Properties

Label 936.2.dg.f.829.10
Level $936$
Weight $2$
Character 936.829
Analytic conductor $7.474$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(829,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.dg (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 829.10
Character \(\chi\) \(=\) 936.829
Dual form 936.2.dg.f.901.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.579236 + 1.29015i) q^{2} +(-1.32897 - 1.49460i) q^{4} -3.41501 q^{5} +(-1.18985 - 0.686961i) q^{7} +(2.69805 - 0.848845i) q^{8} +(1.97809 - 4.40587i) q^{10} +(-3.02491 - 5.23930i) q^{11} +(3.56588 + 0.533406i) q^{13} +(1.57549 - 1.13717i) q^{14} +(-0.467669 + 3.97257i) q^{16} +(-3.22892 + 5.59265i) q^{17} +(1.47915 - 2.56196i) q^{19} +(4.53845 + 5.10407i) q^{20} +(8.51161 - 0.867797i) q^{22} +(3.18261 + 5.51244i) q^{23} +6.66227 q^{25} +(-2.75366 + 4.29155i) q^{26} +(0.554545 + 2.69131i) q^{28} +(1.54870 - 0.894140i) q^{29} +4.78951i q^{31} +(-4.85431 - 2.90442i) q^{32} +(-5.34505 - 7.40526i) q^{34} +(4.06335 + 2.34598i) q^{35} +(2.52420 + 4.37205i) q^{37} +(2.44853 + 3.39230i) q^{38} +(-9.21385 + 2.89881i) q^{40} +(2.96921 - 1.71428i) q^{41} +(-3.92452 - 2.26583i) q^{43} +(-3.81064 + 11.4839i) q^{44} +(-8.95535 + 0.913038i) q^{46} -0.675737i q^{47} +(-2.55617 - 4.42742i) q^{49} +(-3.85902 + 8.59532i) q^{50} +(-3.94172 - 6.03845i) q^{52} +12.4101i q^{53} +(10.3301 + 17.8922i) q^{55} +(-3.79340 - 0.843454i) q^{56} +(0.256514 + 2.51597i) q^{58} +(2.78619 - 4.82582i) q^{59} +(-0.167415 - 0.0966574i) q^{61} +(-6.17919 - 2.77426i) q^{62} +(6.55892 - 4.58045i) q^{64} +(-12.1775 - 1.82158i) q^{65} +(4.90885 + 8.50237i) q^{67} +(12.6499 - 2.60653i) q^{68} +(-5.38030 + 3.88345i) q^{70} +(11.7740 + 6.79775i) q^{71} +1.97079i q^{73} +(-7.10270 + 0.724152i) q^{74} +(-5.79485 + 1.19403i) q^{76} +8.31198i q^{77} -1.01051 q^{79} +(1.59709 - 13.5663i) q^{80} +(0.491798 + 4.82370i) q^{82} -4.43962 q^{83} +(11.0268 - 19.0989i) q^{85} +(5.19648 - 3.75078i) q^{86} +(-12.6087 - 11.5682i) q^{88} +(11.3849 - 6.57306i) q^{89} +(-3.87643 - 3.08429i) q^{91} +(4.00931 - 12.0826i) q^{92} +(0.871802 + 0.391411i) q^{94} +(-5.05130 + 8.74910i) q^{95} +(15.0845 + 8.70903i) q^{97} +(7.19265 - 0.733323i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 4 q^{10} - 4 q^{16} + 64 q^{25} - 48 q^{28} - 48 q^{40} + 20 q^{49} - 12 q^{52} + 16 q^{55} + 12 q^{58} - 72 q^{64} - 84 q^{76} + 80 q^{79} - 12 q^{82} - 12 q^{88} - 24 q^{94} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.579236 + 1.29015i −0.409582 + 0.912273i
\(3\) 0 0
\(4\) −1.32897 1.49460i −0.664486 0.747301i
\(5\) −3.41501 −1.52724 −0.763619 0.645668i \(-0.776579\pi\)
−0.763619 + 0.645668i \(0.776579\pi\)
\(6\) 0 0
\(7\) −1.18985 0.686961i −0.449721 0.259647i 0.257991 0.966147i \(-0.416939\pi\)
−0.707713 + 0.706500i \(0.750273\pi\)
\(8\) 2.69805 0.848845i 0.953904 0.300112i
\(9\) 0 0
\(10\) 1.97809 4.40587i 0.625528 1.39326i
\(11\) −3.02491 5.23930i −0.912044 1.57971i −0.811172 0.584808i \(-0.801170\pi\)
−0.100873 0.994899i \(-0.532163\pi\)
\(12\) 0 0
\(13\) 3.56588 + 0.533406i 0.988996 + 0.147940i
\(14\) 1.57549 1.13717i 0.421067 0.303922i
\(15\) 0 0
\(16\) −0.467669 + 3.97257i −0.116917 + 0.993142i
\(17\) −3.22892 + 5.59265i −0.783128 + 1.35642i 0.146983 + 0.989139i \(0.453044\pi\)
−0.930111 + 0.367279i \(0.880290\pi\)
\(18\) 0 0
\(19\) 1.47915 2.56196i 0.339340 0.587753i −0.644969 0.764209i \(-0.723130\pi\)
0.984309 + 0.176455i \(0.0564631\pi\)
\(20\) 4.53845 + 5.10407i 1.01483 + 1.14131i
\(21\) 0 0
\(22\) 8.51161 0.867797i 1.81468 0.185015i
\(23\) 3.18261 + 5.51244i 0.663620 + 1.14942i 0.979658 + 0.200677i \(0.0643141\pi\)
−0.316038 + 0.948747i \(0.602353\pi\)
\(24\) 0 0
\(25\) 6.66227 1.33245
\(26\) −2.75366 + 4.29155i −0.540037 + 0.841642i
\(27\) 0 0
\(28\) 0.554545 + 2.69131i 0.104799 + 0.508609i
\(29\) 1.54870 0.894140i 0.287586 0.166038i −0.349267 0.937023i \(-0.613569\pi\)
0.636853 + 0.770986i \(0.280236\pi\)
\(30\) 0 0
\(31\) 4.78951i 0.860222i 0.902776 + 0.430111i \(0.141526\pi\)
−0.902776 + 0.430111i \(0.858474\pi\)
\(32\) −4.85431 2.90442i −0.858130 0.513433i
\(33\) 0 0
\(34\) −5.34505 7.40526i −0.916669 1.26999i
\(35\) 4.06335 + 2.34598i 0.686831 + 0.396542i
\(36\) 0 0
\(37\) 2.52420 + 4.37205i 0.414976 + 0.718760i 0.995426 0.0955362i \(-0.0304566\pi\)
−0.580450 + 0.814296i \(0.697123\pi\)
\(38\) 2.44853 + 3.39230i 0.397205 + 0.550304i
\(39\) 0 0
\(40\) −9.21385 + 2.89881i −1.45684 + 0.458342i
\(41\) 2.96921 1.71428i 0.463713 0.267725i −0.249891 0.968274i \(-0.580395\pi\)
0.713604 + 0.700549i \(0.247062\pi\)
\(42\) 0 0
\(43\) −3.92452 2.26583i −0.598484 0.345535i 0.169961 0.985451i \(-0.445636\pi\)
−0.768445 + 0.639916i \(0.778969\pi\)
\(44\) −3.81064 + 11.4839i −0.574476 + 1.73126i
\(45\) 0 0
\(46\) −8.95535 + 0.913038i −1.32039 + 0.134620i
\(47\) 0.675737i 0.0985664i −0.998785 0.0492832i \(-0.984306\pi\)
0.998785 0.0492832i \(-0.0156937\pi\)
\(48\) 0 0
\(49\) −2.55617 4.42742i −0.365167 0.632488i
\(50\) −3.85902 + 8.59532i −0.545748 + 1.21556i
\(51\) 0 0
\(52\) −3.94172 6.03845i −0.546618 0.837382i
\(53\) 12.4101i 1.70466i 0.523002 + 0.852331i \(0.324812\pi\)
−0.523002 + 0.852331i \(0.675188\pi\)
\(54\) 0 0
\(55\) 10.3301 + 17.8922i 1.39291 + 2.41259i
\(56\) −3.79340 0.843454i −0.506914 0.112711i
\(57\) 0 0
\(58\) 0.256514 + 2.51597i 0.0336820 + 0.330363i
\(59\) 2.78619 4.82582i 0.362731 0.628268i −0.625678 0.780081i \(-0.715178\pi\)
0.988409 + 0.151813i \(0.0485111\pi\)
\(60\) 0 0
\(61\) −0.167415 0.0966574i −0.0214354 0.0123757i 0.489244 0.872147i \(-0.337273\pi\)
−0.510679 + 0.859771i \(0.670606\pi\)
\(62\) −6.17919 2.77426i −0.784758 0.352331i
\(63\) 0 0
\(64\) 6.55892 4.58045i 0.819865 0.572556i
\(65\) −12.1775 1.82158i −1.51043 0.225940i
\(66\) 0 0
\(67\) 4.90885 + 8.50237i 0.599711 + 1.03873i 0.992863 + 0.119256i \(0.0380511\pi\)
−0.393153 + 0.919473i \(0.628616\pi\)
\(68\) 12.6499 2.60653i 1.53403 0.316088i
\(69\) 0 0
\(70\) −5.38030 + 3.88345i −0.643068 + 0.464162i
\(71\) 11.7740 + 6.79775i 1.39732 + 0.806744i 0.994111 0.108363i \(-0.0345608\pi\)
0.403211 + 0.915107i \(0.367894\pi\)
\(72\) 0 0
