Properties

Label 591.1.d.a
Level $591$
Weight $1$
Character orbit 591.d
Self dual yes
Analytic conductor $0.295$
Analytic rank $0$
Dimension $5$
Projective image $D_{11}$
CM discriminant -591
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [591,1,Mod(590,591)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("591.590"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(591, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 591 = 3 \cdot 197 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 591.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.294947422466\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of 11.1.72100355223951.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{2} + q^{3} + ( - \beta_{3} + 1) q^{4} + \beta_{2} q^{5} + \beta_{4} q^{6} - \beta_1 q^{7} + (\beta_{4} - \beta_1) q^{8} + q^{9} + ( - \beta_{4} + \beta_{3} + \beta_1 - 1) q^{10} + ( - \beta_{4} + \beta_{3} - \beta_{2} + \cdots - 1) q^{11}+ \cdots + ( - \beta_{4} + \beta_{3} - \beta_{2} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} + 5 q^{3} + 4 q^{4} - q^{5} - q^{6} - q^{7} - 2 q^{8} + 5 q^{9} - 2 q^{10} - q^{11} + 4 q^{12} - 2 q^{14} - q^{15} + 3 q^{16} - q^{17} - q^{18} - q^{19} - 3 q^{20} - q^{21} - 2 q^{22}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{22} + \zeta_{22}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 4\nu^{2} + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 4\beta_{2} + 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/591\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(395\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
590.1
1.30972
−1.68251
−0.830830
1.91899
0.284630
−1.91899 1.00000 2.68251 −0.284630 −1.91899 −1.30972 −3.22871 1.00000 0.546200
590.2 −1.30972 1.00000 0.715370 0.830830 −1.30972 1.68251 0.372786 1.00000 −1.08816
590.3 −0.284630 1.00000 −0.918986 −1.30972 −0.284630 0.830830 0.546200 1.00000 0.372786
590.4 0.830830 1.00000 −0.309721 1.68251 0.830830 −1.91899 −1.08816 1.00000 1.39788
590.5 1.68251 1.00000 1.83083 −1.91899 1.68251 −0.284630 1.39788 1.00000 −3.22871
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 590.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
591.d odd 2 1 CM by \(\Q(\sqrt{-591}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 591.1.d.a 5
3.b odd 2 1 591.1.d.b yes 5
197.b even 2 1 591.1.d.b yes 5
591.d odd 2 1 CM 591.1.d.a 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
591.1.d.a 5 1.a even 1 1 trivial
591.1.d.a 5 591.d odd 2 1 CM
591.1.d.b yes 5 3.b odd 2 1
591.1.d.b yes 5 197.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{5} + T_{2}^{4} - 4T_{2}^{3} - 3T_{2}^{2} + 3T_{2} + 1 \) acting on \(S_{1}^{\mathrm{new}}(591, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{5} \) Copy content Toggle raw display
$17$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{5} \) Copy content Toggle raw display
$29$ \( T^{5} \) Copy content Toggle raw display
$31$ \( T^{5} \) Copy content Toggle raw display
$37$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{5} \) Copy content Toggle raw display
$43$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{5} \) Copy content Toggle raw display
$53$ \( T^{5} \) Copy content Toggle raw display
$59$ \( T^{5} \) Copy content Toggle raw display
$61$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{5} \) Copy content Toggle raw display
$71$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$73$ \( T^{5} \) Copy content Toggle raw display
$79$ \( T^{5} \) Copy content Toggle raw display
$83$ \( T^{5} \) Copy content Toggle raw display
$89$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( T^{5} + T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
show more
show less