L(s) = 1 | + (−0.0977 + 1.72i)3-s + (−2.94 − 1.70i)7-s + (−2.98 − 0.338i)9-s + (2.20 − 3.81i)11-s + (1.78 − 1.03i)13-s + 1.40i·17-s + 6.35·19-s + (3.22 − 4.92i)21-s + (0.0933 − 0.0539i)23-s + (0.875 − 5.12i)27-s + (4.54 − 7.86i)29-s + (−1.53 − 2.65i)31-s + (6.37 + 4.17i)33-s − 1.95i·37-s + (1.60 + 3.19i)39-s + ⋯ |
L(s) = 1 | + (−0.0564 + 0.998i)3-s + (−1.11 − 0.642i)7-s + (−0.993 − 0.112i)9-s + (0.663 − 1.14i)11-s + (0.495 − 0.286i)13-s + 0.339i·17-s + 1.45·19-s + (0.704 − 1.07i)21-s + (0.0194 − 0.0112i)23-s + (0.168 − 0.985i)27-s + (0.843 − 1.46i)29-s + (−0.275 − 0.476i)31-s + (1.11 + 0.727i)33-s − 0.321i·37-s + (0.257 + 0.510i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.940 + 0.340i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.940 + 0.340i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.25774 - 0.220697i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.25774 - 0.220697i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.0977 - 1.72i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (2.94 + 1.70i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.20 + 3.81i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.78 + 1.03i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 1.40iT - 17T^{2} \) |
| 19 | \( 1 - 6.35T + 19T^{2} \) |
| 23 | \( 1 + (-0.0933 + 0.0539i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.54 + 7.86i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.53 + 2.65i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 1.95iT - 37T^{2} \) |
| 41 | \( 1 + (-4.34 - 7.53i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.17 - 3.56i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6.48 + 3.74i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 13.0iT - 53T^{2} \) |
| 59 | \( 1 + (6.58 + 11.4i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.862 + 1.49i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.7 + 6.18i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 7.50T + 71T^{2} \) |
| 73 | \( 1 + 5.42iT - 73T^{2} \) |
| 79 | \( 1 + (-4.71 + 8.17i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (7.77 + 4.48i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 4.01T + 89T^{2} \) |
| 97 | \( 1 + (-1.88 - 1.08i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.845333937200056016991557285743, −9.526179403005112122758976941587, −8.542935192269863524601639127667, −7.63009232627478760031062727720, −6.24559191287801877716014458426, −5.93674950177302022480627714241, −4.55739364399649014871684717943, −3.58902333565380660153677966615, −3.04513183317094257718618145871, −0.70345028563848291900607899156,
1.27720682229524392100115710639, 2.58101469357121646244081682106, 3.55840364548148056804794592616, 5.07495202992091393405005345840, 5.98826513535238684912220051902, 6.89568501937246602901870890751, 7.27793425682415263310405200330, 8.589468851797260492016947505830, 9.238846555270095680961705721734, 9.974364499841239960390772314904