| L(s) = 1 | + 2-s − 2·3-s − 2·4-s − 2·6-s + 2·7-s − 3·8-s − 3·9-s − 11-s + 4·12-s − 2·13-s + 2·14-s + 16-s + 17-s − 3·18-s − 5·19-s − 4·21-s − 22-s + 3·23-s + 6·24-s − 2·26-s + 14·27-s − 4·28-s − 10·29-s − 11·31-s + 2·32-s + 2·33-s + 34-s + ⋯ |
| L(s) = 1 | + 0.707·2-s − 1.15·3-s − 4-s − 0.816·6-s + 0.755·7-s − 1.06·8-s − 9-s − 0.301·11-s + 1.15·12-s − 0.554·13-s + 0.534·14-s + 1/4·16-s + 0.242·17-s − 0.707·18-s − 1.14·19-s − 0.872·21-s − 0.213·22-s + 0.625·23-s + 1.22·24-s − 0.392·26-s + 2.69·27-s − 0.755·28-s − 1.85·29-s − 1.97·31-s + 0.353·32-s + 0.348·33-s + 0.171·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 765625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 765625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.857388457070266898888667174282, −9.504293091970184072616920160264, −9.033549287240256418415968703809, −8.833637306600802759746640803194, −8.107251406229462053616382725200, −8.003357629916469990398266204438, −7.36959319037194757268846466791, −6.78559899120308481029968847396, −6.06366748124968947208499508610, −5.99485548263870368897867466847, −5.36004350022813211029104726733, −5.11625073559353704935616401009, −4.64107446874723392284030441610, −4.44172549613830580121478771189, −3.37442471178928085032651804680, −3.32429406526622042849310199714, −2.30871070290266741892515366941, −1.54253429324590232503219253634, 0, 0,
1.54253429324590232503219253634, 2.30871070290266741892515366941, 3.32429406526622042849310199714, 3.37442471178928085032651804680, 4.44172549613830580121478771189, 4.64107446874723392284030441610, 5.11625073559353704935616401009, 5.36004350022813211029104726733, 5.99485548263870368897867466847, 6.06366748124968947208499508610, 6.78559899120308481029968847396, 7.36959319037194757268846466791, 8.003357629916469990398266204438, 8.107251406229462053616382725200, 8.833637306600802759746640803194, 9.033549287240256418415968703809, 9.504293091970184072616920160264, 9.857388457070266898888667174282