Properties

Label 591.1.d.a.590.4
Level $591$
Weight $1$
Character 591.590
Self dual yes
Analytic conductor $0.295$
Analytic rank $0$
Dimension $5$
Projective image $D_{11}$
CM discriminant -591
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [591,1,Mod(590,591)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("591.590"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(591, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 591 = 3 \cdot 197 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 591.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.294947422466\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of 11.1.72100355223951.1

Embedding invariants

Embedding label 590.4
Root \(1.91899\) of defining polynomial
Character \(\chi\) \(=\) 591.590

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.830830 q^{2} +1.00000 q^{3} -0.309721 q^{4} +1.68251 q^{5} +0.830830 q^{6} -1.91899 q^{7} -1.08816 q^{8} +1.00000 q^{9} +1.39788 q^{10} -0.284630 q^{11} -0.309721 q^{12} -1.59435 q^{14} +1.68251 q^{15} -0.594351 q^{16} -1.30972 q^{17} +0.830830 q^{18} -0.284630 q^{19} -0.521109 q^{20} -1.91899 q^{21} -0.236479 q^{22} -1.08816 q^{24} +1.83083 q^{25} +1.00000 q^{27} +0.594351 q^{28} +1.39788 q^{30} +0.594351 q^{32} -0.284630 q^{33} -1.08816 q^{34} -3.22871 q^{35} -0.309721 q^{36} -1.30972 q^{37} -0.236479 q^{38} -1.83083 q^{40} -1.59435 q^{42} +0.830830 q^{43} +0.0881559 q^{44} +1.68251 q^{45} -0.594351 q^{48} +2.68251 q^{49} +1.52111 q^{50} -1.30972 q^{51} +0.830830 q^{54} -0.478891 q^{55} +2.08816 q^{56} -0.284630 q^{57} -0.521109 q^{60} +1.68251 q^{61} -1.91899 q^{63} +1.08816 q^{64} -0.236479 q^{66} +0.405649 q^{68} -2.68251 q^{70} -1.91899 q^{71} -1.08816 q^{72} -1.08816 q^{74} +1.83083 q^{75} +0.0881559 q^{76} +0.546200 q^{77} -1.00000 q^{80} +1.00000 q^{81} +0.594351 q^{84} -2.20362 q^{85} +0.690279 q^{86} +0.309721 q^{88} +0.830830 q^{89} +1.39788 q^{90} -0.478891 q^{95} +0.594351 q^{96} -1.30972 q^{97} +2.22871 q^{98} -0.284630 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} + 5 q^{3} + 4 q^{4} - q^{5} - q^{6} - q^{7} - 2 q^{8} + 5 q^{9} - 2 q^{10} - q^{11} + 4 q^{12} - 2 q^{14} - q^{15} + 3 q^{16} - q^{17} - q^{18} - q^{19} - 3 q^{20} - q^{21} - 2 q^{22}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/591\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(395\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(3\) 1.00000 1.00000
\(4\) −0.309721 −0.309721
\(5\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(6\) 0.830830 0.830830
\(7\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(8\) −1.08816 −1.08816
\(9\) 1.00000 1.00000
\(10\) 1.39788 1.39788
\(11\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(12\) −0.309721 −0.309721
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −1.59435 −1.59435
\(15\) 1.68251 1.68251
\(16\) −0.594351 −0.594351
\(17\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(18\) 0.830830 0.830830
\(19\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(20\) −0.521109 −0.521109
\(21\) −1.91899 −1.91899
\(22\) −0.236479 −0.236479
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) −1.08816 −1.08816
\(25\) 1.83083 1.83083
\(26\) 0 0
\(27\) 1.00000 1.00000
\(28\) 0.594351 0.594351
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 1.39788 1.39788
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0.594351 0.594351
\(33\) −0.284630 −0.284630
\(34\) −1.08816 −1.08816
\(35\) −3.22871 −3.22871
\(36\) −0.309721 −0.309721
\(37\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(38\) −0.236479 −0.236479
\(39\) 0 0
\(40\) −1.83083 −1.83083
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) −1.59435 −1.59435
\(43\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(44\) 0.0881559 0.0881559
\(45\) 1.68251 1.68251
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) −0.594351 −0.594351
\(49\) 2.68251 2.68251
\(50\) 1.52111 1.52111
\(51\) −1.30972 −1.30972
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0.830830 0.830830
\(55\) −0.478891 −0.478891
\(56\) 2.08816 2.08816
\(57\) −0.284630 −0.284630
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) −0.521109 −0.521109
