= -0.75038978 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{469}= -0.02461780 \pm 1.3 \cdot 10^{-6} \) | \(a_{470}= +0.94287381 \pm 6.2 \cdot 10^{-7} \) | \(a_{471}= +0.23169916 \pm 9.7 \cdot 10^{-7} \) |
| \(a_{472}= +0.15519036 \pm 1.7 \cdot 10^{-6} \) | \(a_{473}= +0.58902940 \pm 1.2 \cdot 10^{-6} \) | \(a_{474}= +0.79905600 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{475}= +0.03479193 \pm 9.3 \cdot 10^{-7} \) | \(a_{476}= -1.21857887 \pm 1.1 \cdot 10^{-6} \) | \(a_{477}= +0.82159616 \pm 8.8 \cdot 10^{-7} \) |
| \(a_{478}= +0.80731070 \pm 1.5 \cdot 10^{-6} \) | \(a_{479}= +0.42426928 \pm 1.5 \cdot 10^{-6} \) | \(a_{480}= +0.89686906 \pm 8.4 \cdot 10^{-7} \) |
| \(a_{481}= -1.11900886 \pm 1.2 \cdot 10^{-6} \) | \(a_{482}= -0.47683290 \pm 1.6 \cdot 10^{-6} \) | \(a_{483}= +0.50935484 \pm 8.7 \cdot 10^{-7} \) |
| \(a_{484}= +0.11236764 \pm 1.7 \cdot 10^{-6} \) | \(a_{485}= +0.97078225 \pm 1.3 \cdot 10^{-6} \) | \(a_{486}= -1.42439592 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{487}= +0.62855544 \pm 7.0 \cdot 10^{-7} \) | \(a_{488}= +0.12242963 \pm 1.0 \cdot 10^{-6} \) | \(a_{489}= -0.32187305 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{490}= -0.24770768 \pm 1.2 \cdot 10^{-6} \) | \(a_{491}= +0.76339369 \pm 1.5 \cdot 10^{-6} \) | \(a_{492}= +0.59690115 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{493}= +1.05168477 \pm 1.1 \cdot 10^{-6} \) | \(a_{494}= +0.70579559 \pm 5.6 \cdot 10^{-7} \) | \(a_{495}= +0.16245380 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{496}= -0.46426775 \pm 1.0 \cdot 10^{-6} \) | \(a_{497}= +1.82823449 \pm 1.0 \cdot 10^{-6} \) | \(a_{498}= +1.79030897 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{499}= -0.32483570 \pm 1.4 \cdot 10^{-6} \) | \(a_{500}= -1.28025960 \pm 1.2 \cdot 10^{-6} \) | \(a_{501}= +0.78068999 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{502}= -1.91486207 \pm 1.4 \cdot 10^{-6} \) | \(a_{503}= -1.32262194 \pm 1.5 \cdot 10^{-6} \) | \(a_{504}= -0.21467342 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{505}= -1.50951675 \pm 6.5 \cdot 10^{-7} \) | \(a_{506}= -0.32030140 \pm 2.6 \cdot 10^{-6} \) | \(a_{507}= +0.11149929 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{508}= +1.94550921 \pm 1.5 \cdot 10^{-6} \) | \(a_{509}= +1.85266313 \pm 1.2 \cdot 10^{-6} \) | \(a_{510}= -0.86468446 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{511}= -1.14736287 \pm 1.3 \cdot 10^{-6} \) | \(a_{512}= -1.25003609 \pm 1.4 \cdot 10^{-6} \) | \(a_{513}= +0.45148042 \pm 8.0 \cdot 10^{-7} \) |
| \(a_{514}= -0.45693078 \pm 1.3 \cdot 10^{-6} \) | \(a_{515}= +0.78703743 \pm 1.1 \cdot 10^{-6} \) | \(a_{516}= -1.59876221 \pm 1.6 \cdot 10^{-6} \) |
| \(a_{517}= +0.19817418 \pm 1.0 \cdot 10^{-6} \) | \(a_{518}= -1.67635419 \pm 9.0 \cdot 10^{-7} \) | \(a_{519}= -1.02482943 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{520}= -0.36601589 \pm 4.6 \cdot 10^{-7} \) | \(a_{521}= -1.11864224 \pm 1.4 \cdot 10^{-6} \) | \(a_{522}= +0.97017731 \pm 8.6 \cdot 10^{-7} \) |
| \(a_{523}= -0.63049278 \pm 9.9 \cdot 10^{-7} \) | \(a_{524}= +2.30226235 \pm 1.8 \cdot 10^{-6} \) | \(a_{525}= +0.05712707 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{526}= -1.64564499 \pm 1.6 \cdot 10^{-6} \) | \(a_{527}= +0.59678714 \pm 9.8 \cdot 10^{-7} \) | \(a_{528}= +0.14138398 \pm 2.5 \cdot 10^{-6} \) |
| \(a_{529}= -0.49530384 \pm 1.2 \cdot 10^{-6} \) | \(a_{530}= +2.09851624 \pm 1.5 \cdot 10^{-6} \) | \(a_{531}= +0.24693791 \pm 1.5 \cdot 10^{-6} \) |
| \(a_{532}= +0.58447346 \pm 8.8 \cdot 10^{-7} \) | \(a_{533}= +0.78840359 \pm 6.8 \cdot 10^{-7} \) | \(a_{534}= +0.08262675 \pm 2.1 \cdot 10^{-6} \) |