\(73\) 1.97079i 0.230663i 0.993327 + 0.115332i \(0.0367930\pi\)
−0.993327 + 0.115332i \(0.963207\pi\)
\(74\) −7.10270 + 0.724152i −0.825672 + 0.0841810i
\(75\) 0 0
\(76\) −5.79485 + 1.19403i −0.664715 + 0.136965i
\(77\) 8.31198i 0.947238i
\(78\) 0 0
\(79\) −1.01051 −0.113691 −0.0568455 0.998383i \(-0.518104\pi\)
−0.0568455 + 0.998383i \(0.518104\pi\)
\(80\) 1.59709 13.5663i 0.178560 1.51676i
\(81\) 0 0
\(82\) 0.491798 + 4.82370i 0.0543100 + 0.532688i
\(83\) −4.43962 −0.487312 −0.243656 0.969862i \(-0.578347\pi\)
−0.243656 + 0.969862i \(0.578347\pi\)
\(84\) 0 0
\(85\) 11.0268 19.0989i 1.19602 2.07157i
\(86\) 5.19648 3.75078i 0.560351 0.404457i
\(87\) 0 0
\(88\) −12.6087 11.5682i −1.34409 1.23317i
\(89\) 11.3849 6.57306i 1.20679 0.696743i 0.244737 0.969589i \(-0.421298\pi\)
0.962058 + 0.272846i \(0.0879650\pi\)
\(90\) 0 0
\(91\) −3.87643 3.08429i −0.406361 0.323322i
\(92\) 4.00931 12.0826i 0.417999 1.25970i
\(93\) 0 0
\(94\) 0.871802 + 0.391411i 0.0899195 + 0.0403710i
\(95\) −5.05130 + 8.74910i −0.518252 + 0.897639i
\(96\) 0 0
\(97\) 15.0845 + 8.70903i 1.53160 + 0.884268i 0.999288 + 0.0377182i \(0.0120089\pi\)
0.532309 + 0.846550i \(0.321324\pi\)
\(98\) 7.19265 0.733323i 0.726568 0.0740768i
\(99\) 0 0
\(100\) −8.85396 9.95743i −0.885396 0.995743i
\(101\) −4.57759 + 2.64287i −0.455487 + 0.262976i −0.710145 0.704056i \(-0.751371\pi\)
0.254657 + 0.967031i \(0.418037\pi\)
\(102\) 0 0
\(103\) 6.98106 0.687864 0.343932 0.938994i \(-0.388241\pi\)
0.343932 + 0.938994i \(0.388241\pi\)
\(104\) 10.0737 1.58772i 0.987806 0.155689i
\(105\) 0 0
\(106\) −16.0109 7.18839i −1.55512 0.698198i
\(107\) 9.02755 5.21206i 0.872726 0.503868i 0.00447271 0.999990i \(-0.498576\pi\)
0.868253 + 0.496122i \(0.165243\pi\)
\(108\) 0 0
\(109\) −16.6956 −1.59915 −0.799575 0.600566i \(-0.794942\pi\)
−0.799575 + 0.600566i \(0.794942\pi\)
\(110\) −29.0672 + 2.96353i −2.77145 + 0.282562i
\(111\) 0 0
\(112\) 3.28545 4.40549i 0.310446 0.416280i
\(113\) −5.81227 + 10.0672i −0.546773 + 0.947038i 0.451720 + 0.892160i \(0.350810\pi\)
−0.998493 + 0.0548783i \(0.982523\pi\)
\(114\) 0 0
\(115\) −10.8686 18.8250i −1.01350 1.75544i
\(116\) −3.39456 1.12640i −0.315177 0.104583i
\(117\) 0 0
\(118\) 4.61217 + 6.38989i 0.424585 + 0.588237i
\(119\) 7.68387 4.43628i 0.704379 0.406673i
\(120\) 0 0
\(121\) −12.8002 + 22.1705i −1.16365 + 2.01550i
\(122\) 0.221676 0.160004i 0.0200696 0.0144860i
\(123\) 0 0
\(124\) 7.15841 6.36513i 0.642845 0.571605i
\(125\) −5.67665 −0.507735
\(126\) 0 0
\(127\) 0.754501 + 1.30683i 0.0669511 + 0.115963i 0.897558 0.440897i \(-0.145340\pi\)
−0.830607 + 0.556859i \(0.812006\pi\)
\(128\) 2.11030 + 11.1152i 0.186526 + 0.982450i
\(129\) 0 0
\(130\) 9.40376 14.6557i 0.824764 1.28539i
\(131\) 0.608733i 0.0531852i −0.999646 0.0265926i \(-0.991534\pi\)
0.999646 0.0265926i \(-0.00846569\pi\)
\(132\) 0 0
\(133\) −3.51993 + 2.03223i −0.305217 + 0.176217i
\(134\) −13.8127 + 1.40827i −1.19324 + 0.121656i
\(135\) 0 0
\(136\) −3.96448 + 17.8301i −0.339952 + 1.52892i
\(137\) −9.96572 5.75371i −0.851429 0.491573i 0.00970370 0.999953i \(-0.496911\pi\)
−0.861133 + 0.508380i \(0.830245\pi\)
\(138\) 0 0
\(139\) 13.4078 + 7.74102i 1.13724 + 0.656585i 0.945745 0.324909i \(-0.105334\pi\)
0.191493 + 0.981494i \(0.438667\pi\)
\(140\) −1.89378 9.19082i −0.160053 0.776766i
\(141\) 0 0
\(142\) −15.5901 + 11.2528i −1.30829 + 0.944312i
\(143\) −7.99178 20.2962i −0.668306 1.69725i
\(144\) 0 0
\(145\) −5.28881 + 3.05349i −0.439211 + 0.253579i
\(146\) −2.54261 1.14155i −0.210428 0.0944753i
\(147\) 0 0
\(148\) 3.17987 9.58300i 0.261384 0.787718i
\(149\) 0.454670 0.787511i 0.0372480 0.0645154i −0.846800 0.531911i \(-0.821474\pi\)
0.884048 + 0.467395i \(0.154808\pi\)
\(150\) 0 0
\(151\) 21.8390i 1.77723i −0.458650 0.888617i \(-0.651667\pi\)
0.458650 0.888617i \(-0.348333\pi\)
\(152\) 1.81610 8.16785i 0.147305 0.662500i
\(153\) 0 0
\(154\) −10.7237 4.81459i −0.864140 0.387971i
\(155\) 16.3562i 1.31376i
\(156\) 0 0
\(157\) 3.03910i 0.242547i 0.992619 + 0.121273i \(0.0386978\pi\)
−0.992619 + 0.121273i \(0.961302\pi\)
\(158\) 0.585322 1.30371i 0.0465657 0.103717i
\(159\) 0 0
\(160\) 16.5775 + 9.91860i 1.31057 + 0.784134i
\(161\) 8.74531i 0.689227i
\(162\) 0 0
\(163\) −8.36620 + 14.4907i −0.655291 + 1.13500i 0.326530 + 0.945187i \(0.394121\pi\)
−0.981821 + 0.189811i \(0.939213\pi\)
\(164\) −6.50816 2.15957i −0.508202 0.168634i
\(165\) 0 0
\(166\) 2.57159 5.72777i 0.199594 0.444562i
\(167\) 15.2052 8.77871i 1.17661 0.679317i 0.221383 0.975187i \(-0.428943\pi\)
0.955228 + 0.295870i \(0.0956095\pi\)
\(168\) 0 0
\(169\) 12.4310 + 3.80412i 0.956227 + 0.292625i
\(170\) 18.2534 + 25.2890i 1.39997 + 1.93958i
\(171\) 0 0
\(172\) 1.82908 + 8.87682i 0.139466 + 0.676851i
\(173\) 2.27946 + 1.31605i 0.173304 + 0.100057i 0.584143 0.811651i \(-0.301431\pi\)
−0.410839 + 0.911708i \(0.634764\pi\)
\(174\) 0 0
\(175\) −7.92710 4.57672i −0.599233 0.345967i
\(176\) 22.2281 9.56640i 1.67551 0.721094i
\(177\) 0 0
\(178\) 1.88570 + 18.4955i 0.141339 + 1.38630i
\(179\) 17.9329 10.3536i 1.34037 0.773863i 0.353509 0.935431i \(-0.384988\pi\)
0.986862 + 0.161568i \(0.0516551\pi\)
\(180\) 0 0
\(181\) 16.5473i 1.22995i 0.788547 + 0.614974i \(0.210834\pi\)
−0.788547 + 0.614974i \(0.789166\pi\)
\(182\) 6.22457 3.21465i 0.461396 0.238285i
\(183\) 0 0
\(184\) 13.2660 + 12.1713i 0.977985 + 0.897279i
\(185\) −8.62016 14.9306i −0.633767 1.09772i
\(186\) 0 0
\(187\) 39.0688 2.85699
\(188\) −1.00996 + 0.898035i −0.0736587 + 0.0654960i
\(189\) 0 0
\(190\) −8.36176 11.5847i −0.606626 0.840444i
\(191\) −7.40658 + 12.8286i −0.535921 + 0.928242i 0.463197 + 0.886255i \(0.346702\pi\)
−0.999118 + 0.0419872i \(0.986631\pi\)
\(192\) 0 0
\(193\) −12.1754 + 7.02946i −0.876403 + 0.505992i −0.869471 0.493984i \(-0.835540\pi\)
−0.00693238 + 0.999976i \(0.502207\pi\)
\(194\) −19.9734 + 14.4167i −1.43401 + 1.03506i
\(195\) 0 0
\(196\) −3.22015 + 9.70437i −0.230010 + 0.693169i
\(197\) −4.77917 8.27776i −0.340501 0.589766i 0.644024 0.765005i \(-0.277264\pi\)
−0.984526 + 0.175239i \(0.943930\pi\)
\(198\) 0 0
\(199\) 1.90281 3.29576i 0.134887 0.233630i −0.790668 0.612246i \(-0.790266\pi\)
