Properties

Label 2-714-1.1-c1-0-9
Degree $2$
Conductor $714$
Sign $1$
Analytic cond. $5.70131$
Root an. cond. $2.38774$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 3·5-s − 6-s + 7-s + 8-s + 9-s + 3·10-s − 11-s − 12-s + 3·13-s + 14-s − 3·15-s + 16-s + 17-s + 18-s − 6·19-s + 3·20-s − 21-s − 22-s − 2·23-s − 24-s + 4·25-s + 3·26-s − 27-s + 28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 1.34·5-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.948·10-s − 0.301·11-s − 0.288·12-s + 0.832·13-s + 0.267·14-s − 0.774·15-s + 1/4·16-s + 0.242·17-s + 0.235·18-s − 1.37·19-s + 0.670·20-s − 0.218·21-s − 0.213·22-s − 0.417·23-s − 0.204·24-s + 4/5·25-s + 0.588·26-s − 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(714\)    =    \(2 \cdot 3 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(5.70131\)
Root analytic conductor: \(2.38774\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 714,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.531126638\)
\(L(\frac12)\) \(\approx\) \(2.531126638\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.63628195994061693054483042228, −9.797357932916659112393474999279, −8.746586684079944788553347178225, −7.68109792457938912303406833193, −6.30800563104227857359835237500, −6.10447194422414474479910163496, −5.07426397265053455268026670853, −4.16594519366772777229966807424, −2.62601394831474839304198065711, −1.50297764615272148324460808222, 1.50297764615272148324460808222, 2.62601394831474839304198065711, 4.16594519366772777229966807424, 5.07426397265053455268026670853, 6.10447194422414474479910163496, 6.30800563104227857359835237500, 7.68109792457938912303406833193, 8.746586684079944788553347178225, 9.797357932916659112393474999279, 10.63628195994061693054483042228

Graph of the $Z$-function along the critical line