Properties

Label 900.2.s.d
Level $900$
Weight $2$
Character orbit 900.s
Analytic conductor $7.187$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(49,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.1333317747165888577536.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 3x^{14} + 5x^{12} + 15x^{10} + 45x^{8} + 60x^{6} + 80x^{4} + 192x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{15} + \beta_{3}) q^{3} + ( - \beta_{15} - \beta_{9} + \cdots + \beta_{3}) q^{7} + ( - \beta_{11} + \beta_{4} + \beta_{2} - 1) q^{9} + ( - \beta_{6} + \beta_{4} + \beta_1) q^{11} + ( - \beta_{15} - \beta_{13} - \beta_{5}) q^{13}+ \cdots + ( - \beta_{14} - \beta_{11} + \beta_{6} + \cdots - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{9} + 6 q^{11} + 16 q^{19} + 26 q^{21} + 18 q^{29} - 4 q^{31} + 34 q^{39} + 18 q^{41} + 18 q^{49} + 6 q^{51} + 30 q^{59} + 2 q^{61} - 18 q^{69} - 48 q^{71} - 14 q^{79} - 62 q^{81} - 12 q^{89}+ \cdots - 66 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 3x^{14} + 5x^{12} + 15x^{10} + 45x^{8} + 60x^{6} + 80x^{4} + 192x^{2} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{14} - 35\nu^{12} - 165\nu^{10} - 495\nu^{8} - 525\nu^{6} - 540\nu^{4} + 880\nu^{2} - 1792 ) / 2880 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{14} + 25\nu^{12} + 255\nu^{10} + 525\nu^{8} + 615\nu^{6} + 1920\nu^{4} + 7600\nu^{2} + 4928 ) / 2880 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{15} + 5\nu^{13} + 15\nu^{11} - 75\nu^{9} + 15\nu^{7} - 30\nu^{5} + 140\nu^{3} + 352\nu ) / 1440 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 7\nu^{14} + 65\nu^{12} + 135\nu^{10} + 165\nu^{8} + 495\nu^{6} + 1920\nu^{4} - 160\nu^{2} + 64 ) / 2880 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -7\nu^{15} - 5\nu^{13} + 45\nu^{11} + 135\nu^{9} + 405\nu^{7} - 180\nu^{5} + 880\nu^{3} + 896\nu ) / 5760 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3\nu^{14} + 25\nu^{12} + 15\nu^{10} + 45\nu^{8} + 135\nu^{6} + 180\nu^{4} - 64 ) / 960 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -3\nu^{15} - 45\nu^{13} - 75\nu^{11} - 145\nu^{9} - 435\nu^{7} - 760\nu^{5} - 240\nu^{3} - 2176\nu ) / 960 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 31\nu^{15} - 115\nu^{13} - 405\nu^{11} - 255\nu^{9} - 765\nu^{7} - 4620\nu^{5} - 3280\nu^{3} + 6592\nu ) / 5760 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -37\nu^{15} - 275\nu^{13} - 645\nu^{11} - 1215\nu^{9} - 1725\nu^{7} - 4320\nu^{5} - 4640\nu^{3} - 1984\nu ) / 5760 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -37\nu^{15} - 35\nu^{13} - 165\nu^{11} - 735\nu^{9} - 1245\nu^{7} - 960\nu^{5} - 4880\nu^{3} - 6784\nu ) / 5760 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( -11\nu^{14} - 25\nu^{12} - 15\nu^{10} - 45\nu^{8} - 375\nu^{6} + 180\nu^{4} + 320\nu^{2} - 992 ) / 720 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 49\nu^{14} + 35\nu^{12} + 165\nu^{10} + 495\nu^{8} + 525\nu^{6} - 180\nu^{4} + 2960\nu^{2} + 2368 ) / 2880 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( -9\nu^{15} - 5\nu^{13} - 75\nu^{11} - 25\nu^{9} - 75\nu^{7} - 190\nu^{5} - 360\nu^{3} + 1792\nu ) / 960 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 43\nu^{14} + 35\nu^{12} - 75\nu^{10} + 375\nu^{8} + 645\nu^{6} + 150\nu^{4} + 800\nu^{2} + 5056 ) / 1440 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 26\nu^{15} + 55\nu^{13} + 45\nu^{11} + 195\nu^{9} + 585\nu^{7} + 285\nu^{5} + 460\nu^{3} + 2192\nu ) / 1440 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{15} - \beta_{10} + \beta_{8} - \beta_{7} - 2\beta_{5} + \beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{6} - \beta_{4} + \beta_{2} + \beta _1 - 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{15} + 