Properties

Label 2-5766-1.1-c1-0-149
Degree $2$
Conductor $5766$
Sign $-1$
Analytic cond. $46.0417$
Root an. cond. $6.78540$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 2·5-s + 6-s + 7-s + 8-s + 9-s − 2·10-s + 3·11-s + 12-s − 4·13-s + 14-s − 2·15-s + 16-s + 18-s − 8·19-s − 2·20-s + 21-s + 3·22-s − 2·23-s + 24-s − 25-s − 4·26-s + 27-s + 28-s − 9·29-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.894·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.632·10-s + 0.904·11-s + 0.288·12-s − 1.10·13-s + 0.267·14-s − 0.516·15-s + 1/4·16-s + 0.235·18-s − 1.83·19-s − 0.447·20-s + 0.218·21-s + 0.639·22-s − 0.417·23-s + 0.204·24-s − 1/5·25-s − 0.784·26-s + 0.192·27-s + 0.188·28-s − 1.67·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5766 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5766 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5766\)    =    \(2 \cdot 3 \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(46.0417\)
Root analytic conductor: \(6.78540\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5766,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
31 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 9 T + p T^{2} \) 1.29.j
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 11 T + p T^{2} \) 1.83.al
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.77739559920817962199524728678, −7.04963054930073881618287304813, −6.44649567486306005787749415542, −5.49238901980173339180666664307, −4.56406115225960097349459258412, −4.07698481292536347614536523243, −3.49202302391071279338294181643, −2.38133531738909960778620705471, −1.70472214859375948819832239929, 0, 1.70472214859375948819832239929, 2.38133531738909960778620705471, 3.49202302391071279338294181643, 4.07698481292536347614536523243, 4.56406115225960097349459258412, 5.49238901980173339180666664307, 6.44649567486306005787749415542, 7.04963054930073881618287304813, 7.77739559920817962199524728678

Graph of the $Z$-function along the critical line