Properties

Label 12.48.1.q.1
Level $12$
Index $48$
Genus $1$
Analytic rank $0$
Cusps $4$
$\Q$-cusps $2$

Related objects

Downloads

Learn more

Invariants

Level: $12$ $\SL_2$-level: $12$ Newform level: $48$
Index: $48$ $\PSL_2$-index:$48$
Genus: $1 = 1 + \frac{ 48 }{12} - \frac{ 8 }{4} - \frac{ 0 }{3} - \frac{ 4 }{2}$
Cusps: $4$ (of which $2$ are rational) Cusp widths $12^{4}$ Cusp orbits $1^{2}\cdot2$
Elliptic points: $8$ of order $2$ and $0$ of order $3$
Analytic rank: $0$
$\Q$-gonality: $2$
$\overline{\Q}$-gonality: $2$
Rational cusps: $2$
Rational CM points: none

Other labels

Cummins and Pauli (CP) label: 12Q1
Rouse, Sutherland, and Zureick-Brown (RSZB) label: 12.48.1.36

Level structure

$\GL_2(\Z/12\Z)$-generators: $\begin{bmatrix}3&10\\2&9\end{bmatrix}$, $\begin{bmatrix}3&10\\11&9\end{bmatrix}$, $\begin{bmatrix}10&9\\9&2\end{bmatrix}$
$\GL_2(\Z/12\Z)$-subgroup: $D_6:D_4$
Contains $-I$: yes
Quadratic refinements: none in database
Cyclic 12-isogeny field degree: $6$
Cyclic 12-torsion field degree: $24$
Full 12-torsion field degree: $96$

Jacobian

Conductor: $2^{4}\cdot3$
Simple: yes
Squarefree: yes
Decomposition: $1$
Newforms: 48.2.a.a

Models

Weierstrass model Weierstrass model

$ y^{2} $ $=$ $ x^{3} + x^{2} - 4x - 4 $
Copy content Toggle raw display

Rational points

This modular curve has rational points, including 2 rational_cusps and 1 known non-cuspidal non-CM point. The following are the known rational points on this modular curve (one row per $j$-invariant).

Elliptic curve CM $j$-invariant $j$-heightWeierstrass model
no$\infty$ $0.000$$(-2:0:1)$, $(0:1:0)$
6534.g1 no$\tfrac{3375}{64}$ $= 2^{-6} \cdot 3^{3} \cdot 5^{3}$$8.124$$(-1:0:1)$, $(2:0:1)$

Maps to other modular curves

$j$-invariant map of degree 48 from the Weierstrass model of this modular curve to the modular curve $X(1)$ :