\(61\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(62\) 0 0
\(63\) −1.91899 −1.91899
\(64\) 1.08816 1.08816
\(65\) 0 0
\(66\) −0.236479 −0.236479
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0.405649 0.405649
\(69\) 0 0
\(70\) −2.68251 −2.68251
\(71\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(72\) −1.08816 −1.08816
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) −1.08816 −1.08816
\(75\) 1.83083 1.83083
\(76\) 0.0881559 0.0881559
\(77\) 0.546200 0.546200
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) −1.00000 −1.00000
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0.594351 0.594351
\(85\) −2.20362 −2.20362
\(86\) 0.690279 0.690279
\(87\) 0 0
\(88\) 0.309721 0.309721
\(89\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(90\) 1.39788 1.39788
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.478891 −0.478891
\(96\) 0.594351 0.594351
\(97\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(98\) 2.22871 2.22871
\(99\) −0.284630 −0.284630
\(100\) −0.567047 −0.567047
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) −1.08816 −1.08816
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) −3.22871 −3.22871
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) −0.309721 −0.309721
\(109\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(110\) −0.397877 −0.397877
\(111\) −1.30972 −1.30972
\(112\) 1.14055 1.14055
\(113\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(114\) −0.236479 −0.236479
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.51334 2.51334
\(120\) −1.83083 −1.83083
\(121\) −0.918986 −0.918986
\(122\) 1.39788 1.39788
\(123\) 0 0
\(124\) 0 0
\(125\) 1.39788 1.39788
\(126\) −1.59435 −1.59435
\(127\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(128\) 0.309721 0.309721
\(129\) 0.830830 0.830830
\(130\) 0 0
\(131\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(132\) 0.0881559 0.0881559
\(133\) 0.546200 0.546200
\(134\) 0 0
\(135\) 1.68251 1.68251
\(136\) 1.42518 1.42518
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 1.00000 1.00000
\(141\) 0 0
\(142\) −1.59435 −1.59435
\(143\) 0 0
\(144\) −0.594351 −0.594351
\(145\) 0 0
\(146\) 0 0
\(147\) 2.68251 2.68251
\(148\) 0.405649 0.405649
\(149\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(150\) 1.52111 1.52111
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0.309721 0.309721
\(153\) −1.30972 −1.30972
\(154\) 0.453800 0.453800
\(155\) 0 0
\(156\) 0 0
\(157\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 1.00000 1.00000
\(161\) 0 0
\(162\) 0.830830 0.830830
\(163\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(164\) 0 0
\(165\) −0.478891 −0.478891
\(166\) 0 0
\(167\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(168\) 2.08816 2.08816
\(169\) 1.00000 1.00000
\(170\) −1.83083 −1.83083
\(171\) −0.284630 −0.284630
\(172\) −0.257326 −0.257326
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −3.51334 −3.51334
\(176\) 0.169170 0.169170
\(177\) 0 0
\(178\) 0.690279 0.690279
\(179\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(180\) −0.521109 −0.521109
\(181\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(182\) 0 0
\(183\) 1.68251 1.68251
\(184\) 0 0
\(185\) −2.20362 −2.20362
\(186\) 0 0
\(187\) 0.372786 0.372786
\(188\) 0 0
\(189\) −1.91899 −1.91899
\(190\) −0.397877 −0.397877
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 1.08816 1.08816
\(193\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(194\) −1.08816 −1.08816
\(195\) 0 0
\(196\) −0.830830 −0.830830
\(197\) 1.00000 1.00000
\(198\) −0.236479 −0.236479
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −1.99223 −1.99223
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0.405649 0.405649
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.0810141 0.0810141
\(210\) −2.68251 −2.68251
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) −1.91899 −1.91899
\(214\) 0 0
\(215\) 1.39788 1.39788
\(216\) −1.08816 −1.08816
\(217\) 0 0
\(218\) 0.690279 0.690279
\(219\) 0 0
\(220\) 0.148323 0.148323
\(221\) 0 0
\(222\) −1.08816 −1.08816
\(223\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(224\) −1.14055 −1.14055
\(225\) 1.83083 1.83083
