Properties

Label 2-7742-1.1-c1-0-195
Degree $2$
Conductor $7742$
Sign $-1$
Analytic cond. $61.8201$
Root an. cond. $7.86258$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s + 2·5-s − 2·6-s + 8-s + 9-s + 2·10-s − 4·11-s − 2·12-s − 2·13-s − 4·15-s + 16-s + 2·17-s + 18-s + 2·20-s − 4·22-s − 2·24-s − 25-s − 2·26-s + 4·27-s + 8·29-s − 4·30-s − 8·31-s + 32-s + 8·33-s + 2·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.894·5-s − 0.816·6-s + 0.353·8-s + 1/3·9-s + 0.632·10-s − 1.20·11-s − 0.577·12-s − 0.554·13-s − 1.03·15-s + 1/4·16-s + 0.485·17-s + 0.235·18-s + 0.447·20-s − 0.852·22-s − 0.408·24-s − 1/5·25-s − 0.392·26-s + 0.769·27-s + 1.48·29-s − 0.730·30-s − 1.43·31-s + 0.176·32-s + 1.39·33-s + 0.342·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7742\)    =    \(2 \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(61.8201\)
Root analytic conductor: \(7.86258\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7742,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
7 \( 1 \)
79 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.41247665800079017445564780764, −6.41621134075799175382990858972, −6.06054418737238962273469870406, −5.30160251066217533978538036837, −5.06291605340298407804852356513, −4.18256462257521244802954644657, −2.97350971705358375200834260484, −2.40700628095474540106882097356, −1.29716680922222776935948076744, 0, 1.29716680922222776935948076744, 2.40700628095474540106882097356, 2.97350971705358375200834260484, 4.18256462257521244802954644657, 5.06291605340298407804852356513, 5.30160251066217533978538036837, 6.06054418737238962273469870406, 6.41621134075799175382990858972, 7.41247665800079017445564780764

Graph of the $Z$-function along the critical line