$\displaystyle j$ $=$ $\displaystyle -\frac{1}{2^6}\cdot\frac{96x^{2}y^{22}-11864x^{2}y^{21}z+600097x^{2}y^{20}z^{2}-17753016x^{2}y^{19}z^{3}+373042772x^{2}y^{18}z^{4}-5842363464x^{2}y^{17}z^{5}+72252778086x^{2}y^{16}z^{6}-753120031168x^{2}y^{15}z^{7}+6186782246944x^{2}y^{14}z^{8}-43537077042144x^{2}y^{13}z^{9}+302285717682773x^{2}y^{12}z^{10}-1274207583356296x^{2}y^{11}z^{11}+5967406517591100x^{2}y^{10}z^{12}-39555755523103640x^{2}y^{9}z^{13}-46978373194292178x^{2}y^{8}z^{14}-922786560813112416x^{2}y^{7}z^{15}-2365802847493058224x^{2}y^{6}z^{16}-9563160812727561464x^{2}y^{5}z^{17}-20451275821111204533x^{2}y^{4}z^{18}-38193055492294844552x^{2}y^{3}z^{19}-54432436498477380116x^{2}y^{2}z^{20}-39031121279833499148x^{2}yz^{21}-10271347698613171691x^{2}z^{22}-12xy^{23}+2826xy^{22}z-181408xy^{21}z^{2}+6517746xy^{20}z^{3}-153936852xy^{19}z^{4}+2730973870xy^{18}z^{5}-37684683600xy^{17}z^{6}+413993388048xy^{16}z^{7}-3956863597808xy^{15}z^{8}+30562025874696xy^{14}z^{9}-189990616849920xy^{13}z^{10}+1292372131856734xy^{12}z^{11}-5469966268851348xy^{11}z^{12}+18427172660772234xy^{10}z^{13}-168615952313331568xy^{9}z^{14}-273680741737013208xy^{8}z^{15}-3424061688592629180xy^{7}z^{16}-8584729593948483422xy^{6}z^{17}-31714125436859735904xy^{5}z^{18}-65848254932768933826xy^{4}z^{19}-117831759723517566460xy^{3}z^{20}-164153255466083872263xy^{2}z^{21}-117093364018396004352xyz^{22}-30814043166352605184xz^{23}+y^{24}-556y^{23}z+48358y^{22}z^{2}-1975636y^{21}z^{3}+52410297y^{20}z^{4}-982400556y^{19}z^{5}+14287861942y^{18}z^{6}-168257772752y^{17}z^{7}+1563209272252y^{16}z^{8}-12851362130224y^{15}z^{9}+91902491542872y^{14}z^{10}-450081170817052y^{13}z^{11}+2758402865651245y^{12}z^{12}-13218532929487740y^{11}z^{13}+7999230153995922y^{10}z^{14}-372368456070513024y^{9}z^{15}-863715906047978123y^{8}z^{16}-5362962149195085884y^{7}z^{17}-12539279516029882946y^{6}z^{18}-34520584507891600748y^{5}z^{19}-63446019273029494973y^{4}z^{20}-92649077890529206244y^{3}z^{21}-113144601690664421801y^{2}z^{22}-78062242711299581904yz^{23}-20542695469533046868z^{24}}{z^{4}(26x^{2}y^{18}+41379x^{2}y^{16}z^{2}+12510664x^{2}y^{14}z^{4}+1426581124x^{2}y^{12}z^{6}+77970031704x^{2}y^{10}z^{8}+2279759363325x^{2}y^{8}z^{10}+37319608484820x^{2}y^{6}z^{12}+340352871222240x^{2}y^{4}z^{14}+1606218984731754x^{2}y^{2}z^{16}+3043362286160901x^{2}z^{18}+421xy^{18}z+351888xy^{16}z^{3}+78208539xy^{14}z^{5}+7303328012xy^{12}z^{7}+345089520612xy^{10}z^{9}+9015643835280xy^{8}z^{11}+134866721104119xy^{6}z^{13}+1142581761068148xy^{4}z^{15}+5072270477289129xy^{2}z^{17}+9130086859014144xz^{19}+y^{20}+4651y^{18}z^{2}+2177656y^{16}z^{4}+332729551y^{14}z^{6}+23011550716y^{12}z^{8}+833237210988y^{10}z^{10}+16945709793750y^{8}z^{12}+198278255240487y^{6}z^{14}+1309455938336553y^{4}z^{16}+4480505587058607y^{2}z^{18}+6086724573384684z^{20})}$

Modular covers

Sorry, your browser does not support the nearby lattice.

Cover information

Click on a modular curve in the diagram to see information about it.

This modular curve minimally covers the modular curves listed below.

Covered curve Level Index Degree Genus Rank Kernel decomposition
12.12.0.p.1 $12$ $4$ $4$ $0$ $0$ full Jacobian
12.24.1.o.1 $12$ $2$ $2$ $1$ $0$ dimension zero

This modular curve is minimally covered by the modular curves in the database listed below.

