Properties

Label 40.24.1.dx.1
Level $40$
Index $24$
Genus $1$
Analytic rank $1$
Cusps $4$
$\Q$-cusps $0$

Related objects

Downloads

Learn more

Invariants

Level: $40$ $\SL_2$-level: $8$ Newform level: $800$
Index: $24$ $\PSL_2$-index:$24$
Genus: $1 = 1 + \frac{ 24 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 4 }{2}$
Cusps: $4$ (none of which are rational) Cusp widths $4^{2}\cdot8^{2}$ Cusp orbits $2^{2}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
Analytic rank: $1$
$\Q$-gonality: $2$
$\overline{\Q}$-gonality: $2$
Rational cusps: $0$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 8C1
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 40.24.1.64

Level structure

$\GL_2(\Z/40\Z)$-generators: $\begin{bmatrix}7&12\\3&25\end{bmatrix}$, $\begin{bmatrix}11&26\\22&25\end{bmatrix}$, $\begin{bmatrix}23&12\\5&1\end{bmatrix}$, $\begin{bmatrix}35&26\\24&17\end{bmatrix}$
Contains $-I$: yes
Quadratic refinements: none in database
Cyclic 40-isogeny field degree: $24$
Cyclic 40-torsion field degree: $384$
Full 40-torsion field degree: $30720$

Jacobian

Conductor: $2^{5}\cdot5^{2}$
Simple: yes
Squarefree: yes
Decomposition: $1$
Newforms: 800.2.a.d

Models

Weierstrass model Weierstrass model

$ y^{2} $ $=$ $ x^{3} - 275x - 1750 $
Copy content Toggle raw display

Rational points

This modular curve has infinitely many rational points, including 1 stored non-cuspidal point.

Maps to other modular curves

$j$-invariant map of degree 24 from the Weierstrass model of this modular curve to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle -\frac{2^4}{5^2}\cdot\frac{5759964x^{2}y^{14}+10517262840x^{2}y^{13}z+6312342305725x^{2}y^{12}z^{2}+2021068724310000x^{2}y^{11}z^{3}+420346584739050000x^{2}y^{10}z^{4}+62829587089141875000x^{2}y^{9}z^{5}+7142535988510439062500x^{2}y^{8}z^{6}+637396986158486015625000x^{2}y^{7}z^{7}+45344031911317968750000000x^{2}y^{6}z^{8}+2578751590625481181640625000x^{2}y^{5}z^{9}+116035485186543546575927734375x^{2}y^{4}z^{10}+4013060817595636519775390625000x^{2}y^{3}z^{11}+100476374383928222479248046875000x^{2}y^{2}z^{12}+1615315094485050051727294921875000x^{2}yz^{13}+12424608629420943271350860595703125x^{2}z^{14}+285768xy^{15}+1017134046xy^{14}z+822416251200xy^{13}z^{2}+321509082398500xy^{12}z^{3}+78535246361175000xy^{11}z^{4}+13552800644129125000xy^{10}z^{5}+1767982016022618750000xy^{9}z^{6}+181326064172934117187500xy^{8}z^{7}+14942674292209094531250000xy^{7}z^{8}+998641417646239586425781250xy^{6}z^{9}+54065830117075359228515625000xy^{5}z^{10}+2341791201418576233154296875000xy^{4}z^{11}+78778260259019481793212890625000xy^{3}z^{12}+1938405963312663502155303955078125xy^{2}z^{13}+30920580613693374678039550781250000xyz^{14}+237833543456152979395866394042968750xz^{15}+9261y^{16}+84200472y^{15}z+96540212620y^{14}z^{2}+44868567525000y^{13}z^{3}+12025209561758750y^{12}z^{4}+2180941405771125000y^{11}z^{5}+291741878262892187500y^{10}z^{6}+30259159443281343750000y^{9}z^{7}+2506937331978460751953125y^{8}z^{8}+168734116933672042968750000y^{7}z^{9}+9292424446425025717773437500y^{6}z^{10}+418182084585389501953125000000y^{5}z^{11}+15244418597049578423461914062500y^{4}z^{12}+441905371870854846954345703125000y^{3}z^{13}+9762767360024785560379028320312500y^{2}z^{14}+147674296688428060283660888671875000yz^{15}+1135874571619436018822193145751953125z^{16}}{16x^{2}y^{14}-630716x^{2}y^{12}z^{2}+5005377000x^{2}y^{10}z^{4}-26205518468750x^{2}y^{8}z^{6}+102150598906250000x^{2}y^{6}z^{8}-270136661212158203125x^{2}y^{4}z^{10}+424866958708618164062500x^{2}y^{2}z^{12}-298648384200626373291015625x^{2}z^{14}+984xy^{14}z-7738120xy^{12}z^{3}+52377686250xy^{10}z^{5}-343073899687500xy^{8}z^{7}+1579525244335937500xy^{6}z^{9}-4624915920361328125000xy^{4}z^{11}+7770539678013763427734375xy^{2}z^{13}-5716767874107017517089843750xz^{15}-y^{16}-3704y^{14}z^{2}+190712300y^{12}z^{4}-1076563300000y^{10}z^{6}+3166847083593750y^{8}z^{8}-4350119798828125000y^{6}z^{10}-4229736648864746093750y^{4}z^{12}+24970708537469482421875000y^{2}z^{14}-27302840321067142486572265625z^{16}}$