| \(a_{535}= -1.53954011 \pm 1.5 \cdot 10^{-6} \) | \(a_{536}= -0.00802405 \pm 1.2 \cdot 10^{-6} \) | \(a_{537}= -0.00568378 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{538}= +0.63989640 \pm 1.8 \cdot 10^{-6} \) | \(a_{539}= -0.05206345 \pm 1.1 \cdot 10^{-6} \) | \(a_{540}= -1.22602922 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{541}= +0.97414708 \pm 9.3 \cdot 10^{-7} \) | \(a_{542}= -2.21388753 \pm 1.0 \cdot 10^{-6} \) | \(a_{543}= -0.27941417 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{544}= +1.28550367 \pm 9.4 \cdot 10^{-7} \) | \(a_{545}= +0.46576508 \pm 9.2 \cdot 10^{-7} \) | \(a_{546}= +1.15889036 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{547}= +1.04526509 \pm 1.1 \cdot 10^{-6} \) | \(a_{548}= +1.24722097 \pm 1.2 \cdot 10^{-6} \) | \(a_{549}= +0.19480924 \pm 9.5 \cdot 10^{-7} \) |
| \(a_{550}= -0.03592364 \pm 2.5 \cdot 10^{-6} \) | \(a_{551}= -0.50442515 \pm 7.3 \cdot 10^{-7} \) | \(a_{552}= +0.16602169 \pm 2.3 \cdot 10^{-6} \) |
| \(a_{553}= +0.87399561 \pm 1.1 \cdot 10^{-6} \) | \(a_{554}= -0.90164614 \pm 1.8 \cdot 10^{-6} \) | \(a_{555}= -0.65754183 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{556}= -0.29303254 \pm 1.3 \cdot 10^{-6} \) | \(a_{557}= -1.42279484 \pm 1.0 \cdot 10^{-6} \) | \(a_{558}= +0.55053506 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{559}= -2.11168948 \pm 7.4 \cdot 10^{-7} \) | \(a_{560}= +0.73576437 \pm 8.1 \cdot 10^{-7} \) | \(a_{561}= -0.18174026 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{562}= +0.84294224 \pm 1.7 \cdot 10^{-6} \) | \(a_{563}= -1.02209730 \pm 1.2 \cdot 10^{-6} \) | \(a_{564}= -0.53789062 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{565}= -0.17883514 \pm 1.1 \cdot 10^{-6} \) | \(a_{566}= -0.68807649 \pm 1.1 \cdot 10^{-6} \) | \(a_{567}= +0.13311612 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{568}= +0.59590399 \pm 9.3 \cdot 10^{-7} \) | \(a_{569}= -0.56793499 \pm 1.2 \cdot 10^{-6} \) | \(a_{570}= +0.41473320 \pm 6.2 \cdot 10^{-7} \) |
| \(a_{571}= +0.89379031 \pm 1.1 \cdot 10^{-6} \) | \(a_{572}= -0.40284163 \pm 2.7 \cdot 10^{-6} \) | \(a_{573}= +0.78370940 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{574}= +1.18108418 \pm 9.0 \cdot 10^{-7} \) | \(a_{575}= +0.05660457 \pm 9.3 \cdot 10^{-7} \) | \(a_{576}= +0.78810103 \pm 1.5 \cdot 10^{-6} \) |
| \(a_{577}= -0.97725550 \pm 1.0 \cdot 10^{-6} \) | \(a_{578}= +0.25596807 \pm 1.1 \cdot 10^{-6} \) | \(a_{579}= +0.25535218 \pm 9.5 \cdot 10^{-7} \) |
| \(a_{580}= +1.36980466 \pm 1.3 \cdot 10^{-6} \) | \(a_{581}= +1.95821341 \pm 1.0 \cdot 10^{-6} \) | \(a_{582}= -1.00186368 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{583}= +0.44106828 \pm 9.8 \cdot 10^{-7} \) | \(a_{584}= -0.37397725 \pm 1.1 \cdot 10^{-6} \) | \(a_{585}= -0.58240213 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{586}= -0.10265323 \pm 1.4 \cdot 10^{-6} \) | \(a_{587}= -1.06922416 \pm 1.0 \cdot 10^{-6} \) | \(a_{588}= +0.14131227 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{589}= -0.28624019 \pm 1.0 \cdot 10^{-6} \) | \(a_{590}= +0.63072739 \pm 2.1 \cdot 10^{-6} \) | \(a_{591}= +0.99147905 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{592}= +0.73319033 \pm 1.1 \cdot 10^{-6} \) | \(a_{593}= +1.75338624 \pm 1.5 \cdot 10^{-6} \) | \(a_{594}= -0.46616614 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{595}= -0.94577904 \pm 9.9 \cdot 10^{-7} \) | \(a_{596}= -2.20168230 \pm 1.1 \cdot 10^{-6} \) | \(a_{597}= +0.20509293 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{598}= +1.14829089 \pm 9.0 \cdot 10^{-7} \) | \(a_{599}= +0.66404698 \pm 1.2 \cdot 10^{-6} \) | \(a_{600}= +0.01862028 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{601}= -0.39651164 \pm 1.1 \cdot 10^{-6} \) | \(a_{602}= -3.16345977 \pm 9.2 \cdot 10^{-7} \) | \(a_{603}= -0.01276782 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{604}= -1.72193754 \pm 2.4 \cdot 10^{-6} \) | \(a_{605}= +0.08721221 \pm 1.2 \cdot 10^{-6} \) | \(a_{606}= +1.55784678 \pm 1.7 \cdot 10^{-6} \) |
