Properties

Label 2-8712-1.1-c1-0-100
Degree $2$
Conductor $8712$
Sign $-1$
Analytic cond. $69.5656$
Root an. cond. $8.34060$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s + 6·13-s − 4·17-s − 19-s + 2·23-s − 5·25-s − 6·29-s − 3·31-s + 7·37-s − 2·41-s + 4·43-s + 6·47-s − 6·49-s + 2·53-s − 10·59-s − 61-s − 3·67-s + 4·71-s − 3·73-s + 5·79-s − 14·83-s − 16·89-s − 6·91-s + 13·97-s − 18·101-s + 15·103-s + 10·107-s + ⋯
L(s)  = 1  − 0.377·7-s + 1.66·13-s − 0.970·17-s − 0.229·19-s + 0.417·23-s − 25-s − 1.11·29-s − 0.538·31-s + 1.15·37-s − 0.312·41-s + 0.609·43-s + 0.875·47-s − 6/7·49-s + 0.274·53-s − 1.30·59-s − 0.128·61-s − 0.366·67-s + 0.474·71-s − 0.351·73-s + 0.562·79-s − 1.53·83-s − 1.69·89-s − 0.628·91-s + 1.31·97-s − 1.79·101-s + 1.47·103-s + 0.966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8712 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8712 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8712\)    =    \(2^{3} \cdot 3^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(69.5656\)
Root analytic conductor: \(8.34060\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8712,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 3 T + p T^{2} \) 1.73.d
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.43986637606515041714337942015, −6.64236425768975600880028051328, −6.04649822118206375147882469963, −5.55693473101826490306851355795, −4.43168100089311784548282105631, −3.90243485615828409780659228317, −3.15326372528734883995628220405, −2.16572902451137659191025904207, −1.27457842243263702345769041985, 0, 1.27457842243263702345769041985, 2.16572902451137659191025904207, 3.15326372528734883995628220405, 3.90243485615828409780659228317, 4.43168100089311784548282105631, 5.55693473101826490306851355795, 6.04649822118206375147882469963, 6.64236425768975600880028051328, 7.43986637606515041714337942015

Graph of the $Z$-function along the critical line