Newspace parameters
Level: | \( N \) | \(=\) | \( 38 = 2 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 38.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(0.303431527681\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
1.00000 | −1.00000 | 1.00000 | −4.00000 | −1.00000 | 3.00000 | 1.00000 | −2.00000 | −4.00000 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(19\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 38.2.a.b | ✓ | 1 |
3.b | odd | 2 | 1 | 342.2.a.d | 1 | ||
4.b | odd | 2 | 1 | 304.2.a.d | 1 | ||
5.b | even | 2 | 1 | 950.2.a.b | 1 | ||
5.c | odd | 4 | 2 | 950.2.b.c | 2 | ||
7.b | odd | 2 | 1 | 1862.2.a.f | 1 | ||
8.b | even | 2 | 1 | 1216.2.a.n | 1 | ||
8.d | odd | 2 | 1 | 1216.2.a.g | 1 | ||
11.b | odd | 2 | 1 | 4598.2.a.a | 1 | ||
12.b | even | 2 | 1 | 2736.2.a.w | 1 | ||
13.b | even | 2 | 1 | 6422.2.a.b | 1 | ||
15.d | odd | 2 | 1 | 8550.2.a.u | 1 | ||
19.b | odd | 2 | 1 | 722.2.a.b | 1 | ||
19.c | even | 3 | 2 | 722.2.c.d | 2 | ||
19.d | odd | 6 | 2 | 722.2.c.f | 2 | ||
19.e | even | 9 | 6 | 722.2.e.c | 6 | ||
19.f | odd | 18 | 6 | 722.2.e.d | 6 | ||
20.d | odd | 2 | 1 | 7600.2.a.h | 1 | ||
57.d | even | 2 | 1 | 6498.2.a.y | 1 | ||
76.d | even | 2 | 1 | 5776.2.a.d | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
38.2.a.b | ✓ | 1 | 1.a | even | 1 | 1 | trivial |
304.2.a.d | 1 | 4.b | odd | 2 | 1 | ||
342.2.a.d | 1 | 3.b | odd | 2 | 1 | ||
722.2.a.b | 1 | 19.b | odd | 2 | 1 | ||
722.2.c.d | 2 | 19.c | even | 3 | 2 | ||
722.2.c.f | 2 | 19.d | odd | 6 | 2 | ||
722.2.e.c | 6 | 19.e | even | 9 | 6 | ||
722.2.e.d | 6 | 19.f | odd | 18 | 6 | ||
950.2.a.b | 1 | 5.b | even | 2 | 1 | ||
950.2.b.c | 2 | 5.c | odd | 4 | 2 | ||
1216.2.a.g | 1 | 8.d | odd | 2 | 1 | ||
1216.2.a.n | 1 | 8.b | even | 2 | 1 | ||
1862.2.a.f | 1 | 7.b | odd | 2 | 1 | ||
2736.2.a.w | 1 | 12.b | even | 2 | 1 | ||
4598.2.a.a | 1 | 11.b | odd | 2 | 1 | ||
5776.2.a.d | 1 | 76.d | even | 2 | 1 | ||
6422.2.a.b | 1 | 13.b | even | 2 | 1 | ||
6498.2.a.y | 1 | 57.d | even | 2 | 1 | ||
7600.2.a.h | 1 | 20.d | odd | 2 | 1 | ||
8550.2.a.u | 1 | 15.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(38))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T - 1 \)
$3$
\( T + 1 \)
$5$
\( T + 4 \)
$7$
\( T - 3 \)
$11$
\( T - 2 \)
$13$
\( T + 1 \)
$17$
\( T - 3 \)
$19$
\( T + 1 \)
$23$
\( T + 1 \)
$29$
\( T + 5 \)
$31$
\( T + 8 \)
$37$
\( T + 2 \)
$41$
\( T + 8 \)
$43$
\( T - 4 \)
$47$
\( T - 8 \)
$53$
\( T + 1 \)
$59$
\( T - 15 \)
$61$
\( T - 2 \)
$67$
\( T - 3 \)
$71$
\( T - 2 \)
$73$
\( T - 9 \)
$79$
\( T + 10 \)
$83$
\( T + 6 \)
$89$
\( T \)
$97$
\( T + 2 \)
show more
show less