| \(a_{607}= -1.09036303 \pm 1.2 \cdot 10^{-6} \) | \(a_{608}= -0.61657295 \pm 9.2 \cdot 10^{-7} \) | \(a_{609}= -0.82824752 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{610}= +0.49758066 \pm 2.1 \cdot 10^{-6} \) | \(a_{611}= -0.71046085 \pm 7.1 \cdot 10^{-7} \) | \(a_{612}= -0.63200578 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{613}= -0.65233185 \pm 1.0 \cdot 10^{-6} \) | \(a_{614}= -0.31398509 \pm 1.5 \cdot 10^{-6} \) | \(a_{615}= +0.46327456 \pm 9.0 \cdot 10^{-7} \) |
| \(a_{616}= -0.11524596 \pm 2.7 \cdot 10^{-6} \) | \(a_{617}= +1.71687848 \pm 1.4 \cdot 10^{-6} \) | \(a_{618}= -0.81223592 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{619}= +1.03098273 \pm 1.0 \cdot 10^{-6} \) | \(a_{620}= +0.77730687 \pm 1.1 \cdot 10^{-6} \) | \(a_{621}= +0.73453398 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{622}= +0.15466029 \pm 1.6 \cdot 10^{-6} \) | \(a_{623}= +0.09037592 \pm 9.7 \cdot 10^{-7} \) | \(a_{624}= -0.50686616 \pm 6.2 \cdot 10^{-7} \) |
| \(a_{625}= -0.91397383 \pm 9.2 \cdot 10^{-7} \) | \(a_{626}= -0.45603804 \pm 1.5 \cdot 10^{-6} \) | \(a_{627}= +0.08716905 \pm 2.1 \cdot 10^{-6} \) |
| \(a_{628}= +0.43255545 \pm 1.1 \cdot 10^{-6} \) | \(a_{629}= -0.94247028 \pm 1.2 \cdot 10^{-6} \) | \(a_{630}= -0.87247946 \pm 9.8 \cdot 10^{-7} \) |
| \(a_{631}= -0.82414201 \pm 1.3 \cdot 10^{-6} \) | \(a_{632}= +0.28487455 \pm 1.0 \cdot 10^{-6} \) | \(a_{633}= -0.44687005 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{634}= +1.89371429 \pm 2.0 \cdot 10^{-6} \) | \(a_{635}= +1.50997352 \pm 1.3 \cdot 10^{-6} \) | \(a_{636}= -1.19716147 \pm 8.5 \cdot 10^{-7} \) |
| \(a_{637}= +0.18664916 \pm 6.4 \cdot 10^{-7} \) | \(a_{638}= +0.52083306 \pm 2.6 \cdot 10^{-6} \) | \(a_{639}= +0.94819859 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{640}= +0.65835893 \pm 1.5 \cdot 10^{-6} \) | \(a_{641}= +0.59713364 \pm 1.4 \cdot 10^{-6} \) | \(a_{642}= +1.58883140 \pm 1.9 \cdot 10^{-6} \) |
| \(a_{643}= -0.92351725 \pm 1.1 \cdot 10^{-6} \) | \(a_{644}= +0.95090640 \pm 1.0 \cdot 10^{-6} \) | \(a_{645}= -1.24085180 \pm 9.5 \cdot 10^{-7} \) |
| \(a_{646}= +0.59444692 \pm 9.7 \cdot 10^{-7} \) | \(a_{647}= +1.49322721 \pm 1.5 \cdot 10^{-6} \) | \(a_{648}= +0.04338854 \pm 1.6 \cdot 10^{-6} \) |
| \(a_{649}= +0.13256693 \pm 1.4 \cdot 10^{-6} \) | \(a_{650}= +0.12878741 \pm 4.8 \cdot 10^{-7} \) | \(a_{651}= -0.46999584 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{652}= -0.60089964 \pm 1.6 \cdot 10^{-6} \) | \(a_{653}= +1.22996512 \pm 1.0 \cdot 10^{-6} \) | \(a_{654}= -0.48067743 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{655}= +1.78686134 \pm 1.0 \cdot 10^{-6} \) | \(a_{656}= -0.51657311 \pm 6.8 \cdot 10^{-7} \) | \(a_{657}= -0.59507020 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{658}= -1.06432046 \pm 6.4 \cdot 10^{-7} \) | \(a_{659}= -0.92664107 \pm 1.2 \cdot 10^{-6} \) | \(a_{660}= -0.23671414 \pm 4.2 \cdot 10^{-6} \) |
