L(s) = 1 | + (−0.579 − 1.29i)2-s + (−1.32 + 1.49i)4-s − 3.41·5-s + (−1.18 + 0.686i)7-s + (2.69 + 0.848i)8-s + (1.97 + 4.40i)10-s + (−3.02 + 5.23i)11-s + (3.56 − 0.533i)13-s + (1.57 + 1.13i)14-s + (−0.467 − 3.97i)16-s + (−3.22 − 5.59i)17-s + (1.47 + 2.56i)19-s + (4.53 − 5.10i)20-s + (8.51 + 0.867i)22-s + (3.18 − 5.51i)23-s + ⋯ |
L(s) = 1 | + (−0.409 − 0.912i)2-s + (−0.664 + 0.747i)4-s − 1.52·5-s + (−0.449 + 0.259i)7-s + (0.953 + 0.300i)8-s + (0.625 + 1.39i)10-s + (−0.912 + 1.57i)11-s + (0.988 − 0.147i)13-s + (0.421 + 0.303i)14-s + (−0.116 − 0.993i)16-s + (−0.783 − 1.35i)17-s + (0.339 + 0.587i)19-s + (1.01 − 1.14i)20-s + (1.81 + 0.185i)22-s + (0.663 − 1.14i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.143 + 0.989i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.143 + 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.376622 - 0.434953i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.376622 - 0.434953i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.579 + 1.29i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-3.56 + 0.533i)T \) |
good | 5 | \( 1 + 3.41T + 5T^{2} \) |
| 7 | \( 1 + (1.18 - 0.686i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3.02 - 5.23i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (3.22 + 5.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.47 - 2.56i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.18 + 5.51i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.54 - 0.894i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4.78iT - 31T^{2} \) |
| 37 | \( 1 + (-2.52 + 4.37i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.96 - 1.71i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.92 - 2.26i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 0.675iT - 47T^{2} \) |
| 53 | \( 1 + 12.4iT - 53T^{2} \) |
| 59 | \( 1 + (-2.78 - 4.82i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.167 - 0.0966i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.90 + 8.50i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-11.7 + 6.79i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 1.97iT - 73T^{2} \) |
| 79 | \( 1 + 1.01T + 79T^{2} \) |
| 83 | \( 1 + 4.43T + 83T^{2} \) |
| 89 | \( 1 + (-11.3 - 6.57i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-15.0 + 8.70i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.856357610437628277556191947249, −9.113016847159097579480860931599, −8.152832101918500650290268775117, −7.59812458818882528190629259594, −6.73998495449813726599661290720, −4.97621425982099252149079021626, −4.32258054134056871334186067776, −3.30618287999627986100339043445, −2.33441811742864642516762005208, −0.45160684632632557764074906616,
0.878601119634067493508943794622, 3.30666596371037988005752521441, 4.00374182729942076474730156397, 5.18868929471883088934761949266, 6.17742321994939559966064062049, 6.96893149195318303289281144260, 7.925962903106677698939690786414, 8.424451265325950165020724793697, 9.031775143399636120221058662423, 10.38946273587818958460492481270