Properties

Label 704.2.g.a
Level $704$
Weight $2$
Character orbit 704.g
Analytic conductor $5.621$
Analytic rank $0$
Dimension $4$
CM discriminant -88
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [704,2,Mod(351,704)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("704.351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(704, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 704.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.62146830230\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{9} + \beta_{3} q^{11} - \beta_{2} q^{13} + 2 \beta_{3} q^{19} + \beta_1 q^{23} + 5 q^{25} - \beta_{2} q^{29} - 3 \beta_1 q^{31} + 2 \beta_{3} q^{43} + 5 \beta_1 q^{47} - 7 q^{49} - \beta_{2} q^{61}+ \cdots - 3 \beta_{3} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{9} + 20 q^{25} - 28 q^{49} + 36 q^{81} + 8 q^{89} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 5x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{3} - 4\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{3} + 16\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 5 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{2} + 4\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
351.1
1.65831 0.500000i
−1.65831 + 0.500000i
1.65831 + 0.500000i
−1.65831 0.500000i
0 0 0 0 0 0 0 −3.00000 0
351.2 0 0 0 0 0 0 0 −3.00000 0
351.3 0 0 0 0 0 0 0 −3.00000 0
351.4 0 0 0 0 0 0 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
88.b odd 2 1 CM by \(\Q(\sqrt{-22}) \)
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
11.b odd 2 1 inner
44.c even 2 1 inner
88.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 704.2.g.a 4
4.b odd 2 1 inner 704.2.g.a 4
8.b even 2 1 inner 704.2.g.a 4
8.d odd 2 1 inner 704.2.g.a 4
11.b odd 2 1 inner 704.2.g.a 4
16.e even 4 2 2816.2.e.e 4
16.f odd 4 2 2816.2.e.e 4
44.c even 2 1 inner 704.2.g.a 4
88.b odd 2 1 CM 704.2.g.a 4
88.g even 2 1 inner 704.2.g.a 4
176.i even 4 2 2816.2.e.e 4
176.l odd 4 2 2816.2.e.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
704.2.g.a 4 1.a even 1 1 trivial
704.2.g.a 4 4.b odd 2 1 inner
704.2.g.a 4 8.b even 2 1 inner
704.2.g.a 4 8.d odd 2 1 inner
704.2.g.a 4 11.b odd 2 1 inner
704.2.g.a 4 44.c even 2 1 inner
704.2.g.a 4 88.b odd 2 1 CM
704.2.g.a 4 88.g even 2 1 inner
2816.2.e.e 4 16.e even 4 2
2816.2.e.e 4 16.f odd 4 2
2816.2.e.e 4 176.i even 4 2
2816.2.e.e 4 176.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{2}^{\mathrm{new}}(704, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 11)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 44)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 44)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 44)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 44)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 44)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 196)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 44)^{2} \) Copy content Toggle raw display
$89$ \( (T - 2)^{4} \) Copy content Toggle raw display
$97$ \( (T + 6)^{4} \) Copy content Toggle raw display
show more
show less