L(s) = 1 | + (−0.579 + 1.29i)2-s + (−1.32 − 1.49i)4-s − 3.41·5-s + (−1.18 − 0.686i)7-s + (2.69 − 0.848i)8-s + (1.97 − 4.40i)10-s + (−3.02 − 5.23i)11-s + (3.56 + 0.533i)13-s + (1.57 − 1.13i)14-s + (−0.467 + 3.97i)16-s + (−3.22 + 5.59i)17-s + (1.47 − 2.56i)19-s + (4.53 + 5.10i)20-s + (8.51 − 0.867i)22-s + (3.18 + 5.51i)23-s + ⋯ |
L(s) = 1 | + (−0.409 + 0.912i)2-s + (−0.664 − 0.747i)4-s − 1.52·5-s + (−0.449 − 0.259i)7-s + (0.953 − 0.300i)8-s + (0.625 − 1.39i)10-s + (−0.912 − 1.57i)11-s + (0.988 + 0.147i)13-s + (0.421 − 0.303i)14-s + (−0.116 + 0.993i)16-s + (−0.783 + 1.35i)17-s + (0.339 − 0.587i)19-s + (1.01 + 1.14i)20-s + (1.81 − 0.185i)22-s + (0.663 + 1.14i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.143 - 0.989i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.143 - 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.376622 + 0.434953i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.376622 + 0.434953i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.579 - 1.29i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-3.56 - 0.533i)T \) |
good | 5 | \( 1 + 3.41T + 5T^{2} \) |
| 7 | \( 1 + (1.18 + 0.686i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (3.02 + 5.23i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3.22 - 5.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.47 + 2.56i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.18 - 5.51i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.54 + 0.894i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 4.78iT - 31T^{2} \) |
| 37 | \( 1 + (-2.52 - 4.37i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.96 + 1.71i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.92 + 2.26i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 0.675iT - 47T^{2} \) |
| 53 | \( 1 - 12.4iT - 53T^{2} \) |
| 59 | \( 1 + (-2.78 + 4.82i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.167 + 0.0966i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.90 - 8.50i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-11.7 - 6.79i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 1.97iT - 73T^{2} \) |
| 79 | \( 1 + 1.01T + 79T^{2} \) |
| 83 | \( 1 + 4.43T + 83T^{2} \) |
| 89 | \( 1 + (-11.3 + 6.57i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-15.0 - 8.70i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.38946273587818958460492481270, −9.031775143399636120221058662423, −8.424451265325950165020724793697, −7.925962903106677698939690786414, −6.96893149195318303289281144260, −6.17742321994939559966064062049, −5.18868929471883088934761949266, −4.00374182729942076474730156397, −3.30666596371037988005752521441, −0.878601119634067493508943794622,
0.45160684632632557764074906616, 2.33441811742864642516762005208, 3.30618287999627986100339043445, 4.32258054134056871334186067776, 4.97621425982099252149079021626, 6.73998495449813726599661290720, 7.59812458818882528190629259594, 8.152832101918500650290268775117, 9.113016847159097579480860931599, 9.856357610437628277556191947249