\(226\) −1.59435 −1.59435
\(227\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(228\) 0.0881559 0.0881559
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0.546200 0.546200
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 2.08816 2.08816
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) −1.00000 −1.00000
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −0.763521 −0.763521
\(243\) 1.00000 1.00000
\(244\) −0.521109 −0.521109
\(245\) 4.51334 4.51334
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 1.16140 1.16140
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0.594351 0.594351
\(253\) 0 0
\(254\) −0.236479 −0.236479
\(255\) −2.20362 −2.20362
\(256\) −0.830830 −0.830830
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0.690279 0.690279
\(259\) 2.51334 2.51334
\(260\) 0 0
\(261\) 0 0
\(262\) 1.39788 1.39788
\(263\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(264\) 0.309721 0.309721
\(265\) 0 0
\(266\) 0.453800 0.453800
\(267\) 0.830830 0.830830
\(268\) 0 0
\(269\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(270\) 1.39788 1.39788
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0.778434 0.778434
\(273\) 0 0
\(274\) 0 0
\(275\) −0.521109 −0.521109
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 3.51334 3.51334
\(281\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0.594351 0.594351
\(285\) −0.478891 −0.478891
\(286\) 0 0
\(287\) 0 0
\(288\) 0.594351 0.594351
\(289\) 0.715370 0.715370
\(290\) 0 0
\(291\) −1.30972 −1.30972
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 2.22871 2.22871
\(295\) 0 0
\(296\) 1.42518 1.42518
\(297\) −0.284630 −0.284630
\(298\) −1.08816 −1.08816
\(299\) 0 0
\(300\) −0.567047 −0.567047
\(301\) −1.59435 −1.59435
\(302\) 0 0
\(303\) 0 0
\(304\) 0.169170 0.169170
\(305\) 2.83083 2.83083
\(306\) −1.08816 −1.08816
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) −0.169170 −0.169170
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(314\) 1.39788 1.39788
\(315\) −3.22871 −3.22871
\(316\) 0 0
\(317\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.83083 1.83083
\(321\) 0 0
\(322\) 0 0
\(323\) 0.372786 0.372786
\(324\) −0.309721 −0.309721
\(325\) 0 0
\(326\) 1.39788 1.39788
\(327\) 0.830830 0.830830
\(328\) 0 0
\(329\) 0 0
\(330\) −0.397877 −0.397877
\(331\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(332\) 0 0
\(333\) −1.30972 −1.30972
\(334\) −1.59435 −1.59435
\(335\) 0 0
\(336\) 1.14055 1.14055
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0.830830 0.830830
\(339\) −1.91899 −1.91899
\(340\) 0.682507 0.682507
\(341\) 0 0
\(342\) −0.236479 −0.236479
\(343\) −3.22871 −3.22871
\(344\) −0.904073 −0.904073
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −2.91899 −2.91899
\(351\) 0 0
\(352\) −0.169170 −0.169170
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) −3.22871 −3.22871
\(356\) −0.257326 −0.257326
\(357\) 2.51334 2.51334
\(358\) 0.690279 0.690279
\(359\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(360\) −1.83083 −1.83083
\(361\) −0.918986 −0.918986
\(362\) −1.59435 −1.59435
\(363\) −0.918986 −0.918986
\(364\) 0 0
\(365\) 0 0
\(366\) 1.39788 1.39788
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −1.83083 −1.83083
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0.309721 0.309721
\(375\) 1.39788 1.39788
\(376\) 0 0
\(377\) 0 0
\(378\) −1.59435 −1.59435
\(379\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(380\) 0.148323 0.148323
\(381\) −0.284630 −0.284630
\(382\) 0 0
\(383\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(384\) 0.309721 0.309721
\(385\) 0.918986 0.918986
\(386\) 1.39788 1.39788
\(387\) 0.830830 0.830830
\(388\) 0.405649 0.405649
\(389\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(390\) 0 0
\(391\) 0 0
\(392\) −2.91899 −2.91899
\(393\) 1.68251 1.68251
\(394\) 0.830830 0.830830
\(395\) 0 0
\(396\) 0.0881559 0.0881559
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0.546200 0.546200
\(400\) −1.08816 −1.08816
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.68251 1.68251
\(406\) 0 0
\(407\) 0.372786 0.372786
\(408\) 1.42518 1.42518
\(409\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0.0673089 0.0673089
