Properties

Label 38.120.4-38.a.1.4
Level $38$
Index $120$
Genus $4$
Analytic rank $0$
Cusps $4$
$\Q$-cusps $4$

Related objects

Downloads

Learn more

Invariants

Level: $38$ $\SL_2$-level: $38$ Newform level: $38$
Index: $120$ $\PSL_2$-index:$60$
Genus: $4 = 1 + \frac{ 60 }{12} - \frac{ 0 }{4} - \frac{ 0 }{3} - \frac{ 4 }{2}$
Cusps: $4$ (all of which are rational) Cusp widths $1\cdot2\cdot19\cdot38$ Cusp orbits $1^{4}$
Elliptic points: $0$ of order $2$ and $0$ of order $3$
Analytic rank: $0$
$\Q$-gonality: $3 \le \gamma \le 4$
$\overline{\Q}$-gonality: $3 \le \gamma \le 4$
Rational cusps: $4$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 38A4
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 38.120.4.10

Level structure

$\GL_2(\Z/38\Z)$-generators: $\begin{bmatrix}9&31\\0&21\end{bmatrix}$, $\begin{bmatrix}31&8\\0&23\end{bmatrix}$
Contains $-I$: no $\quad$ (see 38.60.4.a.1 for the level structure with $-I$)
Cyclic 38-isogeny field degree: $1$
Cyclic 38-torsion field degree: $18$
Full 38-torsion field degree: $6156$

Jacobian

Conductor: $2^{2}\cdot19^{4}$
Simple: no
Squarefree: no
Decomposition: $1^{4}$
Newforms: 19.2.a.a$^{2}$, 38.2.a.a, 38.2.a.b

Models

Canonical model in $\mathbb{P}^{ 3 }$

$ 0 $ $=$ $ x^{2} - x y + 2 x z + 2 x w - y z - y w + z w $
$=$ $ - x^{2} z + x^{2} w - x y w + x z^{2} + 2 x w^{2} + y^{3} + y z w + y w^{2} - z w^{2}$
Copy content Toggle raw display

Rational points

This modular curve has 4 rational cusps but no known non-cuspidal rational points. The following are the coordinates of the rational cusps on this modular curve.