2\beta_{13} - 2\beta_{10} - \beta_{9} - 2\beta_{8} + 3\beta_{7} + \beta_{5} + 4\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( \beta_{14} - \beta_{12} + \beta_{11} - 3\beta_{6} + 5\beta_{4} + \beta _1 - 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -\beta_{15} - \beta_{13} - 4\beta_{10} + 4\beta_{9} - 3\beta_{8} - 3\beta_{7} - 15\beta_{5} - 4\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( \beta_{14} - 7\beta_{12} - 8\beta_{11} - 11\beta_{6} + \beta_{4} + 4\beta_{2} - \beta _1 - 17 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 7\beta_{15} - 2\beta_{13} + 4\beta_{10} + 9\beta_{9} - 6\beta_{8} - 2\beta_{7} + 27\beta_{5} - 4\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 5\beta_{14} - 2\beta_{12} + 8\beta_{11} + 9\beta_{6} - 11\beta_{4} - 16\beta _1 - 14 ) / 3 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( -4\beta_{15} + \beta_{13} - \beta_{10} - 10\beta_{9} + 8\beta_{8} + \beta_{7} + 5\beta_{5} - 33\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( -19\beta_{14} + 28\beta_{12} - 7\beta_{11} - 20\beta_{6} + 18\beta_{4} - 5\beta_{2} - 3\beta _1 + 39 ) / 3 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( -41\beta_{15} - 36\beta_{13} + \beta_{10} - 14\beta_{9} + 41\beta_{8} - 31\beta_{7} + 14\beta_{5} + 27\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( -4\beta_{14} + 4\beta_{12} + 8\beta_{11} + 69\beta_{6} - 17\beta_{4} - 3\beta_{2} + 5\beta _1 + 35 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 71\beta_{15} + 90\beta_{13} + 98\beta_{10} - 99\beta_{9} - 26\beta_{8} + 89\beta_{7} + 79\beta_{5} + 100\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 15\beta_{14} + 165\beta_{12} + 15\beta_{11} - 125\beta_{6} + 155\beta_{4} - 80\beta_{2} + 115\beta _1 + 29 ) / 3 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 37 \beta_{15} - 115 \beta_{13} - 128 \beta_{10} + 80 \beta_{9} + 43 \beta_{8} - 33 \beta_{7} + \cdots - 32 \beta_{3} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(-1 - \beta_{6}\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
−0.485097 + 1.32841i
−1.15347 + 0.818235i
0.263711 + 1.38941i
−1.27069 0.620769i
1.27069 + 0.620769i
−0.263711 1.38941i
1.15347 0.818235i
0.485097 1.32841i
−0.485097 1.32841i
−1.15347 0.818235i
0.263711 1.38941i
−1.27069 + 0.620769i
1.27069 0.620769i
−0.263711 + 1.38941i
1.15347 + 0.818235i
0.485097 + 1.32841i
0 −1.39299 + 1.02936i 0 0 0 −0.589266 + 0.340213i 0 0.880830 2.86778i 0
49.2 0 −1.28535 + 1.16098i 0 0 0 −4.32643 + 2.49787i 0 0.304233 2.98453i 0
49.3 0 −1.07141 1.36091i 0 0 0 −0.0748933 + 0.0432397i 0 −0.704170 + 2.91619i 0
49.4 0 −0.0977414 1.72929i 0 0 0 −2.94604 + 1.70089i 0 −2.98089 + 0.338047i 0
49.5 0 0.0977414 + 1.72929i 0 0 0 2.94604 1.70089i 0 −2.98089 + 0.338047i 0
49.6 0 1.07141 + 1.36091i 0 0 0 0.0748933 0.0432397i 0 −0.704170 + 2.91619i 0
49.7 0 1.28535 1.16098i 0 0 0 4.32643 2.49787i 0 0.304233 2.98453i 0
49.8 0 1.39299 1.02936i 0 0 0 0.589266 0.340213i 0 0.880830 2.86778i 0
349.1 0 −1.39299 1.02936i 0 0 0 −0.589266 0.340213i 0 0.880830 + 2.86778i 0
349.2 0 −1.28535 1.16098i 0 0 0 −4.32643 2.49787i 0 0.304233 + 2.98453i 0
349.3 0 −1.07141 + 1.36091i 0 0 0 −0.0748933 0.0432397i 0 −0.704170 2.91619i 0
349.4 0 −0.0977414 + 1.72929i 0 0 0 −2.94604 1.70089i 0 −2.98089 0.338047i 0
349.5 0 0.0977414 1.72929i 0 0 0 2.94604 + 1.70089i 0 −2.98089 0.338047i 0
349.6 0 1.07141 1.36091i 0 0 0 0.0748933 + 0.0432397i 0 −0.704170 2.91619i 0
349.7 0 1.28535 + 1.16098i 0 0 0 4.32643 + 2.49787i 0 0.304233 + 2.98453i 0
349.8 0 1.39299 + 1.02936i 0 0 0 0.589266 + 0.340213i 0 0.880830 + 2.86778i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
9.c even 3 1 inner
45.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 900.2.s.d 16
