Properties

Label 2-5850-1.1-c1-0-78
Degree $2$
Conductor $5850$
Sign $-1$
Analytic cond. $46.7124$
Root an. cond. $6.83465$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·7-s + 8-s − 4·11-s + 13-s − 2·14-s + 16-s − 4·17-s + 6·19-s − 4·22-s + 26-s − 2·28-s + 4·29-s + 6·31-s + 32-s − 4·34-s + 2·37-s + 6·38-s − 10·41-s − 8·43-s − 4·44-s − 3·49-s + 52-s − 4·53-s − 2·56-s + 4·58-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.755·7-s + 0.353·8-s − 1.20·11-s + 0.277·13-s − 0.534·14-s + 1/4·16-s − 0.970·17-s + 1.37·19-s − 0.852·22-s + 0.196·26-s − 0.377·28-s + 0.742·29-s + 1.07·31-s + 0.176·32-s − 0.685·34-s + 0.328·37-s + 0.973·38-s − 1.56·41-s − 1.21·43-s − 0.603·44-s − 3/7·49-s + 0.138·52-s − 0.549·53-s − 0.267·56-s + 0.525·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5850\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(46.7124\)
Root analytic conductor: \(6.83465\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5850,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.72384123989891528047640757451, −6.76282149578399467772700679730, −6.43514663138306386742952238623, −5.43122093573879899350689892090, −4.95713876909416113101518859785, −4.08632407521995038572091105928, −3.06803172076760562588500516876, −2.74926699637595623228189559131, −1.47068428933794101158964544573, 0, 1.47068428933794101158964544573, 2.74926699637595623228189559131, 3.06803172076760562588500516876, 4.08632407521995038572091105928, 4.95713876909416113101518859785, 5.43122093573879899350689892090, 6.43514663138306386742952238623, 6.76282149578399467772700679730, 7.72384123989891528047640757451

Graph of the $Z$-function along the critical line