Properties

Label 2-9900-1.1-c1-0-2
Degree $2$
Conductor $9900$
Sign $1$
Analytic cond. $79.0518$
Root an. cond. $8.89111$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 11-s − 6·13-s − 4·17-s − 2·19-s − 8·23-s + 6·37-s − 10·43-s − 3·49-s + 14·53-s + 12·59-s − 14·61-s − 4·67-s − 6·73-s − 2·77-s + 2·79-s + 16·83-s + 14·89-s + 12·91-s + 2·97-s − 8·101-s + 12·103-s + 16·107-s − 18·109-s − 10·113-s + 8·119-s + ⋯
L(s)  = 1  − 0.755·7-s + 0.301·11-s − 1.66·13-s − 0.970·17-s − 0.458·19-s − 1.66·23-s + 0.986·37-s − 1.52·43-s − 3/7·49-s + 1.92·53-s + 1.56·59-s − 1.79·61-s − 0.488·67-s − 0.702·73-s − 0.227·77-s + 0.225·79-s + 1.75·83-s + 1.48·89-s + 1.25·91-s + 0.203·97-s − 0.796·101-s + 1.18·103-s + 1.54·107-s − 1.72·109-s − 0.940·113-s + 0.733·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(79.0518\)
Root analytic conductor: \(8.89111\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8223772765\)
\(L(\frac12)\) \(\approx\) \(0.8223772765\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.62489181184421234453131291890, −6.90157192143013503315664721378, −6.40028968233081218344089186517, −5.70973916640614106852281535104, −4.79609870166504673319333599431, −4.24768922780384411028798986081, −3.42641140099800615964524694297, −2.48287779496817200182225801565, −1.94583211918079216139620586299, −0.40159584923319132486875397972, 0.40159584923319132486875397972, 1.94583211918079216139620586299, 2.48287779496817200182225801565, 3.42641140099800615964524694297, 4.24768922780384411028798986081, 4.79609870166504673319333599431, 5.70973916640614106852281535104, 6.40028968233081218344089186517, 6.90157192143013503315664721378, 7.62489181184421234453131291890

Graph of the $Z$-function along the critical line