0.925554 + 0.378615i \(0.123600\pi\)
\(200\) 17.9751 5.65523i 1.27103 0.399885i
\(201\) 0 0
\(202\) −0.758197 7.43663i −0.0533466 0.523239i
\(203\) −2.45696 −0.172445
\(204\) 0 0
\(205\) −10.1399 + 5.85426i −0.708200 + 0.408879i
\(206\) −4.04368 + 9.00661i −0.281737 + 0.627520i
\(207\) 0 0
\(208\) −3.78664 + 13.9162i −0.262556 + 0.964917i
\(209\) −17.8971 −1.23797
\(210\) 0 0
\(211\) 8.77615 5.06691i 0.604175 0.348821i −0.166507 0.986040i \(-0.553249\pi\)
0.770682 + 0.637220i \(0.219916\pi\)
\(212\) 18.5482 16.4927i 1.27390 1.13272i
\(213\) 0 0
\(214\) 1.49525 + 14.6659i 0.102213 + 1.00254i
\(215\) 13.4023 + 7.73781i 0.914028 + 0.527714i
\(216\) 0 0
\(217\) 3.29021 5.69881i 0.223354 0.386860i
\(218\) 9.67070 21.5398i 0.654982 1.45886i
\(219\) 0 0
\(220\) 13.0134 39.2176i 0.877361 2.64405i
\(221\) −14.4971 + 18.2204i −0.975180 + 1.22564i
\(222\) 0 0
\(223\) −1.88434 + 1.08792i −0.126185 + 0.0728527i −0.561764 0.827298i \(-0.689877\pi\)
0.435579 + 0.900150i \(0.356544\pi\)
\(224\) 3.78069 + 6.79055i 0.252608 + 0.453712i
\(225\) 0 0
\(226\) −9.62145 13.3300i −0.640010 0.886695i
\(227\) 2.53742 4.39495i 0.168415 0.291703i −0.769448 0.638710i \(-0.779469\pi\)
0.937863 + 0.347007i \(0.112802\pi\)
\(228\) 0 0
\(229\) −12.7135 −0.840132 −0.420066 0.907493i \(-0.637993\pi\)
−0.420066 + 0.907493i \(0.637993\pi\)
\(230\) 30.5826 3.11803i 2.01656 0.205597i
\(231\) 0 0
\(232\) 3.41947 3.72704i 0.224499 0.244692i
\(233\) 0.408995 0.0267941 0.0133971 0.999910i \(-0.495735\pi\)
0.0133971 + 0.999910i \(0.495735\pi\)
\(234\) 0 0
\(235\) 2.30765i 0.150534i
\(236\) −10.9154 + 2.24914i −0.710535 + 0.146406i
\(237\) 0 0
\(238\) 1.27270 + 12.4830i 0.0824967 + 0.809152i
\(239\) 13.2448i 0.856734i −0.903605 0.428367i \(-0.859089\pi\)
0.903605 0.428367i \(-0.140911\pi\)
\(240\) 0 0
\(241\) 15.9642 + 9.21693i 1.02834 + 0.593715i 0.916510 0.400012i \(-0.130994\pi\)
0.111834 + 0.993727i \(0.464328\pi\)
\(242\) −21.1890 29.3561i −1.36208 1.88708i
\(243\) 0 0
\(244\) 0.0780261 + 0.378674i 0.00499511 + 0.0242421i
\(245\) 8.72933 + 15.1197i 0.557697 + 0.965959i
\(246\) 0 0
\(247\) 6.64102 8.34664i 0.422558 0.531084i
\(248\) 4.06555 + 12.9223i 0.258163 + 0.820569i
\(249\) 0 0
\(250\) 3.28812 7.32372i 0.207959 0.463193i
\(251\) −10.4275 6.02030i −0.658176 0.379998i 0.133406 0.991062i \(-0.457409\pi\)
−0.791582 + 0.611063i \(0.790742\pi\)
\(252\) 0 0
\(253\) 19.2542 33.3493i 1.21050 2.09665i
\(254\) −2.12304 + 0.216454i −0.133212 + 0.0135815i
\(255\) 0 0
\(256\) −15.5626 3.71569i −0.972661 0.232231i
\(257\) −1.85401 3.21124i −0.115650 0.200312i 0.802389 0.596801i \(-0.203562\pi\)
−0.918039 + 0.396489i \(0.870228\pi\)
\(258\) 0 0
\(259\) 6.93611i 0.430989i
\(260\) 13.4610 + 20.6213i 0.834816 + 1.27888i
\(261\) 0 0
\(262\) 0.785356 + 0.352600i 0.0485195 + 0.0217837i
\(263\) 6.78854 + 11.7581i 0.418599 + 0.725035i 0.995799 0.0915678i \(-0.0291878\pi\)
−0.577199 + 0.816603i \(0.695855\pi\)
\(264\) 0 0
\(265\) 42.3807i 2.60342i
\(266\) −0.583014 5.71838i −0.0357469 0.350616i
\(267\) 0 0
\(268\) 6.18394 18.6362i 0.377744 1.13839i
\(269\) 14.2966 + 8.25414i 0.871679 + 0.503264i 0.867906 0.496729i \(-0.165466\pi\)
0.00377292 + 0.999993i \(0.498799\pi\)
\(270\) 0 0
\(271\) 9.81144 5.66464i 0.596003 0.344102i −0.171465 0.985190i \(-0.554850\pi\)
0.767467 + 0.641088i \(0.221517\pi\)
\(272\) −20.7071 15.4426i −1.25555 0.936346i
\(273\) 0 0
\(274\) 13.1957 9.52451i 0.797179 0.575397i
\(275\) −20.1527 34.9056i −1.21526 2.10489i
\(276\) 0 0
\(277\) −0.350695 0.202474i −0.0210712 0.0121655i 0.489427 0.872044i \(-0.337206\pi\)
−0.510499 + 0.859879i \(0.670539\pi\)
\(278\) −17.7534 + 12.8142i −1.06478 + 0.768547i
\(279\) 0 0
\(280\) 12.9545 + 2.88040i 0.774178 + 0.172137i
\(281\) 5.21840i 0.311304i −0.987812 0.155652i \(-0.950252\pi\)
0.987812 0.155652i \(-0.0497478\pi\)
\(282\) 0 0
\(283\) −19.4544 + 11.2320i −1.15644 + 0.667673i −0.950449 0.310880i \(-0.899376\pi\)
−0.205995 + 0.978553i \(0.566043\pi\)
\(284\) −5.48745 26.6315i −0.325620 1.58029i
\(285\) 0 0
\(286\) 30.8142 + 1.44569i 1.82208 + 0.0854853i
\(287\) −4.71056 −0.278056
\(288\) 0 0
\(289\) −12.3518 21.3940i −0.726579 1.25847i
\(290\) −0.875997 8.59204i −0.0514403 0.504542i
\(291\) 0 0
\(292\) 2.94554 2.61912i 0.172375 0.153272i
\(293\) −7.79411 + 13.4998i −0.455337 + 0.788667i −0.998708 0.0508261i \(-0.983815\pi\)
0.543370 + 0.839493i \(0.317148\pi\)
\(294\) 0 0
\(295\) −9.51485 + 16.4802i −0.553976 + 0.959515i
\(296\) 10.5216 + 9.65333i 0.611556 + 0.561088i
\(297\) 0 0
\(298\) 0.752646 + 1.04275i 0.0435996 + 0.0604047i
\(299\) 8.40842 + 21.3543i 0.486272 + 1.23495i
\(300\) 0 0
\(301\) 3.11307 + 5.39199i 0.179434 + 0.310789i
\(302\) 28.1756 + 12.6499i 1.62132 + 0.727922i
\(303\) 0 0
\(304\) 9.48580 + 7.07416i 0.544048 + 0.405731i
\(305\) 0.571725 + 0.330085i 0.0327369 + 0.0189006i
\(306\) 0 0
\(307\) −28.8805 −1.64830 −0.824149 0.566373i \(-0.808346\pi\)
−0.824149 + 0.566373i \(0.808346\pi\)
\(308\) 12.4231 11.0464i 0.707872 0.629426i
\(309\) 0 0
\(310\) 21.1020 + 9.47411i 1.19851 + 0.538093i
\(311\) 7.65884 0.434293 0.217147 0.976139i \(-0.430325\pi\)
0.217147 + 0.976139i \(0.430325\pi\)
\(312\) 0 0
\(313\) −14.6712 −0.829266 −0.414633 0.909989i \(-0.636090\pi\)
−0.414633 + 0.909989i \(0.636090\pi\)
\(314\) −3.92090 1.76036i −0.221269 0.0993427i
\(315\) 0 0
\(316\) 1.34294 + 1.51031i 0.0755461 + 0.0849614i
\(317\) −12.7648 −0.716943 −0.358471 0.933541i \(-0.616702\pi\)
−0.358471 + 0.933541i \(0.616702\pi\)
\(318\) 0 0
\(319\) −9.36933 5.40939i −0.524582 0.302867i
\(320\) −22.3988 + 15.6423i −1.25213 + 0.874429i
\(321\) 0 0
\(322\) 11.2828 + 5.06560i 0.628764 + 0.282295i
\(323\) 9.55209 + 16.5447i 0.531493 + 0.920572i
\(324\) 0 0
\(325\) 23.7568 + 3.55369i 1.31779 + 0.197123i
\(326\) −13.8491 19.1872i −0.767033 1.06268i
\(327\) 0 0
\(328\) 6.55592 7.14560i 0.361990 0.394550i
\(329\) −0.464205 + 0.804027i −0.0255924 + 0.0443274i
\(330\) 0 0
\(331\) 0.0572169 0.0991026i 0.00314492 0.00544717i −0.864449 0.502721i \(-0.832332\pi\)
0.867594 + 0.497274i \(0.165666\pi\)
\(332\) 5.90013 + 6.63547i 0.323812 + 0.364168i
\(333\) 0 0
\(334\) 2.51847 + 24.7019i 0.137804 + 1.35163i