Canonical model
$(-1:0:-1:1)$, $(-2:0:0:1)$, $(0:0:0:1)$, $(0:0:1:0)$

Maps to other modular curves

$j$-invariant map of degree 60 from the canonical model of this modular curve to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle \frac{6201217392xy^{2}z^{7}+3435252496xyz^{8}-6506578672y^{2}z^{8}+36872304672xz^{9}-16351570160yz^{9}-16z^{10}-14880051216xy^{2}z^{6}w-7356905664xyz^{7}w+19177094064y^{2}z^{7}w-75788030096xz^{8}w+40396764832yz^{8}w+16351570064z^{9}w+23508635328xy^{2}z^{5}w^{2}+7406126304xyz^{6}w^{2}-32029169136y^{2}z^{6}w^{2}+111529182928xz^{7}w^{2}-61169759328yz^{7}w^{2}-50241768112z^{8}w^{2}-25115953440xy^{2}z^{4}w^{3}-15256636736xyz^{5}w^{3}+45665287520y^{2}z^{5}w^{3}-122836944768xz^{6}w^{3}+67119527200yz^{6}w^{3}+89896960672z^{7}w^{3}+18303371280xy^{2}z^{3}w^{4}+6680863392xyz^{4}w^{4}-44681163552y^{2}z^{4}w^{4}+129106140448xz^{5}w^{4}-73192979216yz^{5}w^{4}-117217257536z^{6}w^{4}-17391259584xy^{2}z^{2}w^{5}-8868322176xyz^{3}w^{5}+37462556976y^{2}z^{3}w^{5}-89298011840xz^{4}w^{5}+42316821888yz^{4}w^{5}+131713469552z^{5}w^{5}+6148767552xy^{2}zw^{6}+88770688xyz^{2}w^{6}-25617808096y^{2}z^{2}w^{6}+68950940736xz^{3}w^{6}-40687828448yz^{3}w^{6}-109275926480z^{4}w^{6}-3010936320xy^{2}w^{7}-4337971200xyzw^{7}+14041561920y^{2}zw^{7}-32072375552xz^{2}w^{7}+8245618816yz^{2}w^{7}+87776948416z^{3}w^{7}-6180720768y^{2}w^{8}+15054637312xzw^{8}-7939602048yzw^{8}-50899157632z^{2}w^{8}-6021872640xw^{9}+1221120000yw^{9}+22866371072zw^{9}-12043745536w^{10}}{-686969xy^{2}z^{7}-2645394xyz^{8}+934852y^{2}z^{8}+3292690xz^{9}-2050227yz^{9}-1080436xy^{2}z^{6}w-7970912xyz^{7}w+2762515y^{2}z^{7}w+8920802xz^{8}w-7725334yz^{8}w+2050227z^{9}w-699004xy^{2}z^{5}w^{2}-15706080xyz^{6}w^{2}+5933652y^{2}z^{6}w^{2}+18349550xz^{7}w^{2}-16697144yz^{7}w^{2}+4740239z^{8}w^{2}+381412xy^{2}z^{4}w^{3}-18152152xyz^{5}w^{3}+7499508y^{2}z^{5}w^{3}+21981064xz^{6}w^{3}-22452724yz^{6}w^{3}+9321398z^{7}w^{3}+988952xy^{2}z^{3}w^{4}-15844256xyz^{4}w^{4}+7386104y^{2}z^{4}w^{4}+19679036xz^{5}w^{4}-19731300yz^{5}w^{4}+8871024z^{6}w^{4}+616976xy^{2}z^{2}w^{5}-8719648xyz^{3}w^{5}+4781344y^{2}z^{3}w^{5}+10891792xz^{4}w^{5}-11696232yz^{4}w^{5}+6595496z^{5}w^{5}+308352xy^{2}zw^{6}-3606896xyz^{2}w^{6}+2223248y^{2}z^{2}w^{6}+4354400xz^{3}w^{6}-3607968yz^{3}w^{6}+1842160z^{4}w^{6}-589152xyzw^{7}+589152y^{2}zw^{7}+740320xz^{2}w^{7}-308688yz^{2}w^{7}+278288z^{3}w^{7}-19856y^{2}w^{8}-64xzw^{8}+674784yzw^{8}-502288z^{2}w^{8}+152640yw^{9}-152640zw^{9}}$

Modular covers

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank Kernel decomposition
38.40.1-19.a.1.1 $38$ $3$ $3$ $1$ $0$ $1^{3}$