| \(a_{661}= -1.74510017 \pm 1.4 \cdot 10^{-6} \) | \(a_{662}= +1.37761117 \pm 1.1 \cdot 10^{-6} \) | \(a_{663}= +0.65154472 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{664}= +0.63826997 \pm 1.2 \cdot 10^{-6} \) | \(a_{665}= +0.45362902 \pm 8.0 \cdot 10^{-7} \) | \(a_{666}= -0.86942714 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{667}= -0.82067218 \pm 1.0 \cdot 10^{-6} \) | \(a_{668}= +1.45745765 \pm 2.0 \cdot 10^{-6} \) | \(a_{669}= -0.21505867 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{670}= -0.03261149 \pm 2.1 \cdot 10^{-6} \) | \(a_{671}= +0.10458201 \pm 1.0 \cdot 10^{-6} \) | \(a_{672}= -1.01239008 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{673}= +1.66910018 \pm 9.4 \cdot 10^{-7} \) | \(a_{674}= -2.68085809 \pm 9.5 \cdot 10^{-7} \) | \(a_{675}= +0.08238220 \pm 5.2 \cdot 10^{-7} \) |
| \(a_{676}= +0.20815624 \pm 1.5 \cdot 10^{-6} \) | \(a_{677}= -0.77519140 \pm 1.3 \cdot 10^{-6} \) | \(a_{678}= +0.18456089 \pm 1.9 \cdot 10^{-6} \) |
| \(a_{679}= -1.09582364 \pm 8.7 \cdot 10^{-7} \) | \(a_{680}= -0.30827200 \pm 9.1 \cdot 10^{-7} \) | \(a_{681}= +0.55910818 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{682}= +0.29555099 \pm 2.7 \cdot 10^{-6} \) | \(a_{683}= +0.14876227 \pm 1.0 \cdot 10^{-6} \) | \(a_{684}= +0.30313229 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{685}= +0.96800911 \pm 1.2 \cdot 10^{-6} \) | \(a_{686}= -1.33969266 \pm 1.1 \cdot 10^{-6} \) | \(a_{687}= -0.22843769 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{688}= +1.38360862 \pm 1.1 \cdot 10^{-6} \) | \(a_{689}= -1.58124408 \pm 6.4 \cdot 10^{-7} \) | \(a_{690}= +0.67474827 \pm 8.9 \cdot 10^{-7} \) |
| \(a_{691}= -1.32493816 \pm 1.2 \cdot 10^{-6} \) | \(a_{692}= -1.91323765 \pm 1.6 \cdot 10^{-6} \) | \(a_{693}= -0.18337862 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{694}= -1.17564713 \pm 1.2 \cdot 10^{-6} \) | \(a_{695}= -0.22743217 \pm 1.0 \cdot 10^{-6} \) | \(a_{696}= -0.26996318 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{697}= +0.66402240 \pm 7.2 \cdot 10^{-7} \) | \(a_{698}= -0.45197333 \pm 1.2 \cdot 10^{-6} \) | \(a_{699}= -0.48852864 \pm 1.5 \cdot 10^{-6} \) |
| \(a_{700}= +0.10664961 \pm 9.0 \cdot 10^{-7} \) | \(a_{701}= -0.76610809 \pm 1.5 \cdot 10^{-6} \) | \(a_{702}= +1.67122070 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{703}= +0.45204203 \pm 7.6 \cdot 10^{-7} \) | \(a_{704}= +0.42308665 \pm 1.3 \cdot 10^{-6} \) | \(a_{705}= -0.41747455 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{706}= -0.91443180 \pm 1.1 \cdot 10^{-6} \) | \(a_{707}= +1.70394971 \pm 8.1 \cdot 10^{-7} \) | \(a_{708}= -0.35981734 \pm 1.7 \cdot 10^{-6} \) |
| \(a_{709}= +1.69183513 \pm 1.0 \cdot 10^{-6} \) | \(a_{710}= +2.42188344 \pm 5.8 \cdot 10^{-7} \) | \(a_{711}= +0.45329054 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{712}= +0.02945758 \pm 2.0 \cdot 10^{-6} \) | \(a_{713}= -0.46569715 \pm 1.1 \cdot 10^{-6} \) | \(a_{714}= +0.97605994 \pm 8.1 \cdot 10^{-7} \) |
| \(a_{715}= -0.31265860 \pm 2.2 \cdot 10^{-6} \) | \(a_{716}= -0.01061095 \pm 2.1 \cdot 10^{-6} \) | \(a_{717}= -0.35745152 \pm 9.1 \cdot 10^{-7} \) |
| \(a_{718}= +1.96153916 \pm 1.5 \cdot 10^{-6} \) | \(a_{719}= +0.36046680 \pm 1.4 \cdot 10^{-6} \) | \(a_{720}= +0.38159806 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{721}= -0.88841161 \pm 1.4 \cdot 10^{-6} \) | \(a_{722}= +1.21022304 \pm 1.0 \cdot 10^{-6} \) | \(a_{723}= +0.21112645 \pm 1.7 \cdot 10^{-6} \) |
| \(a_{724}= -0.52163384 \pm 9.2 \cdot 10^{-7} \) | \(a_{725}= -0.09204309 \pm 8.6 \cdot 10^{-7} \) | \(a_{726}= -0.09000448 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{727}= -0.96698453 \pm 1.4 \cdot 10^{-6} \) | \(a_{728}= +0.41316048 \pm 5.7 \cdot 10^{-7} \) | \(a_{729}= +0.75360270 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{730}= -1.51992491 \pm 1.9 \cdot 10^{-6} \) | \(a_{731}= -1.77854228 \pm 1.1 \cdot 10^{-6} \) | \(a_{732}= -0.28385980 \pm 5.0 \cdot 10^{-7} \) |
