Properties

Label 8-704e4-1.1-c1e4-0-0
Degree $8$
Conductor $245635219456$
Sign $1$
Analytic cond. $998.617$
Root an. cond. $2.37096$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·9-s + 20·25-s − 28·49-s + 90·81-s + 8·89-s − 24·97-s + 40·113-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 36·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  − 4·9-s + 4·25-s − 4·49-s + 10·81-s + 0.847·89-s − 2.43·97-s + 3.76·113-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2.76·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(998.617\)
Root analytic conductor: \(2.37096\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 11^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7687101848\)
\(L(\frac12)\) \(\approx\) \(0.7687101848\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{4} \) 4.3.a_m_a_cc
5$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.5.a_au_a_fu
7$C_2$ \( ( 1 + p T^{2} )^{4} \) 4.7.a_bc_a_li
13$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \) 4.13.a_abk_a_zm
17$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.17.a_acq_a_cos
19$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \) 4.19.a_m_a_bde
23$C_2^2$ \( ( 1 - 42 T^{2} + p^{2} T^{4} )^{2} \) 4.23.a_adg_a_eeo
29$C_2^2$ \( ( 1 + 14 T^{2} + p^{2} T^{4} )^{2} \) 4.29.a_bc_a_cug
31$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \) 4.31.a_aca_a_dvy
37$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.37.a_afs_a_mdy
41$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.41.a_agi_a_oxy
43$C_2^2$ \( ( 1 - 42 T^{2} + p^{2} T^{4} )^{2} \) 4.43.a_adg_a_icc
47$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \) 4.47.a_m_a_gpi
53$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.53.a_aie_a_yyg
59$C_2$ \( ( 1 + p T^{2} )^{4} \) 4.59.a_jc_a_bexi
61$C_2^2$ \( ( 1 + 78 T^{2} + p^{2} T^{4} )^{2} \) 4.61.a_ga_a_uag
67$C_2$ \( ( 1 + p T^{2} )^{4} \) 4.67.a_ki_a_bnvy
71$C_2^2$ \( ( 1 + 54 T^{2} + p^{2} T^{4} )^{2} \) 4.71.a_ee_a_tfy
73$C_2$ \( ( 1 - p T^{2} )^{4} \) 4.73.a_alg_a_bvhu
79$C_2$ \( ( 1 + p T^{2} )^{4} \) 4.79.a_me_a_cdkg
83$C_2^2$ \( ( 1 - 122 T^{2} + p^{2} T^{4} )^{2} \) 4.83.a_ajk_a_bqkk
89$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \) 4.89.ai_oq_adfk_cyqw
97$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \) 4.97.y_xg_lpw_frkw
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.49206310328733458596295233554, −7.43085729787990434743036634566, −6.89586182135943676285893007269, −6.66529370172828867277198256449, −6.56424233642022652305972842560, −6.29384102618650091583978966784, −6.14691316945869649446209765395, −5.99279671209097779452233564463, −5.45576234071576591774199769293, −5.32450945148550639442760519690, −5.18069740553163020116660004480, −4.94289345502505940406375875477, −4.82317950480503053060113714130, −4.44633595518846311958222797316, −3.98713989765181349218598890260, −3.60747181639442139948900705329, −3.27399509000808236787401489906, −3.07854631299642481174986007264, −2.94783641384089379757192054831, −2.73952863347801191680402888565, −2.42454440144187324820288750054, −1.96881435697811523722056562804, −1.42755677764870465508226377061, −0.865917061485845127582029526068, −0.29144439211631706463719849052, 0.29144439211631706463719849052, 0.865917061485845127582029526068, 1.42755677764870465508226377061, 1.96881435697811523722056562804, 2.42454440144187324820288750054, 2.73952863347801191680402888565, 2.94783641384089379757192054831, 3.07854631299642481174986007264, 3.27399509000808236787401489906, 3.60747181639442139948900705329, 3.98713989765181349218598890260, 4.44633595518846311958222797316, 4.82317950480503053060113714130, 4.94289345502505940406375875477, 5.18069740553163020116660004480, 5.32450945148550639442760519690, 5.45576234071576591774199769293, 5.99279671209097779452233564463, 6.14691316945869649446209765395, 6.29384102618650091583978966784, 6.56424233642022652305972842560, 6.66529370172828867277198256449, 6.89586182135943676285893007269, 7.43085729787990434743036634566, 7.49206310328733458596295233554

Graph of the $Z$-function along the critical line