\(335\) −16.7637 29.0356i −0.915901 1.58639i
\(336\) 0 0
\(337\) −14.2820 −0.777992 −0.388996 0.921240i \(-0.627178\pi\)
−0.388996 + 0.921240i \(0.627178\pi\)
\(338\) −12.1083 + 13.8343i −0.658607 + 0.752487i
\(339\) 0 0
\(340\) −43.1996 + 8.90131i −2.34283 + 0.482741i
\(341\) 25.0937 14.4878i 1.35890 0.784561i
\(342\) 0 0
\(343\) 16.6414i 0.898551i
\(344\) −12.5119 2.78199i −0.674596 0.149995i
\(345\) 0 0
\(346\) −3.01824 + 2.17854i −0.162262 + 0.117119i
\(347\) 17.4058 + 10.0492i 0.934390 + 0.539470i 0.888197 0.459462i \(-0.151958\pi\)
0.0461927 + 0.998933i \(0.485291\pi\)
\(348\) 0 0
\(349\) 10.9808 + 19.0194i 0.587791 + 1.01808i 0.994521 + 0.104535i \(0.0333354\pi\)
−0.406731 + 0.913548i \(0.633331\pi\)
\(350\) 10.4963 7.57615i 0.561051 0.404962i
\(351\) 0 0
\(352\) −0.533235 + 34.2188i −0.0284215 + 1.82387i
\(353\) 24.8246 14.3325i 1.32128 0.762842i 0.337348 0.941380i \(-0.390470\pi\)
0.983933 + 0.178538i \(0.0571368\pi\)
\(354\) 0 0
\(355\) −40.2084 23.2144i −2.13404 1.23209i
\(356\) −24.9543 8.28045i −1.32257 0.438863i
\(357\) 0 0
\(358\) 2.97027 + 29.1333i 0.156984 + 1.53974i
\(359\) 32.1297i 1.69574i 0.530202 + 0.847872i \(0.322116\pi\)
−0.530202 + 0.847872i \(0.677884\pi\)
\(360\) 0 0
\(361\) 5.12425 + 8.87546i 0.269697 + 0.467129i
\(362\) −21.3484 9.58477i −1.12205 0.503764i
\(363\) 0 0
\(364\) 0.541883 + 9.89266i 0.0284024 + 0.518516i
\(365\) 6.73024i 0.352277i
\(366\) 0 0
\(367\) −3.91198 6.77575i −0.204204 0.353691i 0.745675 0.666310i \(-0.232127\pi\)
−0.949879 + 0.312619i \(0.898794\pi\)
\(368\) −23.3869 + 10.0651i −1.21913 + 0.524681i
\(369\) 0 0
\(370\) 24.2558 2.47298i 1.26100 0.128564i
\(371\) 8.52527 14.7662i 0.442610 0.766623i
\(372\) 0 0
\(373\) 11.4709 + 6.62274i 0.593942 + 0.342913i 0.766655 0.642060i \(-0.221920\pi\)
−0.172713 + 0.984972i \(0.555253\pi\)
\(374\) −22.6300 + 50.4045i −1.17017 + 2.60636i
\(375\) 0 0
\(376\) −0.573596 1.82317i −0.0295810 0.0940229i
\(377\) 5.99940 2.36231i 0.308985 0.121665i
\(378\) 0 0
\(379\) 15.1774 + 26.2881i 0.779611 + 1.35033i 0.932166 + 0.362032i \(0.117917\pi\)
−0.152554 + 0.988295i \(0.548750\pi\)
\(380\) 19.7895 4.07763i 1.01518 0.209178i
\(381\) 0 0
\(382\) −12.2606 16.9864i −0.627308 0.869098i
\(383\) 19.2691 + 11.1250i 0.984604 + 0.568462i 0.903657 0.428257i \(-0.140872\pi\)
0.0809474 + 0.996718i \(0.474205\pi\)
\(384\) 0 0
\(385\) 28.3854i 1.44666i
\(386\) −2.01664 19.7798i −0.102644 1.00676i
\(387\) 0 0
\(388\) −7.03032 34.1194i −0.356910 1.73215i
\(389\) 2.92168i 0.148135i 0.997253 + 0.0740674i \(0.0235980\pi\)
−0.997253 + 0.0740674i \(0.976402\pi\)
\(390\) 0 0
\(391\) −41.1056 −2.07880
\(392\) −10.6549 9.77559i −0.538152 0.493742i
\(393\) 0 0
\(394\) 13.4478 1.37106i 0.677491 0.0690732i
\(395\) 3.45089 0.173633
\(396\) 0 0
\(397\) 3.13178 5.42441i 0.157180 0.272243i −0.776671 0.629907i \(-0.783093\pi\)
0.933851 + 0.357663i \(0.116426\pi\)
\(398\) 3.14985 + 4.36393i 0.157888 + 0.218744i
\(399\) 0 0
\(400\) −3.11573 + 26.4663i −0.155787 + 1.32331i
\(401\) −19.9809 + 11.5360i −0.997798 + 0.576079i −0.907596 0.419845i \(-0.862085\pi\)
−0.0902020 + 0.995923i \(0.528751\pi\)
\(402\) 0 0
\(403\) −2.55475 + 17.0788i −0.127261 + 0.850756i
\(404\) 10.0335 + 3.32937i 0.499187 + 0.165642i
\(405\) 0 0
\(406\) 1.42316 3.16984i 0.0706301 0.157317i
\(407\) 15.2710 26.4501i 0.756953 1.31108i
\(408\) 0 0
\(409\) −31.9635 18.4541i −1.58049 0.912497i −0.994787 0.101972i \(-0.967485\pi\)
−0.585704 0.810525i \(-0.699182\pi\)
\(410\) −1.67949 16.4730i −0.0829442 0.813541i
\(411\) 0 0
\(412\) −9.27763 10.4339i −0.457076 0.514042i
\(413\) −6.63030 + 3.82800i −0.326256 + 0.188364i
\(414\) 0 0
\(415\) 15.1613 0.744240
\(416\) −15.7607 12.9461i −0.772730 0.634735i
\(417\) 0 0
\(418\) 10.3667 23.0900i 0.507050 1.12937i
\(419\) −8.26881 + 4.77400i −0.403958 + 0.233225i −0.688190 0.725530i \(-0.741595\pi\)
0.284232 + 0.958755i \(0.408261\pi\)
\(420\) 0 0
\(421\) −27.0280 −1.31726 −0.658632 0.752465i \(-0.728865\pi\)
−0.658632 + 0.752465i \(0.728865\pi\)
\(422\) 1.45361 + 14.2575i 0.0707608 + 0.694044i
\(423\) 0 0
\(424\) 10.5343 + 33.4831i 0.511590 + 1.62608i
\(425\) −21.5119 + 37.2597i −1.04348 + 1.80736i
\(426\) 0 0
\(427\) 0.132800 + 0.230016i 0.00642663 + 0.0111312i
\(428\) −19.7873 6.56591i −0.956455 0.317375i
\(429\) 0 0
\(430\) −17.7460 + 12.8089i −0.855788 + 0.617701i
\(431\) −6.80703 + 3.93004i −0.327883 + 0.189304i −0.654901 0.755715i \(-0.727290\pi\)
0.327018 + 0.945018i \(0.393956\pi\)
\(432\) 0 0
\(433\) 7.72021 13.3718i 0.371009 0.642607i −0.618712 0.785618i \(-0.712345\pi\)
0.989721 + 0.143011i \(0.0456784\pi\)
\(434\) 5.44651 + 7.54581i 0.261441 + 0.362211i
\(435\) 0 0
\(436\) 22.1880 + 24.9533i 1.06261 + 1.19505i
\(437\) 18.8302 0.900770
\(438\) 0 0
\(439\) −10.8658 18.8200i −0.518594 0.898231i −0.999767 0.0216054i \(-0.993122\pi\)
0.481172 0.876626i \(-0.340211\pi\)
\(440\) 43.0588 + 39.5054i 2.05275 + 1.88335i
\(441\) 0 0
\(442\) −15.1098 29.2573i −0.718700 1.39163i
\(443\) 6.62675i 0.314846i 0.987531 + 0.157423i \(0.0503187\pi\)
−0.987531 + 0.157423i \(0.949681\pi\)
\(444\) 0 0
\(445\) −38.8794 + 22.4470i −1.84306 + 1.06409i
\(446\) −0.312107 3.06124i −0.0147787 0.144954i
\(447\) 0 0
\(448\) −10.9507 + 0.944329i −0.517373 + 0.0446154i
\(449\) 21.1222 + 12.1949i 0.996817 + 0.575513i 0.907305 0.420473i \(-0.138136\pi\)
0.0895123 + 0.995986i \(0.471469\pi\)
\(450\) 0 0
\(451\) −17.9632 10.3711i −0.845854 0.488354i
\(452\) 22.7707 4.69193i 1.07104 0.220690i
\(453\) 0 0
\(454\) 4.20037 + 5.81937i 0.197133 + 0.273116i
\(455\) 13.2380 + 10.5329i 0.620609 + 0.493789i
\(456\) 0 0
\(457\) 11.7699 6.79536i 0.550573 0.317874i −0.198780 0.980044i \(-0.563698\pi\)
0.749353 + 0.662170i \(0.230365\pi\)
\(458\) 7.36412 16.4023i 0.344103 0.766431i
\(459\) 0 0
\(460\) −13.6918 + 41.2622i −0.638384 + 1.92386i
\(461\) −7.43675 + 12.8808i −0.346364 + 0.599920i −0.985601 0.169090i \(-0.945917\pi\)
0.639237 + 0.769010i \(0.279250\pi\)
\(462\) 0 0
\(463\) 28.8166i 1.33922i 0.742712 + 0.669611i \(0.233539\pi\)
−0.742712 + 0.669611i \(0.766461\pi\)
\(464\) 2.82775 + 6.57046i 0.131275 + 0.305026i