| \(a_{733}= +0.90134903 \pm 1.6 \cdot 10^{-6} \) | \(a_{734}= +0.33151807 \pm 1.3 \cdot 10^{-6} \) | \(a_{735}= +0.10967709 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{736}= -1.00313053 \pm 1.1 \cdot 10^{-6} \) | \(a_{737}= -0.00685432 \pm 1.4 \cdot 10^{-6} \) | \(a_{738}= +0.61255947 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{739}= +1.38840790 \pm 1.5 \cdot 10^{-6} \) | \(a_{740}= -1.22755431 \pm 1.7 \cdot 10^{-6} \) | \(a_{741}= -0.31250386 \pm 5.2 \cdot 10^{-7} \) |
| \(a_{742}= -2.36881515 \pm 1.0 \cdot 10^{-6} \) | \(a_{743}= -0.46805899 \pm 1.1 \cdot 10^{-6} \) | \(a_{744}= -0.15319282 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{745}= -1.70879786 \pm 1.0 \cdot 10^{-6} \) | \(a_{746}= +0.67943850 \pm 6.8 \cdot 10^{-7} \) | \(a_{747}= +1.01561107 \pm 1.7 \cdot 10^{-6} \) |
| \(a_{748}= -0.33928798 \pm 2.9 \cdot 10^{-6} \) | \(a_{749}= +1.73784023 \pm 8.9 \cdot 10^{-7} \) | \(a_{750}= +1.02546510 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{751}= +1.11650016 \pm 1.3 \cdot 10^{-6} \) | \(a_{752}= +0.46550393 \pm 1.0 \cdot 10^{-6} \) | \(a_{753}= +0.84784006 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{754}= -1.86720338 \pm 5.9 \cdot 10^{-7} \) | \(a_{755}= -1.33645221 \pm 1.3 \cdot 10^{-6} \) | \(a_{756}= +1.38394763 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{757}= +1.12005866 \pm 1.1 \cdot 10^{-6} \) | \(a_{758}= +0.89539536 \pm 1.2 \cdot 10^{-6} \) | \(a_{759}= +0.14181928 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{760}= +0.14785814 \pm 1.0 \cdot 10^{-6} \) | \(a_{761}= -1.64605686 \pm 1.2 \cdot 10^{-6} \) | \(a_{762}= -1.55831818 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{763}= -0.52575784 \pm 1.0 \cdot 10^{-6} \) | \(a_{764}= +1.46309454 \pm 1.1 \cdot 10^{-6} \) | \(a_{765}= -0.49052042 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{766}= +0.86481020 \pm 1.8 \cdot 10^{-6} \) | \(a_{767}= -0.47525673 \pm 8.8 \cdot 10^{-7} \) | \(a_{768}= +0.24961930 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{769}= -0.18098565 \pm 1.0 \cdot 10^{-6} \) | \(a_{770}= -0.46838464 \pm 4.0 \cdot 10^{-6} \) | \(a_{771}= +0.20231442 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{772}= +0.47671289 \pm 1.9 \cdot 10^{-6} \) | \(a_{773}= -1.24646426 \pm 1.2 \cdot 10^{-6} \) | \(a_{774}= -1.64070206 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{775}= -0.05223061 \pm 6.0 \cdot 10^{-7} \) | \(a_{776}= -0.35717829 \pm 1.3 \cdot 10^{-6} \) | \(a_{777}= +0.74223635 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{778}= +0.37797036 \pm 7.8 \cdot 10^{-7} \) | \(a_{779}= -0.31848859 \pm 6.7 \cdot 10^{-7} \) | \(a_{780}= +0.84862786 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{781}= +0.50903393 \pm 9.4 \cdot 10^{-7} \) | \(a_{782}= +0.96713267 \pm 2.1 \cdot 10^{-6} \) | \(a_{783}= -1.19440496 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{784}= -0.12229516 \pm 9.7 \cdot 10^{-7} \) | \(a_{785}= +0.33572048 \pm 1.1 \cdot 10^{-6} \) | \(a_{786}= -1.84407108 \pm 1.9 \cdot 10^{-6} \) |
| \(a_{787}= -1.26204959 \pm 1.6 \cdot 10^{-6} \) | \(a_{788}= +1.85097636 \pm 1.5 \cdot 10^{-6} \) | \(a_{789}= +0.72863930 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{790}= +1.15779212 \pm 6.1 \cdot 10^{-7} \) | \(a_{791}= +0.20186996 \pm 1.4 \cdot 10^{-6} \) | \(a_{792}= -0.05977136 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{793}= -0.37492989 \pm 6.0 \cdot 10^{-7} \) | \(a_{794}= -0.62505928 \pm 1.5 \cdot 10^{-6} \) | \(a_{795}= -0.92915629 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{796}= +0.38288471 \pm 1.5 \cdot 10^{-6} \) | \(a_{797}= +1.07185402 \pm 1.1 \cdot 10^{-6} \) | \(a_{798}= -0.46815281 \pm 8.3 \cdot 10^{-7} \) |