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 1.00000 1.00000
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.39788 −2.39788
\(426\) −1.59435 −1.59435
\(427\) −3.22871 −3.22871
\(428\) 0 0
\(429\) 0 0
\(430\) 1.16140 1.16140
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −0.594351 −0.594351
\(433\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.257326 −0.257326
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0.521109 0.521109
\(441\) 2.68251 2.68251
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0.405649 0.405649
\(445\) 1.39788 1.39788
\(446\) 0.690279 0.690279
\(447\) −1.30972 −1.30972
\(448\) −2.08816 −2.08816
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 1.52111 1.52111
\(451\) 0 0
\(452\) 0.594351 0.594351
\(453\) 0 0
\(454\) 0.690279 0.690279
\(455\) 0 0
\(456\) 0.309721 0.309721
\(457\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(458\) 0 0
\(459\) −1.30972 −1.30972
\(460\) 0 0
\(461\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(462\) 0.453800 0.453800
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.68251 1.68251
\(472\) 0 0
\(473\) −0.236479 −0.236479
\(474\) 0 0
\(475\) −0.521109 −0.521109
\(476\) −0.778434 −0.778434
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 1.00000 1.00000
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0.284630 0.284630
\(485\) −2.20362 −2.20362
\(486\) 0.830830 0.830830
\(487\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(488\) −1.83083 −1.83083
\(489\) 1.68251 1.68251
\(490\) 3.74982 3.74982
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −0.478891 −0.478891
\(496\) 0 0
\(497\) 3.68251 3.68251
\(498\) 0 0
\(499\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(500\) −0.432953 −0.432953
\(501\) −1.91899 −1.91899
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 2.08816 2.08816
\(505\) 0 0
\(506\) 0 0
\(507\) 1.00000 1.00000
\(508\) 0.0881559 0.0881559
\(509\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(510\) −1.83083 −1.83083
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) −0.284630 −0.284630
\(514\) 0 0
\(515\) 0 0
\(516\) −0.257326 −0.257326
\(517\) 0 0
\(518\) 2.08816 2.08816
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) −0.521109 −0.521109
\(525\) −3.51334 −3.51334
\(526\) −0.236479 −0.236479
\(527\) 0 0
\(528\) 0.169170 0.169170
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) −0.169170 −0.169170
\(533\) 0 0
\(534\) 0.690279 0.690279
\(535\) 0 0
\(536\) 0 0
\(537\) 0.830830 0.830830
\(538\) −1.08816 −1.08816
\(539\) −0.763521 −0.763521
\(540\) −0.521109 −0.521109
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −1.91899 −1.91899
\(544\) −0.778434 −0.778434
\(545\) 1.39788 1.39788
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 1.68251 1.68251
\(550\) −0.432953 −0.432953
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2.20362 −2.20362
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 1.91899 1.91899
\(561\) 0.372786 0.372786
\(562\) −0.236479 −0.236479
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) −3.22871 −3.22871
\(566\) 0 0
\(567\) −1.91899 −1.91899
\(568\) 2.08816 2.08816
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) −0.397877 −0.397877
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.08816 1.08816
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0.594351 0.594351
\(579\) 1.68251 1.68251
\(580\) 0 0
\(581\) 0 0
\(582\) −1.08816 −1.08816
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −0.830830 −0.830830
\(589\) 0 0
\(590\) 0 0
\(591\) 1.00000 1.00000
\(592\) 0.778434 0.778434
\(593\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(594\) −0.236479 −0.236479
\(595\) 4.22871 4.22871
\(596\) 0.405649 0.405649
\(597\) 0 0
\(598\) 0 0
\(599\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(600\) −1.99223 −1.99223
\(601\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(602\) −1.32463 −1.32463
\(603\) 0 0
\(604\) 0 0
\(605\) −1.54620 −1.54620
\(606\) 0 0
\(607\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(608\) −0.169170 −0.169170
\(609\) 0 0
\(610\) 2.35194 2.35194
\(611\) 0 0
\(612\) 0.405649 0.405649