\(465\) 0 0
\(466\) −0.236904 + 0.527664i −0.0109744 + 0.0244436i
\(467\) 14.1259i 0.653670i 0.945081 + 0.326835i \(0.105982\pi\)
−0.945081 + 0.326835i \(0.894018\pi\)
\(468\) 0 0
\(469\) 13.4887i 0.622852i
\(470\) −2.97721 1.33667i −0.137328 0.0616561i
\(471\) 0 0
\(472\) 3.42090 15.3853i 0.157459 0.708167i
\(473\) 27.4157i 1.26057i
\(474\) 0 0
\(475\) 9.85447 17.0684i 0.452154 0.783154i
\(476\) −16.8421 5.58863i −0.771957 0.256154i
\(477\) 0 0
\(478\) 17.0877 + 7.67185i 0.781575 + 0.350902i
\(479\) −35.0552 + 20.2391i −1.60171 + 0.924748i −0.610566 + 0.791965i \(0.709058\pi\)
−0.991145 + 0.132783i \(0.957609\pi\)
\(480\) 0 0
\(481\) 6.66892 + 16.9366i 0.304076 + 0.772242i
\(482\) −21.1382 + 15.2574i −0.962821 + 0.694956i
\(483\) 0 0
\(484\) 50.1471 10.3329i 2.27941 0.469675i
\(485\) −51.5136 29.7414i −2.33911 1.35049i
\(486\) 0 0
\(487\) −24.5598 14.1796i −1.11291 0.642540i −0.173330 0.984864i \(-0.555453\pi\)
−0.939582 + 0.342324i \(0.888786\pi\)
\(488\) −0.533742 0.118676i −0.0241614 0.00537223i
\(489\) 0 0
\(490\) −24.5630 + 2.50430i −1.10964 + 0.113133i
\(491\) −13.5117 + 7.80101i −0.609777 + 0.352055i −0.772878 0.634555i \(-0.781184\pi\)
0.163101 + 0.986609i \(0.447850\pi\)
\(492\) 0 0
\(493\) 11.5484i 0.520115i
\(494\) 6.92170 + 13.4026i 0.311422 + 0.603011i
\(495\) 0 0
\(496\) −19.0267 2.23991i −0.854322 0.100575i
\(497\) −9.33957 16.1766i −0.418937 0.725620i
\(498\) 0 0
\(499\) 15.0705 0.674650 0.337325 0.941388i \(-0.390478\pi\)
0.337325 + 0.941388i \(0.390478\pi\)
\(500\) 7.54410 + 8.48432i 0.337382 + 0.379431i
\(501\) 0 0
\(502\) 13.8071 9.96582i 0.616239 0.444796i
\(503\) −6.64251 + 11.5052i −0.296175 + 0.512990i −0.975258 0.221072i \(-0.929044\pi\)
0.679083 + 0.734062i \(0.262378\pi\)
\(504\) 0 0
\(505\) 15.6325 9.02543i 0.695637 0.401626i
\(506\) 31.8728 + 44.1579i 1.41692 + 1.96306i
\(507\) 0 0
\(508\) 0.950486 2.86442i 0.0421710 0.127088i
\(509\) −2.67052 4.62548i −0.118369 0.205021i 0.800753 0.598995i \(-0.204433\pi\)
−0.919121 + 0.393974i \(0.871100\pi\)
\(510\) 0 0
\(511\) 1.35385 2.34494i 0.0598909 0.103734i
\(512\) 13.8082 17.9258i 0.610242 0.792215i
\(513\) 0 0
\(514\) 5.21689 0.531886i 0.230107 0.0234605i
\(515\) −23.8404 −1.05053
\(516\) 0 0
\(517\) −3.54039 + 2.04404i −0.155706 + 0.0898969i
\(518\) 8.94862 + 4.01764i 0.393180 + 0.176525i
\(519\) 0 0
\(520\) −34.4017 + 5.42208i −1.50861 + 0.237774i
\(521\) 2.03430 0.0891244 0.0445622 0.999007i \(-0.485811\pi\)
0.0445622 + 0.999007i \(0.485811\pi\)
\(522\) 0 0
\(523\) 24.3054 14.0327i 1.06280 0.613608i 0.136594 0.990627i \(-0.456384\pi\)
0.926205 + 0.377019i \(0.123051\pi\)
\(524\) −0.909813 + 0.808988i −0.0397454 + 0.0353408i
\(525\) 0 0
\(526\) −19.1019 + 1.94752i −0.832881 + 0.0849159i
\(527\) −26.7861 15.4650i −1.16682 0.673664i
\(528\) 0 0
\(529\) −8.75800 + 15.1693i −0.380783 + 0.659535i
\(530\) 54.6774 + 24.5484i 2.37503 + 1.06631i
\(531\) 0 0
\(532\) 7.71526 + 2.56011i 0.334499 + 0.110995i
\(533\) 11.5023 4.52910i 0.498218 0.196177i
\(534\) 0 0
\(535\) −30.8291 + 17.7992i −1.33286 + 0.769527i
\(536\) 20.4615 + 18.7729i 0.883802 + 0.810868i
\(537\) 0 0
\(538\) −18.9302 + 13.6636i −0.816138 + 0.589082i
\(539\) −15.4644 + 26.7851i −0.666097 + 1.15371i
\(540\) 0 0
\(541\) −29.6268 −1.27375 −0.636877 0.770965i \(-0.719774\pi\)
−0.636877 + 0.770965i \(0.719774\pi\)
\(542\) 1.62509 + 15.9394i 0.0698037 + 0.684655i
\(543\) 0 0
\(544\) 31.9176 17.7704i 1.36846 0.761898i
\(545\) 57.0156 2.44228
\(546\) 0 0
\(547\) 0.345795i 0.0147851i −0.999973 0.00739257i \(-0.997647\pi\)
0.999973 0.00739257i \(-0.00235315\pi\)
\(548\) 4.64465 + 22.5413i 0.198410 + 0.962917i
\(549\) 0 0
\(550\) 56.7066 5.78149i 2.41798 0.246524i
\(551\) 5.29026i 0.225373i
\(552\) 0 0
\(553\) 1.20235 + 0.694179i 0.0511293 + 0.0295195i
\(554\) 0.464357 0.335169i 0.0197286 0.0142400i
\(555\) 0 0
\(556\) −6.24890 30.3270i −0.265012 1.28615i
\(557\) −7.15368 12.3905i −0.303111 0.525004i 0.673728 0.738980i \(-0.264692\pi\)
−0.976839 + 0.213976i \(0.931359\pi\)
\(558\) 0 0
\(559\) −12.7858 10.1730i −0.540780 0.430273i
\(560\) −11.2198 + 15.0448i −0.474125 + 0.635758i
\(561\) 0 0
\(562\) 6.73252 + 3.02269i 0.283994 + 0.127504i
\(563\) −5.57398 3.21814i −0.234915 0.135628i 0.377922 0.925837i \(-0.376639\pi\)
−0.612837 + 0.790209i \(0.709972\pi\)
\(564\) 0 0
\(565\) 19.8489 34.3794i 0.835051 1.44635i
\(566\) −3.22228 31.6051i −0.135442 1.32846i
\(567\) 0 0
\(568\) 37.5372 + 8.34631i 1.57502 + 0.350203i
\(569\) 14.0501 + 24.3355i 0.589012 + 1.02020i 0.994362 + 0.106038i \(0.0338164\pi\)
−0.405350 + 0.914162i \(0.632850\pi\)
\(570\) 0 0
\(571\) 4.83071i 0.202159i −0.994878 0.101079i \(-0.967770\pi\)
0.994878 0.101079i \(-0.0322296\pi\)
\(572\) −19.7139 + 38.9176i −0.824278 + 1.62723i
\(573\) 0 0
\(574\) 2.72853 6.07733i 0.113886 0.253663i
\(575\) 21.2034 + 36.7253i 0.884242 + 1.53155i
\(576\) 0 0
\(577\) 6.81392i 0.283667i 0.989891 + 0.141834i \(0.0452998\pi\)
−0.989891 + 0.141834i \(0.954700\pi\)
\(578\) 34.7561 3.54354i 1.44566 0.147392i
\(579\) 0 0
\(580\) 11.5924 + 3.84665i 0.481350 + 0.159724i
\(581\) 5.28249 + 3.04985i 0.219155 + 0.126529i
\(582\) 0 0
\(583\) 65.0203 37.5395i 2.69287 1.55473i
\(584\) 1.67289 + 5.31727i 0.0692248 + 0.220030i
\(585\) 0 0
\(586\) −12.9021 17.8751i −0.532982 0.738415i
\(587\) −6.33027 10.9643i −0.261278 0.452547i 0.705304 0.708905i \(-0.250811\pi\)
−0.966582 + 0.256358i \(0.917477\pi\)
\(588\) 0 0
\(589\) 12.2705 + 7.08439i 0.505598 + 0.291907i
\(590\) −15.7506 21.8215i −0.648441 0.898377i
\(591\) 0 0
\(592\) −18.5487 + 7.98289i −0.762348 + 0.328095i
\(593\) 7.20191i 0.295747i −0.989006 0.147873i \(-0.952757\pi\)
0.989006 0.147873i \(-0.0472428\pi\)
\(594\) 0 0
\(595\) −26.2405 + 15.1499i −1.07575 + 0.621087i
\(596\) −1.78126 + 0.367030i −0.0729632 + 0.0150341i
\(597\) 0 0
\(598\) −32.4207 1.52106i −1.32578 0.0622007i
\(599\) −9.36355 −0.382584 −0.191292 0.981533i \(-0.561268\pi\)
−0.191292 + 0.981533i \(0.561268\pi\)
\(600\) 0 0
\(601\) 15.3653 + 26.6135i 0.626765 + 1.08559i 0.988197 + 0.153190i \(0.0489545\pi\)
−0.361432 + 0.932398i \(0.617712\pi\)
\(602\) −8.75967 + 0.893088i −0.357018 + 0.0363995i