| \(a_{799}= -0.59837617 \pm 1.0 \cdot 10^{-6} \) | \(a_{800}= -0.11250684 \pm 8.9 \cdot 10^{-7} \) | \(a_{801}= +0.04687272 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{802}= -0.96302355 \pm 1.3 \cdot 10^{-6} \) | \(a_{803}= -0.31945937 \pm 1.2 \cdot 10^{-6} \) | \(a_{804}= +0.01860420 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{805}= +0.73802965 \pm 8.7 \cdot 10^{-7} \) | \(a_{806}= -1.05955985 \pm 7.8 \cdot 10^{-7} \) | \(a_{807}= -0.28332579 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{808}= +0.55539398 \pm 1.4 \cdot 10^{-6} \) | \(a_{809}= +1.05505805 \pm 1.5 \cdot 10^{-6} \) | \(a_{810}= +0.17634047 \pm 1.5 \cdot 10^{-6} \) |
| \(a_{811}= +0.04611983 \pm 1.2 \cdot 10^{-6} \) | \(a_{812}= -1.54624204 \pm 1.2 \cdot 10^{-6} \) | \(a_{813}= +0.98023903 \pm 1.6 \cdot 10^{-6} \) |
| \(a_{814}= -0.46674602 \pm 2.7 \cdot 10^{-6} \) | \(a_{815}= -0.46637793 \pm 1.4 \cdot 10^{-6} \) | \(a_{816}= -0.42690126 \pm 1.6 \cdot 10^{-6} \) |
| \(a_{817}= +0.85305168 \pm 8.0 \cdot 10^{-7} \) | \(a_{818}= +0.33171954 \pm 1.8 \cdot 10^{-6} \) | \(a_{819}= +0.65741830 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{820}= +0.86487986 \pm 6.4 \cdot 10^{-7} \) | \(a_{821}= -0.02278927 \pm 1.6 \cdot 10^{-6} \) | \(a_{822}= -0.99900175 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{823}= +1.01821619 \pm 1.1 \cdot 10^{-6} \) | \(a_{824}= -0.28957337 \pm 1.0 \cdot 10^{-6} \) | \(a_{825}= +0.01590585 \pm 2.2 \cdot 10^{-6} \) |
| \(a_{826}= -0.71196809 \pm 9.0 \cdot 10^{-7} \) | \(a_{827}= -0.19442404 \pm 1.3 \cdot 10^{-6} \) | \(a_{828}= +0.49317968 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{829}= -0.31742752 \pm 9.3 \cdot 10^{-7} \) | \(a_{830}= +2.59406802 \pm 7.3 \cdot 10^{-7} \) | \(a_{831}= +0.39922025 \pm 1.6 \cdot 10^{-6} \) |
| \(a_{832}= -1.51677934 \pm 1.0 \cdot 10^{-6} \) | \(a_{833}= +0.15720277 \pm 1.0 \cdot 10^{-6} \) | \(a_{834}= +0.23471384 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{835}= +1.13118069 \pm 1.2 \cdot 10^{-6} \) | \(a_{836}= +0.16273450 \pm 2.6 \cdot 10^{-6} \) | \(a_{837}= -0.67777488 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{838}= +2.30483424 \pm 1.2 \cdot 10^{-6} \) | \(a_{839}= +0.65017518 \pm 1.2 \cdot 10^{-6} \) | \(a_{840}= +0.24277761 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{841}= +0.33447185 \pm 8.3 \cdot 10^{-7} \) | \(a_{842}= +0.47460399 \pm 1.0 \cdot 10^{-6} \) | \(a_{843}= -0.37322803 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{844}= -0.83425455 \pm 1.5 \cdot 10^{-6} \) | \(a_{845}= +0.16155688 \pm 1.0 \cdot 10^{-6} \) | \(a_{846}= -0.55200094 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{847}= -0.09844556 \pm 1.2 \cdot 10^{-6} \) | \(a_{848}= +1.03605334 \pm 7.1 \cdot 10^{-7} \) | \(a_{849}= +0.30465840 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{850}= +0.10846948 \pm 1.5 \cdot 10^{-6} \) | \(a_{851}= +0.73544769 \pm 6.8 \cdot 10^{-7} \) | \(a_{852}= -1.38163598 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{853}= -0.09590933 \pm 1.5 \cdot 10^{-6} \) | \(a_{854}= -0.56167142 \pm 9.2 \cdot 10^{-7} \) | \(a_{855}= +0.23527091 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{856}= +0.56644043 \pm 1.9 \cdot 10^{-6} \) | \(a_{857}= -0.43283616 \pm 1.2 \cdot 10^{-6} \) | \(a_{858}= +0.32266896 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{859}= +0.01349768 \pm 1.3 \cdot 10^{-6} \) | \(a_{860}= -2.31652637 \pm 1.3 \cdot 10^{-6} \) | \(a_{861}= -0.52294654 \pm 8.5 \cdot 10^{-7} \) |
| \(a_{862}= +0.41112837 \pm 1.7 \cdot 10^{-6} \) | \(a_{863}= -1.61128066 \pm 1.2 \cdot 10^{-6} \) | \(a_{864}= -1.45995455 \pm 9.3 \cdot 10^{-7} \) |
| \(a_{865}= -1.48492651 \pm 1.3 \cdot 10^{-6} \) | \(a_{866}= -0.78280659 \pm 1.8 \cdot 10^{-6} \) | \(a_{867}= -0.11333452 \pm 8.1 \cdot 10^{-7} \) |