\(613\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −0.594351 −0.594351
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.59435 −1.59435
\(624\) 0 0
\(625\) 0.521109 0.521109
\(626\) −1.59435 −1.59435
\(627\) 0.0810141 0.0810141
\(628\) −0.521109 −0.521109
\(629\) 1.71537 1.71537
\(630\) −2.68251 −2.68251
\(631\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −1.08816 −1.08816
\(635\) −0.478891 −0.478891
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.91899 −1.91899
\(640\) 0.521109 0.521109
\(641\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 1.39788 1.39788
\(646\) 0.309721 0.309721
\(647\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(648\) −1.08816 −1.08816
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −0.521109 −0.521109
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0.690279 0.690279
\(655\) 2.83083 2.83083
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(660\) 0.148323 0.148323
\(661\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(662\) 1.39788 1.39788
\(663\) 0 0
\(664\) 0 0
\(665\) 0.918986 0.918986
\(666\) −1.08816 −1.08816
\(667\) 0 0
\(668\) 0.594351 0.594351
\(669\) 0.830830 0.830830
\(670\) 0 0
\(671\) −0.478891 −0.478891
\(672\) −1.14055 −1.14055
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 1.83083 1.83083
\(676\) −0.309721 −0.309721
\(677\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(678\) −1.59435 −1.59435
\(679\) 2.51334 2.51334
\(680\) 2.39788 2.39788
\(681\) 0.830830 0.830830
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0.0881559 0.0881559
\(685\) 0 0
\(686\) −2.68251 −2.68251
\(687\) 0 0
\(688\) −0.493805 −0.493805
\(689\) 0 0
\(690\) 0 0
\(691\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(692\) 0 0
\(693\) 0.546200 0.546200
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 1.08816 1.08816
\(701\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(702\) 0 0
\(703\) 0.372786 0.372786
\(704\) −0.309721 −0.309721
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) −2.68251 −2.68251
\(711\) 0 0
\(712\) −0.904073 −0.904073
\(713\) 0 0
\(714\) 2.08816 2.08816
\(715\) 0 0
\(716\) −0.257326 −0.257326
\(717\) 0 0
\(718\) −1.08816 −1.08816
\(719\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(720\) −1.00000 −1.00000
\(721\) 0 0
\(722\) −0.763521 −0.763521
\(723\) 0 0
\(724\) 0.594351 0.594351
\(725\) 0 0
\(726\) −0.763521 −0.763521
\(727\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) −1.08816 −1.08816
\(732\) −0.521109 −0.521109
\(733\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(734\) 0 0
\(735\) 4.51334 4.51334
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(740\) 0.682507 0.682507
\(741\) 0 0
\(742\) 0 0
\(743\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(744\) 0 0
\(745\) −2.20362 −2.20362
\(746\) 0 0
\(747\) 0 0
\(748\) −0.115460 −0.115460
\(749\) 0 0
\(750\) 1.16140 1.16140
\(751\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0.594351 0.594351
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) −1.59435 −1.59435
\(759\) 0 0
\(760\) 0.521109 0.521109
\(761\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(762\) −0.236479 −0.236479
\(763\) −1.59435 −1.59435
\(764\) 0 0
\(765\) −2.20362 −2.20362
\(766\) −0.236479 −0.236479
\(767\) 0 0
\(768\) −0.830830 −0.830830
\(769\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(770\) 0.763521 0.763521
\(771\) 0 0
\(772\) −0.521109 −0.521109
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0.690279 0.690279
\(775\) 0 0
\(776\) 1.42518 1.42518
\(777\) 2.51334 2.51334
\(778\) 1.66166 1.66166
\(779\) 0 0
\(780\) 0 0
\(781\) 0.546200 0.546200
\(782\) 0 0
\(783\) 0 0
\(784\) −1.59435 −1.59435
\(785\) 2.83083 2.83083
\(786\) 1.39788 1.39788
\(787\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(788\) −0.309721 −0.309721
\(789\) −0.284630 −0.284630
\(790\) 0 0
\(791\) 3.68251 3.68251
\(792\) 0.309721 0.309721
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0.453800 0.453800
\(799\) 0 0
\(800\) 1.08816 1.08816
\(801\) 0.830830 0.830830
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.30972 −1.30972
\(808\) 0 0
\(809\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(810\) 1.39788 1.39788