\(603\) 0 0
\(604\) −32.6406 + 29.0234i −1.32813 + 1.18095i
\(605\) 43.7126 75.7124i 1.77717 3.07815i
\(606\) 0 0
\(607\) 17.9472 31.0855i 0.728455 1.26172i −0.229081 0.973407i \(-0.573572\pi\)
0.957536 0.288313i \(-0.0930944\pi\)
\(608\) −14.6212 + 8.14049i −0.592969 + 0.330140i
\(609\) 0 0
\(610\) −0.757023 + 0.546413i −0.0306510 + 0.0221236i
\(611\) 0.360442 2.40960i 0.0145819 0.0974818i
\(612\) 0 0
\(613\) −2.48114 4.29747i −0.100212 0.173573i 0.811560 0.584270i \(-0.198619\pi\)
−0.911772 + 0.410697i \(0.865286\pi\)
\(614\) 16.7286 37.2602i 0.675112 1.50370i
\(615\) 0 0
\(616\) 7.05558 + 22.4261i 0.284277 + 0.903574i
\(617\) −18.3016 10.5665i −0.736796 0.425389i 0.0841072 0.996457i \(-0.473196\pi\)
−0.820903 + 0.571067i \(0.806530\pi\)
\(618\) 0 0
\(619\) −8.60082 −0.345696 −0.172848 0.984948i \(-0.555297\pi\)
−0.172848 + 0.984948i \(0.555297\pi\)
\(620\) −24.4460 + 21.7369i −0.981776 + 0.872977i
\(621\) 0 0
\(622\) −4.43628 + 9.88105i −0.177878 + 0.396194i
\(623\) −18.0617 −0.723629
\(624\) 0 0
\(625\) −13.9255 −0.557022
\(626\) 8.49809 18.9281i 0.339652 0.756517i
\(627\) 0 0
\(628\) 4.54225 4.03888i 0.181255 0.161169i
\(629\) −32.6018 −1.29992
\(630\) 0 0
\(631\) −1.51792 0.876372i −0.0604275 0.0348878i 0.469482 0.882942i \(-0.344441\pi\)
−0.529909 + 0.848054i \(0.677774\pi\)
\(632\) −2.72640 + 0.857765i −0.108450 + 0.0341200i
\(633\) 0 0
\(634\) 7.39383 16.4685i 0.293647 0.654048i
\(635\) −2.57662 4.46284i −0.102250 0.177103i
\(636\) 0 0
\(637\) −6.75338 17.1511i −0.267579 0.679551i
\(638\) 12.4060 8.95453i 0.491157 0.354513i
\(639\) 0 0
\(640\) −7.20669 37.9583i −0.284869 1.50043i
\(641\) 13.1070 22.7019i 0.517694 0.896673i −0.482094 0.876119i \(-0.660124\pi\)
0.999789 0.0205536i \(-0.00654287\pi\)
\(642\) 0 0
\(643\) 11.4912 19.9033i 0.453167 0.784908i −0.545414 0.838167i \(-0.683627\pi\)
0.998581 + 0.0532586i \(0.0169608\pi\)
\(644\) −13.0708 + 11.6223i −0.515060 + 0.457982i
\(645\) 0 0
\(646\) −26.8781 + 2.74034i −1.05750 + 0.107817i
\(647\) −4.81890 8.34657i −0.189450 0.328138i 0.755617 0.655014i \(-0.227337\pi\)
−0.945067 + 0.326876i \(0.894004\pi\)
\(648\) 0 0
\(649\) −33.7119 −1.32331
\(650\) −18.3456 + 28.5914i −0.719573 + 1.12145i
\(651\) 0 0
\(652\) 32.7762 6.75357i 1.28362 0.264490i
\(653\) 37.2110 21.4838i 1.45618 0.840725i 0.457358 0.889283i \(-0.348796\pi\)
0.998820 + 0.0485577i \(0.0154625\pi\)
\(654\) 0 0
\(655\) 2.07883i 0.0812264i
\(656\) 5.42147 + 12.5971i 0.211673 + 0.491834i
\(657\) 0 0
\(658\) −0.768430 1.06461i −0.0299565 0.0415030i
\(659\) 3.12326 + 1.80322i 0.121665 + 0.0702433i 0.559597 0.828765i \(-0.310956\pi\)
−0.437932 + 0.899008i \(0.644289\pi\)
\(660\) 0 0
\(661\) 5.43287 + 9.41001i 0.211314 + 0.366007i 0.952126 0.305706i \(-0.0988924\pi\)
−0.740812 + 0.671712i \(0.765559\pi\)
\(662\) 0.0947150 + 0.131222i 0.00368120 + 0.00510009i
\(663\) 0 0
\(664\) −11.9783 + 3.76855i −0.464849 + 0.146248i
\(665\) 12.0206 6.94008i 0.466138 0.269125i
\(666\) 0 0
\(667\) 9.85779 + 5.69140i 0.381695 + 0.220372i
\(668\) −33.3279 11.0590i −1.28950 0.427886i
\(669\) 0 0
\(670\) 47.1705 4.80924i 1.82235 0.185797i
\(671\) 1.16952i 0.0451488i
\(672\) 0 0
\(673\) 2.90112 + 5.02489i 0.111830 + 0.193695i 0.916508 0.400016i \(-0.130995\pi\)
−0.804678 + 0.593711i \(0.797662\pi\)
\(674\) 8.27266 18.4260i 0.318651 0.709741i
\(675\) 0 0
\(676\) −10.8347 23.6349i −0.416721 0.909034i
\(677\) 27.4225i 1.05393i 0.849887 + 0.526966i \(0.176670\pi\)
−0.849887 + 0.526966i \(0.823330\pi\)
\(678\) 0 0
\(679\) −11.9655 20.7249i −0.459195 0.795349i
\(680\) 13.5387 60.8899i 0.519187 2.33502i
\(681\) 0 0
\(682\) 4.15632 + 40.7665i 0.159154 + 1.56103i
\(683\) −13.3166 + 23.0650i −0.509544 + 0.882556i 0.490395 + 0.871500i \(0.336853\pi\)
−0.999939 + 0.0110559i \(0.996481\pi\)
\(684\) 0 0
\(685\) 34.0330 + 19.6490i 1.30033 + 0.750748i
\(686\) −21.4699 9.63930i −0.819725 0.368030i
\(687\) 0 0
\(688\) 10.8365 14.5308i 0.413138 0.553981i
\(689\) −6.61964 + 44.2530i −0.252188 + 1.68590i
\(690\) 0 0
\(691\) −0.313614 0.543196i −0.0119305 0.0206642i 0.859999 0.510296i \(-0.170464\pi\)
−0.871929 + 0.489632i \(0.837131\pi\)
\(692\) −1.06237 5.15587i −0.0403853 0.195997i
\(693\) 0 0
\(694\) −23.0470 + 16.6352i −0.874853 + 0.631462i
\(695\) −45.7879 26.4356i −1.73683 1.00276i
\(696\) 0 0
\(697\) 22.1410i 0.838652i
\(698\) −30.8983 + 3.15022i −1.16952 + 0.119238i
\(699\) 0 0
\(700\) 3.69453 + 17.9302i 0.139640 + 0.677697i
\(701\) 25.5900i 0.966522i 0.875476 + 0.483261i \(0.160548\pi\)
−0.875476 + 0.483261i \(0.839452\pi\)
\(702\) 0 0
\(703\) 14.9347 0.563271
\(704\) −43.8385 20.5087i −1.65222 0.772951i
\(705\) 0 0
\(706\) 4.11176 + 40.3294i 0.154748 + 1.51782i
\(707\) 7.26220 0.273123
\(708\) 0 0
\(709\) −13.9996 + 24.2481i −0.525767 + 0.910655i 0.473783 + 0.880642i \(0.342888\pi\)
−0.999550 + 0.0300132i \(0.990445\pi\)
\(710\) 53.2402 38.4283i 1.99807 1.44219i
\(711\) 0 0
\(712\) 25.1374 27.3984i 0.942065 1.02680i
\(713\) −26.4019 + 15.2431i −0.988759 + 0.570860i
\(714\) 0 0
\(715\) 27.2920 + 69.3116i 1.02066 + 2.59211i
\(716\) −39.3069 13.0430i −1.46897 0.487439i
\(717\) 0 0
\(718\) −41.4522 18.6107i −1.54698 0.694545i
\(719\) 8.07202 13.9812i 0.301036 0.521409i −0.675335 0.737511i \(-0.736001\pi\)
0.976371 + 0.216102i \(0.0693344\pi\)
\(720\) 0 0
\(721\) −8.30642 4.79572i −0.309347 0.178602i
\(722\) −14.4188 + 1.47006i −0.536613 + 0.0547101i
\(723\) 0 0
\(724\) 24.7316 21.9908i 0.919142 0.817283i
\(725\) 10.3178 5.95700i 0.383194 0.221237i
\(726\) 0 0
\(727\) 36.6341 1.35868 0.679342 0.733822i \(-0.262265\pi\)
0.679342 + 0.733822i \(0.262265\pi\)
\(728\) −13.0769 5.03107i −0.484662 0.186464i
\(729\) 0 0
\(730\) 8.68302 + 3.89840i 0.321373 + 0.144286i
\(731\) 25.3440 14.6323i 0.937380 0.541197i
\(732\) 0 0
\(733\) 39.0091 1.44083 0.720417 0.693541i \(-0.243950\pi\)
0.720417 + 0.693541i \(0.243950\pi\)
\(734\) 11.0077 1.12228i 0.406301 0.0414242i
\(735\) 0 0
\(736\) 0.561034 36.0027i 0.0206800 1.32708i
\(737\) 29.6976 51.4378i 1.09393 1.89474i
\(738\) 0 0
\(739\) 9.63783 + 16.6932i 0.354533 + 0.614069i 0.987038 0.160487i \(-0.0513065\pi\)
−0.632505 + 0.774556i \(0.717973\pi\)