| \(a_{868}= -0.87742771 \pm 1.3 \cdot 10^{-6} \) | \(a_{869}= +0.24334593 \pm 9.8 \cdot 10^{-7} \) | \(a_{870}= -1.09718910 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{871}= +0.02457294 \pm 1.3 \cdot 10^{-6} \) | \(a_{872}= -0.17136817 \pm 7.0 \cdot 10^{-7} \) | \(a_{873}= -0.56833980 \pm 9.4 \cdot 10^{-7} \) |
| \(a_{874}= -0.46387098 \pm 1.3 \cdot 10^{-6} \) | \(a_{875}= +1.12163852 \pm 1.1 \cdot 10^{-6} \) | \(a_{876}= +0.86708671 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{877}= +0.61486206 \pm 1.2 \cdot 10^{-6} \) | \(a_{878}= -1.62685961 \pm 1.9 \cdot 10^{-6} \) | \(a_{879}= +0.04545159 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{880}= +0.20485831 \pm 2.5 \cdot 10^{-6} \) | \(a_{881}= -0.09303484 \pm 1.4 \cdot 10^{-6} \) | \(a_{882}= +0.14501927 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{883}= +1.03985021 \pm 1.4 \cdot 10^{-6} \) | \(a_{884}= +1.21635841 \pm 1.0 \cdot 10^{-6} \) | \(a_{885}= -0.27926604 \pm 9.9 \cdot 10^{-7} \) |
| \(a_{886}= +2.01673654 \pm 2.0 \cdot 10^{-6} \) | \(a_{887}= -0.12382893 \pm 1.0 \cdot 10^{-6} \) | \(a_{888}= +0.24192827 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{889}= -1.70446532 \pm 1.1 \cdot 10^{-6} \) | \(a_{890}= +0.11972202 \pm 1.0 \cdot 10^{-6} \) | \(a_{891}= +0.03706342 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{892}= -0.40148959 \pm 1.5 \cdot 10^{-6} \) | \(a_{893}= +0.28700234 \pm 6.1 \cdot 10^{-7} \) | \(a_{894}= +1.76350825 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{895}= -0.00823551 \pm 1.7 \cdot 10^{-6} \) | \(a_{896}= -0.74315870 \pm 9.9 \cdot 10^{-7} \) | \(a_{897}= -0.50842671 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{898}= +0.46635260 \pm 1.1 \cdot 10^{-6} \) | \(a_{899}= +0.75725698 \pm 1.1 \cdot 10^{-6} \) | \(a_{900}= +0.05531293 \pm 1.5 \cdot 10^{-6} \) |
| \(a_{901}= -1.33178172 \pm 8.5 \cdot 10^{-7} \) | \(a_{902}= +0.32884837 \pm 2.3 \cdot 10^{-6} \) | \(a_{903}= +1.40067944 \pm 9.9 \cdot 10^{-7} \) |
| \(a_{904}= +0.06579852 \pm 1.9 \cdot 10^{-6} \) | \(a_{905}= -0.40485714 \pm 9.4 \cdot 10^{-7} \) | \(a_{906}= +1.37924125 \pm 2.2 \cdot 10^{-6} \) |
| \(a_{907}= -0.32702800 \pm 1.5 \cdot 10^{-6} \) | \(a_{908}= +1.04379011 \pm 1.8 \cdot 10^{-6} \) | \(a_{909}= +0.88373932 \pm 8.3 \cdot 10^{-7} \) |
| \(a_{910}= +1.67917409 \pm 7.9 \cdot 10^{-7} \) | \(a_{911}= -0.17743578 \pm 1.0 \cdot 10^{-6} \) | \(a_{912}= +0.20475692 \pm 8.3 \cdot 10^{-7} \) |
| \(a_{913}= +0.54522386 \pm 1.1 \cdot 10^{-6} \) | \(a_{914}= -0.21606843 \pm 1.4 \cdot 10^{-6} \) | \(a_{915}= -0.22031290 \pm 5.0 \cdot 10^{-7} \) |
| \(a_{916}= -0.42646667 \pm 1.5 \cdot 10^{-6} \) | \(a_{917}= -2.01701760 \pm 1.1 \cdot 10^{-6} \) | \(a_{918}= +1.40756333 \pm 9.7 \cdot 10^{-7} \) |
| \(a_{919}= -0.21751704 \pm 1.1 \cdot 10^{-6} \) | \(a_{920}= +0.24055711 \pm 6.9 \cdot 10^{-7} \) | \(a_{921}= +0.13902262 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{922}= -0.84351152 \pm 1.2 \cdot 10^{-6} \) | \(a_{923}= -1.82490313 \pm 5.0 \cdot 10^{-7} \) | \(a_{924}= +0.26720405 \pm 4.2 \cdot 10^{-6} \) |
| \(a_{925}= +0.08248468 \pm 1.0 \cdot 10^{-6} \) | \(a_{926}= +0.96734372 \pm 1.1 \cdot 10^{-6} \) | \(a_{927}= -0.46076728 \pm 1.6 \cdot 10^{-6} \) |
| \(a_{928}= +1.63116222 \pm 8.3 \cdot 10^{-7} \) | \(a_{929}= -0.24702499 \pm 1.2 \cdot 10^{-6} \) | \(a_{930}= -0.62260894 \pm 9.2 \cdot 10^{-7} \) |