Modular covers

Sorry, your browser does not support the nearby lattice.

Cover information

Click on a modular curve in the diagram to see information about it.

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank Kernel decomposition
8.12.0.u.1 $8$ $2$ $2$ $0$ $0$ full Jacobian
20.12.0.o.1 $20$ $2$ $2$ $0$ $0$ full Jacobian
40.12.1.h.1 $40$ $2$ $2$ $1$ $1$ dimension zero

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus Rank Kernel decomposition
40.48.1.bq.1 $40$ $2$ $2$ $1$ $1$ dimension zero
40.48.1.ck.1 $40$ $2$ $2$ $1$ $1$ dimension zero
40.48.1.em.1 $40$ $2$ $2$ $1$ $1$ dimension zero
40.48.1.et.1 $40$ $2$ $2$ $1$ $1$ dimension zero
40.48.1.ix.1 $40$ $2$ $2$ $1$ $1$ dimension zero
40.48.1.jj.1 $40$ $2$ $2$ $1$ $1$ dimension zero
40.48.1.jm.1 $40$ $2$ $2$ $1$ $1$ dimension zero
40.48.1.jy.1 $40$ $2$ $2$ $1$ $1$ dimension zero
40.120.9.ej.1 $40$ $5$ $5$ $9$ $3$ $1^{6}\cdot2$
40.144.9.jd.1 $40$ $6$ $6$ $9$ $2$ $1^{6}\cdot2$
40.240.17.vf.1 $40$ $10$ $10$ $17$ $5$ $1^{12}\cdot2^{2}$
120.48.1.bdr.1 $120$ $2$ $2$ $1$ $?$ dimension zero
120.48.1.bdz.1 $120$ $2$ $2$ $1$ $?$ dimension zero
120.48.1.bfn.1 $120$ $2$ $2$ $1$ $?$ dimension zero
120.48.1.bfv.1 $120$ $2$ $2$ $1$ $?$ dimension zero
120.48.1.cip.1 $120$ $2$ $2$ $1$ $?$ dimension zero
120.48.1.cix.1 $120$ $2$ $2$ $1$ $?$ dimension zero
120.48.1.cju.1 $120$ $2$ $2$ $1$ $?$ dimension zero
120.48.1.ckc.1 $120$ $2$ $2$ $1$ $?$ dimension zero
120.72.5.bsz.1 $120$ $3$ $3$ $5$ $?$ not computed
120.96.5.rl.1 $120$ $4$ $4$ $5$ $?$ not computed
280.48.1.bgh.1 $280$ $2$ $2$ $1$ $?$ dimension zero
280.48.1.bgl.1 $280$ $2$ $2$ $1$ $?$ dimension zero
280.48.1.bhn.1 $280$ $2$ $2$ $1$ $?$ dimension zero
280.48.1.bhr.1 $280$ $2$ $2$ $1$ $?$ dimension zero
280.48.1.bqd.1 $280$ $2$ $2$ $1$ $?$ dimension zero
280.48.1.bqh.1 $280$ $2$ $2$ $1$ $?$ dimension zero
280.48.1.brj.1 $280$ $2$ $2$ $1$ $?$ dimension zero
280.48.1.brn.1 $280$ $2$ $2$ $1$ $?$ dimension zero
280.192.13.kf.1 $280$ $8$ $8$ $13$ $?$ not computed