Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 178 x^{2} + 388 x^{3} + 9409 x^{4}$ |
Frobenius angles: | $\pm0.459945310813$, $\pm0.606567669366$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.3304400.1 |
Galois group: | $D_{4}$ |
Jacobians: | $308$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $9980$ | $91776080$ | $832143986780$ | $7835592079462400$ | $73743059175885049500$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $102$ | $9750$ | $911766$ | $88508478$ | $8587415542$ | $832972560150$ | $80798285472006$ | $7837433658106878$ | $760231057298960262$ | $73742412677961625750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 308 curves (of which all are hyperelliptic):
- $y^2=3 x^6+32 x^5+13 x^4+94 x^3+75 x^2+49 x+41$
- $y^2=73 x^6+73 x^5+2 x^4+53 x^3+62 x^2+34 x+11$
- $y^2=58 x^6+56 x^5+26 x^4+10 x^3+58 x^2+26 x+60$
- $y^2=66 x^6+61 x^5+33 x^4+69 x^3+84 x^2+32 x+19$
- $y^2=51 x^6+76 x^5+20 x^4+5 x^3+3 x^2+53 x+77$
- $y^2=25 x^6+76 x^5+22 x^4+22 x^3+51 x^2+38 x+48$
- $y^2=33 x^6+34 x^5+53 x^4+87 x^3+10 x^2+21 x+22$
- $y^2=11 x^6+85 x^5+68 x^4+91 x^3+76 x^2+65 x+57$
- $y^2=72 x^6+8 x^5+35 x^4+58 x^3+15 x^2+74 x+53$
- $y^2=50 x^6+81 x^5+73 x^4+61 x^3+53 x^2+89 x+23$
- $y^2=50 x^6+20 x^5+x^4+18 x^3+53 x^2+13 x+67$
- $y^2=14 x^6+30 x^5+59 x^4+82 x^3+84 x^2+40 x+85$
- $y^2=42 x^6+81 x^5+26 x^4+93 x^3+79 x^2+50 x+47$
- $y^2=6 x^6+60 x^5+41 x^4+14 x^3+74 x^2+22 x+50$
- $y^2=48 x^6+11 x^5+18 x^4+71 x^3+76 x^2+26 x+59$
- $y^2=86 x^6+2 x^5+46 x^4+84 x^3+71 x^2+18 x+17$
- $y^2=41 x^6+79 x^5+4 x^4+36 x^3+60 x^2+59 x+80$
- $y^2=3 x^6+23 x^5+44 x^4+23 x^3+53 x^2+45 x+3$
- $y^2=46 x^6+32 x^5+57 x^4+22 x^3+22 x^2+65 x+52$
- $y^2=64 x^6+60 x^5+63 x^4+7 x^3+47 x^2+65 x+42$
- and 288 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$The endomorphism algebra of this simple isogeny class is 4.0.3304400.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.97.ae_gw | $2$ | (not in LMFDB) |