| \(a_{931}= -0.07540000 \pm 6.9 \cdot 10^{-7} \) | \(a_{932}= -0.91202630 \pm 1.3 \cdot 10^{-6} \) | \(a_{933}= -0.06847866 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{934}= +0.12906789 \pm 1.4 \cdot 10^{-6} \) | \(a_{935}= -0.26333253 \pm 2.5 \cdot 10^{-6} \) | \(a_{936}= +0.21428224 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{937}= +0.42231715 \pm 1.1 \cdot 10^{-6} \) | \(a_{938}= +0.03681200 \pm 1.1 \cdot 10^{-6} \) | \(a_{939}= +0.20191915 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{940}= -0.77937656 \pm 6.5 \cdot 10^{-7} \) | \(a_{941}= -0.29689198 \pm 1.2 \cdot 10^{-6} \) | \(a_{942}= -0.34646920 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{943}= -0.51816355 \pm 7.9 \cdot 10^{-7} \) | \(a_{944}= +0.31139489 \pm 1.2 \cdot 10^{-6} \) | \(a_{945}= +1.07412716 \pm 9.9 \cdot 10^{-7} \) |
| \(a_{946}= -0.88079969 \pm 2.6 \cdot 10^{-6} \) | \(a_{947}= +1.10942249 \pm 1.5 \cdot 10^{-6} \) | \(a_{948}= -0.66049721 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{949}= +1.14527218 \pm 8.1 \cdot 10^{-7} \) | \(a_{950}= -0.05202579 \pm 1.3 \cdot 10^{-6} \) | \(a_{951}= -0.83847650 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{952}= +0.34797890 \pm 8.1 \cdot 10^{-7} \) | \(a_{953}= -0.64634171 \pm 1.1 \cdot 10^{-6} \) | \(a_{954}= -1.22856624 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{955}= +1.13555567 \pm 1.0 \cdot 10^{-6} \) | \(a_{956}= -0.66732051 \pm 1.6 \cdot 10^{-6} \) | \(a_{957}= -0.23060832 \pm 2.3 \cdot 10^{-6} \) |
| \(a_{958}= -0.63442716 \pm 1.6 \cdot 10^{-6} \) | \(a_{959}= -1.09269330 \pm 1.1 \cdot 10^{-6} \) | \(a_{960}= -0.89127611 \pm 9.7 \cdot 10^{-7} \) |
| \(a_{961}= -0.57028832 \pm 1.5 \cdot 10^{-6} \) | \(a_{962}= +1.67329958 \pm 6.8 \cdot 10^{-7} \) | \(a_{963}= +0.90131636 \pm 1.6 \cdot 10^{-6} \) |
| \(a_{964}= +0.39414859 \pm 2.0 \cdot 10^{-6} \) | \(a_{965}= +0.36999251 \pm 1.4 \cdot 10^{-6} \) | \(a_{966}= -0.76165906 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{967}= -0.36535702 \pm 1.4 \cdot 10^{-6} \) | \(a_{968}= -0.03208784 \pm 1.4 \cdot 10^{-6} \) | \(a_{969}= -0.26320220 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{970}= -1.45165028 \pm 2.1 \cdot 10^{-6} \) | \(a_{971}= -0.39923378 \pm 1.5 \cdot 10^{-6} \) | \(a_{972}= +1.17740124 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{973}= +0.25672651 \pm 1.0 \cdot 10^{-6} \) | \(a_{974}= -0.93990459 \pm 9.7 \cdot 10^{-7} \) | \(a_{975}= -0.05702297 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{976}= +0.24565934 \pm 6.8 \cdot 10^{-7} \) | \(a_{977}= +1.19592969 \pm 1.1 \cdot 10^{-6} \) | \(a_{978}= +0.48130990 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{979}= +0.02516330 \pm 1.2 \cdot 10^{-6} \) | \(a_{980}= +0.20475440 \pm 1.2 \cdot 10^{-6} \) | \(a_{981}= -0.27267992 \pm 9.0 \cdot 10^{-7} \) |
| \(a_{982}= -1.14153371 \pm 1.5 \cdot 10^{-6} \) | \(a_{983}= +0.76922363 \pm 1.1 \cdot 10^{-6} \) | \(a_{984}= -0.17045184 \pm 9.3 \cdot 10^{-7} \) |
| \(a_{985}= +1.43660348 \pm 6.5 \cdot 10^{-7} \) | \(a_{986}= -1.57262712 \pm 1.2 \cdot 10^{-6} \) | \(a_{987}= +0.47124727 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{988}= -0.58340844 \pm 4.7 \cdot 10^{-7} \) | \(a_{989}= +1.38786850 \pm 1.1 \cdot 10^{-6} \) | \(a_{990}= -0.24292379 \pm 4.1 \cdot 10^{-6} \) |
| \(a_{991}= +0.60638462 \pm 1.0 \cdot 10^{-6} \) | \(a_{992}= +0.92561636 \pm 1.1 \cdot 10^{-6} \) | \(a_{993}= -0.60996244 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{994}= -2.73383359 \pm 6.3 \cdot 10^{-7} \) | \(a_{995}= +0.29716938 \pm 1.5 \cdot 10^{-6} \) | \(a_{996}= -1.47986383 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{997}= +1.70894337 \pm 1.1 \cdot 10^{-6} \) | \(a_{998}= +0.48574006 \pm 1.7 \cdot 10^{-6} \) | \(a_{999}= +1.07036938 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{1000}= +0.36559253 \pm 9.4 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000