L(s) = 1 | − 4-s − 4·5-s + 2·11-s + 16-s + 14·19-s + 4·20-s + 11·25-s + 6·29-s − 10·31-s + 16·41-s − 2·44-s + 13·49-s − 8·55-s + 24·59-s + 10·61-s − 64-s + 14·71-s − 14·76-s + 8·79-s − 4·80-s − 14·89-s − 56·95-s − 11·100-s − 12·101-s − 20·109-s − 6·116-s + 3·121-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 1.78·5-s + 0.603·11-s + 1/4·16-s + 3.21·19-s + 0.894·20-s + 11/5·25-s + 1.11·29-s − 1.79·31-s + 2.49·41-s − 0.301·44-s + 13/7·49-s − 1.07·55-s + 3.12·59-s + 1.28·61-s − 1/8·64-s + 1.66·71-s − 1.60·76-s + 0.900·79-s − 0.447·80-s − 1.48·89-s − 5.74·95-s − 1.09·100-s − 1.19·101-s − 1.91·109-s − 0.557·116-s + 3/11·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.589224869\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.589224869\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.11975913934081495270256972200, −9.660639654565721256077470980068, −9.329256672519071250659282695731, −9.024055290109692232246052116111, −8.347412845105778811456386445898, −8.252739761647479206996688474912, −7.51005772481090775029855781177, −7.41184876367244555114007969484, −7.04997524955835712319216218633, −6.55305862079604024993534217601, −5.66507215344492687806563123059, −5.33784860937264823323134051463, −5.09483809688426717572736246329, −4.15468020571758649400512104711, −4.01403137655790120099080331250, −3.60022368666345842948047263111, −3.02245347540903862831709389818, −2.41984865617263889791798512678, −1.02061570736468428199771033936, −0.803406419070543251268829435479,
0.803406419070543251268829435479, 1.02061570736468428199771033936, 2.41984865617263889791798512678, 3.02245347540903862831709389818, 3.60022368666345842948047263111, 4.01403137655790120099080331250, 4.15468020571758649400512104711, 5.09483809688426717572736246329, 5.33784860937264823323134051463, 5.66507215344492687806563123059, 6.55305862079604024993534217601, 7.04997524955835712319216218633, 7.41184876367244555114007969484, 7.51005772481090775029855781177, 8.252739761647479206996688474912, 8.347412845105778811456386445898, 9.024055290109692232246052116111, 9.329256672519071250659282695731, 9.660639654565721256077470980068, 10.11975913934081495270256972200