\(740\) −10.8593 + 32.7260i −0.399195 + 1.20303i
\(741\) 0 0
\(742\) 14.1125 + 19.5520i 0.518085 + 0.717776i
\(743\) −13.3110 + 7.68512i −0.488334 + 0.281940i −0.723883 0.689923i \(-0.757645\pi\)
0.235549 + 0.971862i \(0.424311\pi\)
\(744\) 0 0
\(745\) −1.55270 + 2.68936i −0.0568865 + 0.0985304i
\(746\) −15.1887 + 10.9631i −0.556098 + 0.401387i
\(747\) 0 0
\(748\) −51.9213 58.3922i −1.89843 2.13503i
\(749\) −14.3219 −0.523311
\(750\) 0 0
\(751\) 5.84408 + 10.1222i 0.213254 + 0.369366i 0.952731 0.303815i \(-0.0982606\pi\)
−0.739477 + 0.673181i \(0.764927\pi\)
\(752\) 2.68441 + 0.316021i 0.0978904 + 0.0115241i
\(753\) 0 0
\(754\) −0.427334 + 9.10846i −0.0155626 + 0.331710i
\(755\) 74.5804i 2.71426i
\(756\) 0 0
\(757\) −13.5679 + 7.83343i −0.493134 + 0.284711i −0.725874 0.687828i \(-0.758564\pi\)
0.232740 + 0.972539i \(0.425231\pi\)
\(758\) −42.7068 + 4.35415i −1.55118 + 0.158150i
\(759\) 0 0
\(760\) −6.20201 + 27.8933i −0.224970 + 1.01179i
\(761\) −34.3924 19.8565i −1.24672 0.719797i −0.276270 0.961080i \(-0.589098\pi\)
−0.970455 + 0.241283i \(0.922432\pi\)
\(762\) 0 0
\(763\) 19.8653 + 11.4692i 0.719172 + 0.415214i
\(764\) 29.0167 5.97892i 1.04979 0.216310i
\(765\) 0 0
\(766\) −25.5143 + 18.4160i −0.921868 + 0.665397i
\(767\) 12.5093 15.7221i 0.451686 0.567692i
\(768\) 0 0
\(769\) 38.6620 22.3215i 1.39419 0.804935i 0.400412 0.916335i \(-0.368867\pi\)
0.993776 + 0.111400i \(0.0355336\pi\)
\(770\) 36.6215 + 16.4419i 1.31975 + 0.592524i
\(771\) 0 0
\(772\) 26.6870 + 8.85539i 0.960485 + 0.318713i
\(773\) 22.4489 38.8827i 0.807432 1.39851i −0.107205 0.994237i \(-0.534190\pi\)
0.914637 0.404276i \(-0.132476\pi\)
\(774\) 0 0
\(775\) 31.9090i 1.14621i
\(776\) 48.0913 + 10.6930i 1.72638 + 0.383856i
\(777\) 0 0
\(778\) −3.76940 1.69234i −0.135139 0.0606733i
\(779\) 10.1427i 0.363399i
\(780\) 0 0
\(781\) 82.2503i 2.94315i
\(782\) 23.8098 53.0323i 0.851437 1.89643i
\(783\) 0 0
\(784\) 18.7836 8.08399i 0.670844 0.288714i
\(785\) 10.3785i 0.370426i
\(786\) 0 0
\(787\) 13.8178 23.9331i 0.492551 0.853124i −0.507412 0.861704i \(-0.669398\pi\)
0.999963 + 0.00857979i \(0.00273107\pi\)
\(788\) −6.02058 + 18.1439i −0.214474 + 0.646348i
\(789\) 0 0
\(790\) −1.99888 + 4.45216i −0.0711169 + 0.158401i
\(791\) 13.8315 7.98561i 0.491791 0.283935i
\(792\) 0 0
\(793\) −0.545425 0.433969i −0.0193686 0.0154107i
\(794\) 5.18426 + 7.18248i 0.183982 + 0.254897i
\(795\) 0 0
\(796\) −7.45463 + 1.53603i −0.264222 + 0.0544432i
\(797\) 34.0592 + 19.6641i 1.20644 + 0.696539i 0.961980 0.273121i \(-0.0880559\pi\)
0.244460 + 0.969659i \(0.421389\pi\)
\(798\) 0 0
\(799\) 3.77916 + 2.18190i 0.133697 + 0.0771901i
\(800\) −32.3407 19.3500i −1.14342 0.684125i
\(801\) 0 0
\(802\) −3.30948 32.4604i −0.116862 1.14622i
\(803\) 10.3255 5.96145i 0.364380 0.210375i
\(804\) 0 0
\(805\) 29.8653i 1.05261i
\(806\) −20.5544 13.1887i −0.723998 0.464551i
\(807\) 0 0
\(808\) −10.1072 + 11.0163i −0.355569 + 0.387551i
\(809\) 23.1914 + 40.1687i 0.815366 + 1.41226i 0.909064 + 0.416655i \(0.136798\pi\)
−0.0936981 + 0.995601i \(0.529869\pi\)
\(810\) 0 0
\(811\) 25.2433 0.886411 0.443206 0.896420i \(-0.353841\pi\)
0.443206 + 0.896420i \(0.353841\pi\)
\(812\) 3.26523 + 3.67217i 0.114587 + 0.128868i
\(813\) 0 0
\(814\) 25.2791 + 35.0227i 0.886031 + 1.22754i
\(815\) 28.5706 49.4857i 1.00078 1.73341i
\(816\) 0 0
\(817\) −11.6099 + 6.70298i −0.406179 + 0.234507i
\(818\) 42.3229 30.5484i 1.47979 1.06810i
\(819\) 0 0
\(820\) 22.2254 + 7.37493i 0.776145 + 0.257544i
\(821\) 1.82456 + 3.16024i 0.0636777 + 0.110293i 0.896107 0.443839i \(-0.146384\pi\)
−0.832429 + 0.554132i \(0.813050\pi\)
\(822\) 0 0
\(823\) −16.0083 + 27.7272i −0.558014 + 0.966509i 0.439648 + 0.898170i \(0.355103\pi\)
−0.997662 + 0.0683386i \(0.978230\pi\)
\(824\) 18.8352 5.92584i 0.656157 0.206436i
\(825\) 0 0
\(826\) −1.09819 10.7714i −0.0382110 0.374785i
\(827\) −32.5482 −1.13181 −0.565906 0.824470i \(-0.691473\pi\)
−0.565906 + 0.824470i \(0.691473\pi\)
\(828\) 0 0
\(829\) 1.89091 1.09172i 0.0656739 0.0379168i −0.466804 0.884361i \(-0.654594\pi\)
0.532477 + 0.846444i \(0.321261\pi\)
\(830\) −8.78199 + 19.5604i −0.304827 + 0.678951i
\(831\) 0 0
\(832\) 25.8316 12.8348i 0.895548 0.444965i
\(833\) 33.0147 1.14389
\(834\) 0 0
\(835\) −51.9257 + 29.9793i −1.79696 + 1.03748i
\(836\) 23.7848 + 26.7491i 0.822614 + 0.925137i
\(837\) 0 0
\(838\) −1.36958 13.4333i −0.0473114 0.464045i
\(839\) 33.5508 + 19.3706i 1.15830 + 0.668747i 0.950897 0.309508i \(-0.100164\pi\)
0.207406 + 0.978255i \(0.433498\pi\)
\(840\) 0 0
\(841\) −12.9010 + 22.3452i −0.444863 + 0.770525i
\(842\) 15.6556 34.8702i 0.539527 1.20171i
\(843\) 0 0
\(844\) −19.2363 6.38307i −0.662140 0.219714i
\(845\) −42.4518 12.9911i −1.46039 0.446907i
\(846\) 0 0
\(847\) 30.4605 17.5864i 1.04664 0.604276i
\(848\) −49.3001 5.80383i −1.69297 0.199304i
\(849\) 0 0
\(850\) −35.6102 49.3358i −1.22142 1.69220i
\(851\) −16.0671 + 27.8290i −0.550773 + 0.953967i
\(852\) 0 0
\(853\) −32.6789 −1.11891 −0.559453 0.828862i \(-0.688989\pi\)
−0.559453 + 0.828862i \(0.688989\pi\)
\(854\) −0.373677 + 0.0380980i −0.0127870 + 0.00130369i
\(855\) 0 0
\(856\) 19.9325 21.7254i 0.681280 0.742558i
\(857\) 26.0253 0.889008 0.444504 0.895777i \(-0.353380\pi\)
0.444504 + 0.895777i \(0.353380\pi\)
\(858\) 0 0
\(859\) 15.4455i 0.526994i −0.964660 0.263497i \(-0.915124\pi\)
0.964660 0.263497i \(-0.0848759\pi\)
\(860\) −6.24630 30.3144i −0.212997 1.03371i
\(861\) 0 0
\(862\) −1.12746 11.0585i −0.0384016 0.376654i
\(863\) 22.7498i 0.774411i −0.921993 0.387206i \(-0.873440\pi\)
0.921993 0.387206i \(-0.126560\pi\)
\(864\) 0 0
\(865\) −7.78436 4.49430i −0.264676 0.152811i
\(866\) 12.7798 + 17.7056i 0.434275 + 0.601662i
\(867\) 0 0
\(868\) −12.8900 + 2.65600i −0.437516 + 0.0901506i
\(869\) 3.05669 + 5.29435i 0.103691 + 0.179599i
\(870\) 0 0
\(871\) 12.9691 + 32.9368i 0.439442 + 1.11602i
\(872\) −45.0456 + 14.1720i −1.52544 + 0.479924i
\(873\) 0 0
\(874\) −10.9071 + 24.2938i −0.368939 + 0.821749i
\(875\) 6.75436 + 3.89963i 0.228339 + 0.131832i
\(876\) 0 0
\(877\) 7.48245 12.9600i 0.252664 0.437628i −0.711594 0.702591i \(-0.752026\pi\)