\(811\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0.309721 0.309721
\(815\) 2.83083 2.83083
\(816\) 0.778434 0.778434
\(817\) −0.236479 −0.236479
\(818\) −1.08816 −1.08816
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) −0.521109 −0.521109
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.51334 −3.51334
\(834\) 0 0
\(835\) −3.22871 −3.22871
\(836\) −0.0250918 −0.0250918
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 3.51334 3.51334
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) −0.284630 −0.284630
\(844\) 0 0
\(845\) 1.68251 1.68251
\(846\) 0 0
\(847\) 1.76352 1.76352
\(848\) 0 0
\(849\) 0 0
\(850\) −1.99223 −1.99223
\(851\) 0 0
\(852\) 0.594351 0.594351
\(853\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(854\) −2.68251 −2.68251
\(855\) −0.478891 −0.478891
\(856\) 0 0
\(857\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) −0.432953 −0.432953
\(861\) 0 0
\(862\) 0 0
\(863\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(864\) 0.594351 0.594351
\(865\) 0 0
\(866\) 0.690279 0.690279
\(867\) 0.715370 0.715370
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.904073 −0.904073
\(873\) −1.30972 −1.30972
\(874\) 0 0
\(875\) −2.68251 −2.68251
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0.284630 0.284630
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 2.22871 2.22871
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(888\) 1.42518 1.42518
\(889\) 0.546200 0.546200
\(890\) 1.16140 1.16140
\(891\) −0.284630 −0.284630
\(892\) −0.257326 −0.257326
\(893\) 0 0
\(894\) −1.08816 −1.08816
\(895\) 1.39788 1.39788
\(896\) −0.594351 −0.594351
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.567047 −0.567047
\(901\) 0 0
\(902\) 0 0
\(903\) −1.59435 −1.59435
\(904\) 2.08816 2.08816
\(905\) −3.22871 −3.22871
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) −0.257326 −0.257326
\(909\) 0 0
\(910\) 0 0
\(911\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(912\) 0.169170 0.169170
\(913\) 0 0
\(914\) −0.236479 −0.236479
\(915\) 2.83083 2.83083
\(916\) 0 0
\(917\) −3.22871 −3.22871
\(918\) −1.08816 −1.08816
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −1.59435 −1.59435
\(923\) 0 0
\(924\) −0.169170 −0.169170
\(925\) −2.39788 −2.39788
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(930\) 0 0
\(931\) −0.763521 −0.763521
\(932\) 0 0
\(933\) 0 0
\(934\) −1.59435 −1.59435
\(935\) 0.627214 0.627214
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) −1.91899 −1.91899
\(940\) 0 0
\(941\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(942\) 1.39788 1.39788
\(943\) 0 0
\(944\) 0 0
\(945\) −3.22871 −3.22871
\(946\) −0.196474 −0.196474
\(947\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −0.432953 −0.432953
\(951\) −1.30972 −1.30972
\(952\) −2.73490 −2.73490
\(953\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 1.83083 1.83083
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.83083 2.83083
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 1.00000 1.00000
\(969\) 0.372786 0.372786
\(970\) −1.83083 −1.83083
\(971\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(972\) −0.309721 −0.309721
\(973\) 0 0
\(974\) −0.236479 −0.236479
\(975\) 0 0
\(976\) −1.00000 −1.00000
\(977\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(978\) 1.39788 1.39788
\(979\) −0.236479 −0.236479
\(980\) −1.39788 −1.39788
\(981\) 0.830830 0.830830
\(982\) 0 0
\(983\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(984\) 0 0
\(985\) 1.68251 1.68251
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −0.397877 −0.397877
\(991\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(992\) 0 0
\(993\) 1.68251 1.68251
\(994\) 3.05954 3.05954
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) −0.236479 −0.236479
\(999\) −1.30972 −1.30972
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 591.1.d.a.590.4 5
3.2 odd 2 591.1.d.b.590.2 yes 5
197.196 even 2 591.1.d.b.590.2 yes 5
591.590 odd 2 CM 591.1.d.a.590.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
591.1.d.a.590.4 5 1.1 even 1 trivial
591.1.d.a.590.4 5 591.590 odd 2 CM
591.1.d.b.590.2 yes 5 3.2 odd 2
591.1.d.b.590.2 yes 5 197.196 even 2