3.b odd 2 1 2700.2.s.d 16
5.b even 2 1 inner 900.2.s.d 16
5.c odd 4 1 900.2.i.d 8
5.c odd 4 1 900.2.i.e yes 8
9.c even 3 1 inner 900.2.s.d 16
9.c even 3 1 8100.2.d.q 8
9.d odd 6 1 2700.2.s.d 16
9.d odd 6 1 8100.2.d.s 8
15.d odd 2 1 2700.2.s.d 16
15.e even 4 1 2700.2.i.d 8
15.e even 4 1 2700.2.i.e 8
45.h odd 6 1 2700.2.s.d 16
45.h odd 6 1 8100.2.d.s 8
45.j even 6 1 inner 900.2.s.d 16
45.j even 6 1 8100.2.d.q 8
45.k odd 12 1 900.2.i.d 8
45.k odd 12 1 900.2.i.e yes 8
45.k odd 12 1 8100.2.a.x 4
45.k odd 12 1 8100.2.a.z 4
45.l even 12 1 2700.2.i.d 8
45.l even 12 1 2700.2.i.e 8
45.l even 12 1 8100.2.a.y 4
45.l even 12 1 8100.2.a.ba 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
900.2.i.d 8 5.c odd 4 1
900.2.i.d 8 45.k odd 12 1
900.2.i.e yes 8 5.c odd 4 1
900.2.i.e yes 8 45.k odd 12 1
900.2.s.d 16 1.a even 1 1 trivial
900.2.s.d 16 5.b even 2 1 inner
900.2.s.d 16 9.c even 3 1 inner
900.2.s.d 16 45.j even 6 1 inner
2700.2.i.d 8 15.e even 4 1
2700.2.i.d 8 45.l even 12 1
2700.2.i.e 8 15.e even 4 1
2700.2.i.e 8 45.l even 12 1
2700.2.s.d 16 3.b odd 2 1
2700.2.s.d 16 9.d odd 6 1
2700.2.s.d 16 15.d odd 2 1
2700.2.s.d 16 45.h odd 6 1
8100.2.a.x 4 45.k odd 12 1
8100.2.a.y 4 45.l even 12 1
8100.2.a.z 4 45.k odd 12 1
8100.2.a.ba 4 45.l even 12 1
8100.2.d.q 8 9.c even 3 1
8100.2.d.q 8 45.j even 6 1
8100.2.d.s 8 9.d odd 6 1
8100.2.d.s 8 45.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(900, [\chi])\):

\( T_{7}^{16} - 37T_{7}^{14} + 1063T_{7}^{12} - 11050T_{7}^{10} + 88603T_{7}^{8} - 41542T_{7}^{6} + 18190T_{7}^{4} - 136T_{7}^{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{8} - 3T_{11}^{7} + 24T_{11}^{6} - 45T_{11}^{5} + 387T_{11}^{4} - 837T_{11}^{3} + 1620T_{11}^{2} - 1215T_{11} + 729 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( T^{16} + 5 T^{14} + \cdots + 6561 \) Copy content Toggle raw display
$5$ \( T^{16} \) Copy content Toggle raw display
$7$ \( T^{16} - 37 T^{14} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( (T^{8} - 3 T^{7} + \cdots + 729)^{2} \) Copy content Toggle raw display
$13$ \( T^{16} - 40 T^{14} + \cdots + 3418801 \) Copy content Toggle raw display
$17$ \( (T^{8} + 57 T^{6} + \cdots + 729)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} - 4 T^{3} - 27 T^{2} + \cdots - 23)^{4} \) Copy content Toggle raw display
$23$ \( T^{16} - 147 T^{14} + \cdots + 531441 \) Copy content Toggle raw display
$29$ \( (T^{8} - 9 T^{7} + \cdots + 1347921)^{2} \) Copy content Toggle raw display
$31$ \( (T^{8} + 2 T^{7} + \cdots + 625)^{2} \) Copy content Toggle raw display
$37$ \( (T^{8} + 79 T^{6} + \cdots + 9409)^{2} \) Copy content Toggle raw display
$41$ \( (T^{8} - 9 T^{7} + \cdots + 6561)^{2} \) Copy content Toggle raw display
$43$ \( T^{16} - 172 T^{14} + \cdots + 1874161 \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 996005996001 \) Copy content Toggle raw display
$53$ \( (T^{8} + 300 T^{6} + \cdots + 7733961)^{2} \) Copy content Toggle raw display
$59$ \( (T^{8} - 15 T^{7} + \cdots + 101425041)^{2} \) Copy content Toggle raw display
$61$ \( (T^{8} - T^{7} + \cdots + 100489)^{2} \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 66625573677601 \) Copy content Toggle raw display
$71$ \( (T^{4} + 12 T^{3} + \cdots - 729)^{4} \) Copy content Toggle raw display
$73$ \( (T^{8} + 124 T^{6} + \cdots + 265225)^{2} \) Copy content Toggle raw display
$79$ \( (T^{8} + 7 T^{7} + \cdots + 240033049)^{2} \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 187213570125201 \) Copy content Toggle raw display
$89$ \( (T^{4} + 3 T^{3} + \cdots + 5913)^{4} \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 16354914662641 \) Copy content Toggle raw display
show more
show less