0.964259 + 0.264963i \(0.0853598\pi\)
\(878\) 30.5745 3.11721i 1.03184 0.105201i
\(879\) 0 0
\(880\) −75.9091 + 32.6693i −2.55890 + 1.10128i
\(881\) 17.2978 + 29.9607i 0.582779 + 1.00940i 0.995148 + 0.0983859i \(0.0313679\pi\)
−0.412370 + 0.911017i \(0.635299\pi\)
\(882\) 0 0
\(883\) 51.1608i 1.72170i −0.508861 0.860849i \(-0.669933\pi\)
0.508861 0.860849i \(-0.330067\pi\)
\(884\) 46.4984 2.54701i 1.56391 0.0856652i
\(885\) 0 0
\(886\) −8.54950 3.83845i −0.287226 0.128955i
\(887\) −20.7550 35.9488i −0.696886 1.20704i −0.969541 0.244930i \(-0.921235\pi\)
0.272655 0.962112i \(-0.412098\pi\)
\(888\) 0 0
\(889\) 2.07325i 0.0695346i
\(890\) −6.43969 63.1624i −0.215859 2.11721i
\(891\) 0 0
\(892\) 4.13024 + 1.37052i 0.138291 + 0.0458883i
\(893\) −1.73121 0.999515i −0.0579327 0.0334475i
\(894\) 0 0
\(895\) −61.2411 + 35.3576i −2.04706 + 1.18187i
\(896\) 5.12473 14.6751i 0.171205 0.490260i
\(897\) 0 0
\(898\) −27.9680 + 20.1871i −0.933303 + 0.673651i
\(899\) 4.28250 + 7.41750i 0.142829 + 0.247387i
\(900\) 0 0
\(901\) −69.4056 40.0713i −2.31223 1.33497i
\(902\) 23.7851 17.1679i 0.791959 0.571629i
\(903\) 0 0
\(904\) −7.13634 + 32.0954i −0.237351 + 1.06748i
\(905\) 56.5090i 1.87842i
\(906\) 0 0
\(907\) 35.1223 20.2779i 1.16622 0.673315i 0.213430 0.976958i \(-0.431536\pi\)
0.952786 + 0.303643i \(0.0982031\pi\)
\(908\) −9.94086 + 2.04832i −0.329899 + 0.0679759i
\(909\) 0 0
\(910\) −21.2569 + 10.9780i −0.704660 + 0.363918i
\(911\) −8.86652 −0.293761 −0.146880 0.989154i \(-0.546923\pi\)
−0.146880 + 0.989154i \(0.546923\pi\)
\(912\) 0 0
\(913\) 13.4294 + 23.2605i 0.444450 + 0.769810i
\(914\) 1.94948 + 19.1211i 0.0644830 + 0.632469i
\(915\) 0 0
\(916\) 16.8959 + 19.0016i 0.558256 + 0.627832i
\(917\) −0.418175 + 0.724301i −0.0138094 + 0.0239185i
\(918\) 0 0
\(919\) 25.0399 43.3703i 0.825989 1.43065i −0.0751721 0.997171i \(-0.523951\pi\)
0.901161 0.433484i \(-0.142716\pi\)
\(920\) −45.3036 41.5650i −1.49362 1.37036i
\(921\) 0 0
\(922\) −12.3106 17.0556i −0.405427 0.561695i
\(923\) 38.3588 + 30.5203i 1.26260 + 1.00459i
\(924\) 0 0
\(925\) 16.8169 + 29.1277i 0.552936 + 0.957714i
\(926\) −37.1777 16.6916i −1.22174 0.548520i
\(927\) 0 0
\(928\) −10.1148 0.157620i −0.332035 0.00517413i
\(929\) −24.8897 14.3700i −0.816603 0.471466i 0.0326406 0.999467i \(-0.489608\pi\)
−0.849244 + 0.528001i \(0.822942\pi\)
\(930\) 0 0
\(931\) −15.1238 −0.495663
\(932\) −0.543542 0.611284i −0.0178043 0.0200233i
\(933\) 0 0
\(934\) −18.2246 8.18224i −0.596326 0.267731i
\(935\) −133.420 −4.36330
\(936\) 0 0
\(937\) 49.4166 1.61437 0.807185 0.590298i \(-0.200990\pi\)
0.807185 + 0.590298i \(0.200990\pi\)
\(938\) 17.4025 + 7.81316i 0.568211 + 0.255109i
\(939\) 0 0
\(940\) 3.44901 3.06680i 0.112494 0.100028i
\(941\) 28.9013 0.942157 0.471078 0.882091i \(-0.343865\pi\)
0.471078 + 0.882091i \(0.343865\pi\)
\(942\) 0 0
\(943\) 18.8997 + 10.9117i 0.615458 + 0.355335i
\(944\) 17.8679 + 13.3252i 0.581550 + 0.433698i
\(945\) 0 0
\(946\) −35.3703 15.8801i −1.14999 0.516308i
\(947\) 23.6288 + 40.9262i 0.767831 + 1.32992i 0.938737 + 0.344636i \(0.111998\pi\)
−0.170905 + 0.985288i \(0.554669\pi\)
\(948\) 0 0
\(949\) −1.05123 + 7.02758i −0.0341243 + 0.228125i
\(950\) 16.3128 + 22.6004i 0.529256 + 0.733254i
\(951\) 0 0
\(952\) 16.9657 18.4917i 0.549862 0.599320i
\(953\) 5.28519 9.15421i 0.171204 0.296534i −0.767637 0.640885i \(-0.778568\pi\)
0.938841 + 0.344351i \(0.111901\pi\)
\(954\) 0 0
\(955\) 25.2935 43.8096i 0.818478 1.41765i
\(956\) −19.7957 + 17.6019i −0.640238 + 0.569287i
\(957\) 0 0
\(958\) −5.80627 56.9496i −0.187592 1.83996i
\(959\) 7.90515 + 13.6921i 0.255271 + 0.442142i
\(960\) 0 0
\(961\) 8.06057 0.260018
\(962\) −25.7136 1.20639i −0.829040 0.0388954i
\(963\) 0 0
\(964\) −7.44032 36.1091i −0.239636 1.16300i
\(965\) 41.5790 24.0056i 1.33848 0.772769i
\(966\) 0 0
\(967\) 7.41489i 0.238447i 0.992867 + 0.119223i \(0.0380405\pi\)
−0.992867 + 0.119223i \(0.961960\pi\)
\(968\) −15.7161 + 70.6824i −0.505134 + 2.27182i
\(969\) 0 0
\(970\) 68.2094 49.2330i 2.19007 1.58078i
\(971\) 14.6011 + 8.42995i 0.468572 + 0.270530i 0.715642 0.698468i \(-0.246134\pi\)
−0.247070 + 0.968998i \(0.579468\pi\)
\(972\) 0 0
\(973\) −10.6356 18.4213i −0.340960 0.590561i
\(974\) 32.5198 23.4725i 1.04200 0.752107i
\(975\) 0 0
\(976\) 0.462273 0.619866i 0.0147970 0.0198414i
\(977\) −32.1699 + 18.5733i −1.02921 + 0.594213i −0.916758 0.399444i \(-0.869203\pi\)
−0.112450 + 0.993657i \(0.535870\pi\)
\(978\) 0 0
\(979\) −68.8764 39.7658i −2.20130 1.27092i
\(980\) 10.9968 33.1405i 0.351280 1.05863i
\(981\) 0 0
\(982\) −2.23798 21.9508i −0.0714169 0.700478i
\(983\) 8.77688i 0.279939i −0.990156 0.139969i \(-0.955300\pi\)
0.990156 0.139969i \(-0.0447004\pi\)
\(984\) 0 0
\(985\) 16.3209 + 28.2686i 0.520027 + 0.900712i
\(986\) −14.8992 6.68926i −0.474487 0.213030i
\(987\) 0 0
\(988\) −21.3006 + 1.16677i −0.677663 + 0.0371198i
\(989\) 28.8449i 0.917216i
\(990\) 0 0
\(991\) 14.4649 + 25.0539i 0.459492 + 0.795864i 0.998934 0.0461588i \(-0.0146980\pi\)
−0.539442 + 0.842023i \(0.681365\pi\)
\(992\) 13.9107 23.2498i 0.441666 0.738182i
\(993\) 0 0
\(994\) 26.2801 2.67937i 0.833553 0.0849845i
\(995\) −6.49810 + 11.2550i −0.206004 + 0.356809i
\(996\) 0 0
\(997\) 37.6297 + 21.7255i 1.19174 + 0.688054i 0.958702 0.284412i \(-0.0917984\pi\)
0.233043 + 0.972466i \(0.425132\pi\)
\(998\) −8.72940 + 19.4433i −0.276324 + 0.615466i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.dg.f.829.10 yes 56
3.2 odd 2 inner 936.2.dg.f.829.19 yes 56
8.5 even 2 inner 936.2.dg.f.829.1 56
13.4 even 6 inner 936.2.dg.f.901.1 yes 56
24.5 odd 2 inner 936.2.dg.f.829.28 yes 56
39.17 odd 6 inner 936.2.dg.f.901.28 yes 56
104.69 even 6 inner 936.2.dg.f.901.10 yes 56
312.173 odd 6 inner 936.2.dg.f.901.19 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.dg.f.829.1 56 8.5 even 2 inner
936.2.dg.f.829.10 yes 56 1.1 even 1 trivial
936.2.dg.f.829.19 yes 56 3.2 odd 2 inner
936.2.dg.f.829.28 yes 56 24.5 odd 2 inner
936.2.dg.f.901.1 yes 56 13.4 even 6 inner
936.2.dg.f.901.10 yes 56 104.69 even 6 inner
936.2.dg.f.901.19 yes 56 312.173 odd 6 inner
936.2.dg.f.901.28 yes 56 39.17 odd 6 inner