Properties

Label 2-591-591.590-c0-0-8
Degree $2$
Conductor $591$
Sign $1$
Analytic cond. $0.294947$
Root an. cond. $0.543090$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.830·2-s + 3-s − 0.309·4-s + 1.68·5-s + 0.830·6-s − 1.91·7-s − 1.08·8-s + 9-s + 1.39·10-s − 0.284·11-s − 0.309·12-s − 1.59·14-s + 1.68·15-s − 0.594·16-s − 1.30·17-s + 0.830·18-s − 0.284·19-s − 0.521·20-s − 1.91·21-s − 0.236·22-s − 1.08·24-s + 1.83·25-s + 27-s + 0.594·28-s + 1.39·30-s + 0.594·32-s − 0.284·33-s + ⋯
L(s)  = 1  + 0.830·2-s + 3-s − 0.309·4-s + 1.68·5-s + 0.830·6-s − 1.91·7-s − 1.08·8-s + 9-s + 1.39·10-s − 0.284·11-s − 0.309·12-s − 1.59·14-s + 1.68·15-s − 0.594·16-s − 1.30·17-s + 0.830·18-s − 0.284·19-s − 0.521·20-s − 1.91·21-s − 0.236·22-s − 1.08·24-s + 1.83·25-s + 27-s + 0.594·28-s + 1.39·30-s + 0.594·32-s − 0.284·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 591 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 591 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(591\)    =    \(3 \cdot 197\)
Sign: $1$
Analytic conductor: \(0.294947\)
Root analytic conductor: \(0.543090\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{591} (590, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 591,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.638183834\)
\(L(\frac12)\) \(\approx\) \(1.638183834\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
197 \( 1 - T \)
good2 \( 1 - 0.830T + T^{2} \)
5 \( 1 - 1.68T + T^{2} \)
7 \( 1 + 1.91T + T^{2} \)
11 \( 1 + 0.284T + T^{2} \)
13 \( 1 - T^{2} \)
17 \( 1 + 1.30T + T^{2} \)
19 \( 1 + 0.284T + T^{2} \)
23 \( 1 - T^{2} \)
29 \( 1 - T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 + 1.30T + T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 - 0.830T + T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - 1.68T + T^{2} \)
67 \( 1 - T^{2} \)
71 \( 1 + 1.91T + T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - 0.830T + T^{2} \)
97 \( 1 + 1.30T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.49150906248885486083687311459, −9.849664842716384708429602615371, −9.187027736851609049896725021662, −8.734003908887180001366307832634, −6.91055500580376906521053595545, −6.32919895151901999340199458956, −5.42369569191795396236866110225, −4.15553796664477471072882470712, −3.08302653378897140921481583928, −2.31264171519099436316359024194, 2.31264171519099436316359024194, 3.08302653378897140921481583928, 4.15553796664477471072882470712, 5.42369569191795396236866110225, 6.32919895151901999340199458956, 6.91055500580376906521053595545, 8.734003908887180001366307832634, 9.187027736851609049896725021662, 9.849664842716384708429602615371, 10.49150906248885486083687311459

Graph of the $Z$-function along the critical line