Covering curve Level Index Degree Genus Rank Kernel decomposition
12.96.5.b.1 $12$ $2$ $2$ $5$ $0$ $1^{4}$
12.96.5.c.1 $12$ $2$ $2$ $5$ $0$ $1^{4}$
12.96.5.e.1 $12$ $2$ $2$ $5$ $0$ $1^{4}$
12.96.5.g.1 $12$ $2$ $2$ $5$ $0$ $1^{4}$
12.144.5.bg.1 $12$ $3$ $3$ $5$ $0$ $1^{4}$
24.96.5.dp.1 $24$ $2$ $2$ $5$ $2$ $1^{4}$
24.96.5.ds.1 $24$ $2$ $2$ $5$ $1$ $1^{4}$
24.96.5.fe.1 $24$ $2$ $2$ $5$ $1$ $1^{4}$
24.96.5.fk.1 $24$ $2$ $2$ $5$ $2$ $1^{4}$
24.192.9.ry.1 $24$ $4$ $4$ $9$ $3$ $1^{8}$
36.144.5.q.1 $36$ $3$ $3$ $5$ $2$ $1^{2}\cdot2$
36.144.7.p.1 $36$ $3$ $3$ $7$ $3$ $1^{4}\cdot2$
36.144.7.r.1 $36$ $3$ $3$ $7$ $5$ $1^{4}\cdot2$
60.96.5.co.1 $60$ $2$ $2$ $5$ $1$ $1^{4}$
60.96.5.cp.1 $60$ $2$ $2$ $5$ $1$ $1^{4}$
60.96.5.cs.1 $60$ $2$ $2$ $5$ $1$ $1^{4}$
60.96.5.ct.1 $60$ $2$ $2$ $5$ $1$ $1^{4}$
60.240.17.ys.1 $60$ $5$ $5$ $17$ $8$ $1^{16}$
60.288.17.nk.1 $60$ $6$ $6$ $17$ $2$ $1^{16}$
60.480.33.yp.1 $60$ $10$ $10$ $33$ $15$ $1^{32}$
84.96.5.co.1 $84$ $2$ $2$ $5$ $?$ not computed
84.96.5.cp.1 $84$ $2$ $2$ $5$ $?$ not computed
84.96.5.cs.1 $84$ $2$ $2$ $5$ $?$ not computed
84.96.5.ct.1 $84$ $2$ $2$ $5$ $?$ not computed
120.96.5.bfq.1 $120$ $2$ $2$ $5$ $?$ not computed
120.96.5.bft.1 $120$ $2$ $2$ $5$ $?$ not computed
120.96.5.bgc.1 $120$ $2$ $2$ $5$ $?$ not computed
120.96.5.bgf.1 $120$ $2$ $2$ $5$ $?$ not computed
132.96.5.r.1 $132$ $2$ $2$ $5$ $?$ not computed
132.96.5.s.1 $132$ $2$ $2$ $5$ $?$ not computed
132.96.5.v.1 $132$ $2$ $2$ $5$ $?$ not computed
132.96.5.w.1 $132$ $2$ $2$ $5$ $?$ not computed
156.96.5.q.1 $156$ $2$ $2$ $5$ $?$ not computed
156.96.5.r.1 $156$ $2$ $2$ $5$ $?$ not computed
156.96.5.u.1 $156$ $2$ $2$ $5$ $?$ not computed
156.96.5.v.1 $156$ $2$ $2$ $5$ $?$ not computed
168.96.5.beo.1 $168$ $2$ $2$ $5$ $?$ not computed
168.96.5.ber.1 $168$ $2$ $2$ $5$ $?$ not computed
168.96.5.bfa.1 $168$ $2$ $2$ $5$ $?$ not computed
168.96.5.bfd.1 $168$ $2$ $2$ $5$ $?$ not computed
204.96.5.q.1 $204$ $2$ $2$ $5$ $?$ not computed
204.96.5.r.1 $204$ $2$ $2$ $5$ $?$ not computed
204.96.5.u.1 $204$ $2$ $2$ $5$ $?$ not computed
204.96.5.v.1 $204$ $2$ $2$ $5$ $?$ not computed
228.96.5.q.1 $228$ $2$ $2$ $5$ $?$ not computed
228.96.5.r.1 $228$ $2$ $2$ $5$ $?$ not computed
228.96.5.u.1 $228$ $2$ $2$ $5$ $?$ not computed
228.96.5.v.1 $228$ $2$ $2$ $5$ $?$ not computed
264.96.5.yq.1 $264$ $2$ $2$ $5$ $?$ not computed
264.96.5.yt.1 $264$ $2$ $2$ $5$ $?$ not computed
264.96.5.zc.1 $264$ $2$ $2$ $5$ $?$ not computed
264.96.5.zf.1 $264$ $2$ $2$ $5$ $?$ not computed
276.96.5.q.1 $276$ $2$ $2$ $5$ $?$ not computed
276.96.5.r.1 $276$ $2$ $2$ $5$ $?$ not computed
276.96.5.u.1 $276$ $2$ $2$ $5$ $?$ not computed
276.96.5.v.1 $276$ $2$ $2$ $5$ $?$ not computed
312.96.5.za.1 $312$ $2$ $2$ $5$ $?$ not computed
312.96.5.zd.1 $312$ $2$ $2$ $5$ $?$ not computed
312.96.5.zm.1 $312$ $2$ $2$ $5$ $?$ not computed
312.96.5.zp.1 $312$ $2$ $2$ $5$ $?$ not computed