Properties

Label 2-780-1.1-c1-0-3
Degree $2$
Conductor $780$
Sign $1$
Analytic cond. $6.22833$
Root an. cond. $2.49566$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 7-s + 9-s + 3·11-s + 13-s − 15-s + 3·17-s + 2·19-s − 21-s + 3·23-s + 25-s + 27-s + 6·29-s + 2·31-s + 3·33-s + 35-s − 7·37-s + 39-s + 9·41-s + 8·43-s − 45-s − 6·47-s − 6·49-s + 3·51-s + 3·53-s − 3·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s + 0.904·11-s + 0.277·13-s − 0.258·15-s + 0.727·17-s + 0.458·19-s − 0.218·21-s + 0.625·23-s + 1/5·25-s + 0.192·27-s + 1.11·29-s + 0.359·31-s + 0.522·33-s + 0.169·35-s − 1.15·37-s + 0.160·39-s + 1.40·41-s + 1.21·43-s − 0.149·45-s − 0.875·47-s − 6/7·49-s + 0.420·51-s + 0.412·53-s − 0.404·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(780\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(6.22833\)
Root analytic conductor: \(2.49566\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 780,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.839012564\)
\(L(\frac12)\) \(\approx\) \(1.839012564\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
13 \( 1 - T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18606145016583397681105528363, −9.353300675060649267457972418752, −8.667799177912496776637477531744, −7.75232112169166988797835867308, −6.93472752226523151674762451721, −6.01294954455979692960592001952, −4.71962747561514045447774248368, −3.70935237425456034212696337553, −2.87349232428383310425217161031, −1.20374375117958900178374083459, 1.20374375117958900178374083459, 2.87349232428383310425217161031, 3.70935237425456034212696337553, 4.71962747561514045447774248368, 6.01294954455979692960592001952, 6.93472752226523151674762451721, 7.75232112169166988797835867308, 8.667799177912496776637477531744, 9.353300675060649267457972418752, 10.18606145016583397681105528363

Graph of the $Z$-function along the critical line