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus Rank Kernel decomposition
38.240.8-38.a.1.2 $38$ $2$ $2$ $8$ $0$ $1^{4}$
38.240.8-38.e.1.1 $38$ $2$ $2$ $8$ $2$ $1^{4}$
38.360.10-38.a.1.2 $38$ $3$ $3$ $10$ $0$ $2\cdot4$
38.360.10-38.a.2.3 $38$ $3$ $3$ $10$ $0$ $2\cdot4$
38.360.10-38.b.1.4 $38$ $3$ $3$ $10$ $2$ $1^{2}\cdot2^{2}$
38.2280.76-38.a.1.2 $38$ $19$ $19$ $76$ $26$ $1^{14}\cdot2^{12}\cdot3^{6}\cdot4^{4}$
76.240.8-76.a.1.3 $76$ $2$ $2$ $8$ $?$ not computed
76.240.8-76.b.1.7 $76$ $2$ $2$ $8$ $?$ not computed
76.240.8-76.c.1.11 $76$ $2$ $2$ $8$ $?$ not computed
76.240.8-76.d.1.1 $76$ $2$ $2$ $8$ $?$ not computed
76.240.8-76.e.1.7 $76$ $2$ $2$ $8$ $?$ not computed
76.240.8-76.f.1.7 $76$ $2$ $2$ $8$ $?$ not computed
76.240.9-76.a.1.7 $76$ $2$ $2$ $9$ $?$ not computed
76.240.9-76.b.1.7 $76$ $2$ $2$ $9$ $?$ not computed
76.240.9-76.c.1.7 $76$ $2$ $2$ $9$ $?$ not computed
76.240.9-76.d.1.11 $76$ $2$ $2$ $9$ $?$ not computed
114.240.8-114.a.1.1 $114$ $2$ $2$ $8$ $?$ not computed
114.240.8-114.c.1.2 $114$ $2$ $2$ $8$ $?$ not computed
114.360.14-114.a.1.14 $114$ $3$ $3$ $14$ $?$ not computed
114.480.17-114.a.1.15 $114$ $4$ $4$ $17$ $?$ not computed
152.240.8-152.a.1.1 $152$ $2$ $2$ $8$ $?$ not computed
152.240.8-152.b.1.1 $152$ $2$ $2$ $8$ $?$ not computed
152.240.8-152.c.1.13 $152$ $2$ $2$ $8$ $?$ not computed
152.240.8-152.d.1.13 $152$ $2$ $2$ $8$ $?$ not computed
152.240.8-152.e.1.1 $152$ $2$ $2$ $8$ $?$ not computed
152.240.8-152.f.1.1 $152$ $2$ $2$ $8$ $?$ not computed
152.240.8-152.g.1.13 $152$ $2$ $2$ $8$ $?$ not computed
152.240.8-152.h.1.13 $152$ $2$ $2$ $8$ $?$ not computed
152.240.9-152.a.1.14 $152$ $2$ $2$ $9$ $?$ not computed
152.240.9-152.b.1.14 $152$ $2$ $2$ $9$ $?$ not computed
152.240.9-152.c.1.14 $152$ $2$ $2$ $9$ $?$ not computed
152.240.9-152.d.1.14 $152$ $2$ $2$ $9$ $?$ not computed
190.240.8-190.a.1.2 $190$ $2$ $2$ $8$ $?$ not computed
190.240.8-190.b.1.1 $190$ $2$ $2$ $8$ $?$ not computed
228.240.8-228.a.1.2 $228$ $2$ $2$ $8$ $?$ not computed
228.240.8-228.b.1.14 $228$ $2$ $2$ $8$ $?$ not computed
228.240.8-228.c.1.14 $228$ $2$ $2$ $8$ $?$ not computed
228.240.8-228.d.1.2 $228$ $2$ $2$ $8$ $?$ not computed
228.240.8-228.e.1.14 $228$ $2$ $2$ $8$ $?$ not computed
228.240.8-228.f.1.14 $228$ $2$ $2$ $8$ $?$ not computed
228.240.9-228.a.1.13 $228$ $2$ $2$ $9$ $?$ not computed
228.240.9-228.b.1.13 $228$ $2$ $2$ $9$ $?$ not computed
228.240.9-228.e.1.13 $228$ $2$ $2$ $9$ $?$ not computed
228.240.9-228.f.1.13 $228$ $2$ $2$ $9$ $?$ not computed
266.240.8-266.g.1.1 $266$ $2$ $2$ $8$ $?$ not computed
266.240.8-266.h.1.1 $266$ $2$ $2$ $8$ $?$ not computed
266.360.10-266.a.1.8 $266$ $3$ $3$ $10$ $?$ not computed
266.360.10-266.a.2.8 $266$ $3$ $3$ $10$ $?$ not computed
266.360.10-266.b.1.4 $266$ $3$ $3$ $10$ $?$ not computed
266.360.10-266.b.2.8 $266$ $3$ $3$ $10$ $?$ not computed
266.360.10-266.c.1.4 $266$ $3$ $3$ $10$ $?$ not computed
266.360.10-266.c.2.8 $266$ $3$ $3$ $10$ $?$ not computed