Properties

Degree 2
Conductor $ 2^{4} \cdot 3 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 9-s − 4·11-s − 2·13-s − 2·15-s + 2·17-s + 4·19-s + 8·23-s − 25-s + 27-s + 6·29-s − 8·31-s − 4·33-s + 6·37-s − 2·39-s − 6·41-s − 4·43-s − 2·45-s − 7·49-s + 2·51-s − 2·53-s + 8·55-s + 4·57-s − 4·59-s − 2·61-s + 4·65-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1/3·9-s − 1.20·11-s − 0.554·13-s − 0.516·15-s + 0.485·17-s + 0.917·19-s + 1.66·23-s − 1/5·25-s + 0.192·27-s + 1.11·29-s − 1.43·31-s − 0.696·33-s + 0.986·37-s − 0.320·39-s − 0.937·41-s − 0.609·43-s − 0.298·45-s − 49-s + 0.280·51-s − 0.274·53-s + 1.07·55-s + 0.529·57-s − 0.520·59-s − 0.256·61-s + 0.496·65-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(48\)    =    \(2^{4} \cdot 3\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{48} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 48,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $0.842875$
$L(\frac12)$  $\approx$  $0.842875$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 \)
3 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−15.57665942877913827434892573142, −14.73956752065291729947920771211, −13.40929752839485230085938675601, −12.32215863397544621963398389319, −11.02059068705223596291987853205, −9.656797755147918818405236990829, −8.173282349834764667604075089133, −7.26958585488936859387169650645, −5.01357758335939619070346679818, −3.14826068230388029805668446658, 3.14826068230388029805668446658, 5.01357758335939619070346679818, 7.26958585488936859387169650645, 8.173282349834764667604075089133, 9.656797755147918818405236990829, 11.02059068705223596291987853205, 12.32215863397544621963398389319, 13.40929752839485230085938675601, 14.73956752065291729947920771211, 15.57665942877913827434892573142

Graph of the $Z$-function along the critical line