Properties

Label 2-816-1.1-c1-0-12
Degree $2$
Conductor $816$
Sign $-1$
Analytic cond. $6.51579$
Root an. cond. $2.55260$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s + 9-s + 2·13-s − 17-s − 4·19-s + 2·21-s − 2·23-s − 5·25-s − 27-s − 6·31-s − 2·39-s − 10·41-s − 4·43-s + 4·47-s − 3·49-s + 51-s − 2·53-s + 4·57-s + 4·59-s − 2·63-s − 4·67-s + 2·69-s + 2·71-s − 14·73-s + 5·75-s − 6·79-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s + 1/3·9-s + 0.554·13-s − 0.242·17-s − 0.917·19-s + 0.436·21-s − 0.417·23-s − 25-s − 0.192·27-s − 1.07·31-s − 0.320·39-s − 1.56·41-s − 0.609·43-s + 0.583·47-s − 3/7·49-s + 0.140·51-s − 0.274·53-s + 0.529·57-s + 0.520·59-s − 0.251·63-s − 0.488·67-s + 0.240·69-s + 0.237·71-s − 1.63·73-s + 0.577·75-s − 0.675·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 816 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(816\)    =    \(2^{4} \cdot 3 \cdot 17\)
Sign: $-1$
Analytic conductor: \(6.51579\)
Root analytic conductor: \(2.55260\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 816,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.941611251678217120793425269173, −9.041019508128166537998788535519, −8.139884873932014733298462713743, −7.03118715673001635895164549850, −6.29392484047154187578719849324, −5.53399853944419593600376639581, −4.32146836767987654020354473360, −3.38688660560456486653785466782, −1.86322179819912387769835446845, 0, 1.86322179819912387769835446845, 3.38688660560456486653785466782, 4.32146836767987654020354473360, 5.53399853944419593600376639581, 6.29392484047154187578719849324, 7.03118715673001635895164549850, 8.139884873932014733298462713743, 9.041019508128166537998788535519, 9.941611251678217120793425269173

Graph of the $Z$-function along the critical line