Properties

Label 8-71e8-1.1-c1e4-0-0
Degree $8$
Conductor $6.458\times 10^{14}$
Sign $1$
Analytic cond. $2.62527\times 10^{6}$
Root an. cond. $6.34449$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $4$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s − 2·4-s + 4·9-s + 8·12-s − 5·16-s − 14·25-s + 4·27-s − 24·29-s − 8·36-s − 16·37-s + 4·43-s + 20·48-s − 24·49-s + 20·64-s + 36·73-s + 56·75-s − 12·79-s − 10·81-s − 36·83-s + 96·87-s + 24·89-s + 28·100-s − 4·103-s + 36·107-s − 8·108-s − 12·109-s + 64·111-s + ⋯
L(s)  = 1  − 2.30·3-s − 4-s + 4/3·9-s + 2.30·12-s − 5/4·16-s − 2.79·25-s + 0.769·27-s − 4.45·29-s − 4/3·36-s − 2.63·37-s + 0.609·43-s + 2.88·48-s − 3.42·49-s + 5/2·64-s + 4.21·73-s + 6.46·75-s − 1.35·79-s − 1.11·81-s − 3.95·83-s + 10.2·87-s + 2.54·89-s + 14/5·100-s − 0.394·103-s + 3.48·107-s − 0.769·108-s − 1.14·109-s + 6.07·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(71^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(71^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(71^{8}\)
Sign: $1$
Analytic conductor: \(2.62527\times 10^{6}\)
Root analytic conductor: \(6.34449\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(4\)
Selberg data: \((8,\ 71^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad71 \( 1 \)
good2$C_2^2$ \( ( 1 + T^{2} + p^{2} T^{4} )^{2} \) 4.2.a_c_a_j
3$D_{4}$ \( ( 1 + 2 T + 4 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.3.e_m_bc_cg
5$C_2^2$ \( ( 1 + 7 T^{2} + p^{2} T^{4} )^{2} \) 4.5.a_o_a_dv
7$C_2^2$ \( ( 1 + 12 T^{2} + p^{2} T^{4} )^{2} \) 4.7.a_y_a_ji
11$C_2^2$ \( ( 1 + 16 T^{2} + p^{2} T^{4} )^{2} \) 4.11.a_bg_a_te
13$D_4\times C_2$ \( 1 + 24 T^{2} + 290 T^{4} + 24 p^{2} T^{6} + p^{4} T^{8} \) 4.13.a_y_a_le
17$D_4\times C_2$ \( 1 + 56 T^{2} + 1335 T^{4} + 56 p^{2} T^{6} + p^{4} T^{8} \) 4.17.a_ce_a_bzj
19$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \) 4.19.a_au_a_bfq
23$D_4\times C_2$ \( 1 + 44 T^{2} + 1110 T^{4} + 44 p^{2} T^{6} + p^{4} T^{8} \) 4.23.a_bs_a_bqs
29$D_{4}$ \( ( 1 + 12 T + 82 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \) 4.29.y_lw_dym_yuo
31$D_4\times C_2$ \( 1 + 72 T^{2} + 3026 T^{4} + 72 p^{2} T^{6} + p^{4} T^{8} \) 4.31.a_cu_a_emk
37$D_{4}$ \( ( 1 + 8 T + 63 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \) 4.37.q_hi_cjo_qyd
41$D_4\times C_2$ \( 1 + 80 T^{2} + 4287 T^{4} + 80 p^{2} T^{6} + p^{4} T^{8} \) 4.41.a_dc_a_gix
43$D_{4}$ \( ( 1 - 2 T + 60 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.43.ae_eu_apw_lhy
47$C_2^2$ \( ( 1 + 88 T^{2} + p^{2} T^{4} )^{2} \) 4.47.a_gu_a_rzu
53$D_4\times C_2$ \( 1 - 40 T^{2} + 3831 T^{4} - 40 p^{2} T^{6} + p^{4} T^{8} \) 4.53.a_abo_a_frj
59$D_4\times C_2$ \( 1 + 92 T^{2} + 5190 T^{4} + 92 p^{2} T^{6} + p^{4} T^{8} \) 4.59.a_do_a_hrq
61$D_4\times C_2$ \( 1 - 24 T^{2} + 74 p T^{4} - 24 p^{2} T^{6} + p^{4} T^{8} \) 4.61.a_ay_a_grq
67$D_4\times C_2$ \( 1 + 24 T^{2} - 286 T^{4} + 24 p^{2} T^{6} + p^{4} T^{8} \) 4.67.a_y_a_ala
73$D_{4}$ \( ( 1 - 18 T + 215 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \) 4.73.abk_bda_apiu_fydf
79$D_{4}$ \( ( 1 + 6 T + 140 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \) 4.79.m_me_dxc_cdws
83$D_{4}$ \( ( 1 + 18 T + 220 T^{2} + 18 p T^{3} + p^{2} T^{4} )^{2} \) 4.83.bk_bdk_qdo_gpoc
89$D_{4}$ \( ( 1 - 12 T + 166 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \) 4.89.ay_si_ajbk_dyda
97$D_4\times C_2$ \( 1 + 336 T^{2} + 46895 T^{4} + 336 p^{2} T^{6} + p^{4} T^{8} \) 4.97.a_my_a_crjr
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.09725944915774344596226430716, −5.87158815875206133737202797137, −5.75337993956611672363945406123, −5.54054880189030343166965754058, −5.53862741579005291989106481113, −5.15032151275469108525442841673, −5.10168965536269107894123163284, −5.06159381743958371629084528470, −4.87182080114437715324999657499, −4.39285418693747305986312580308, −4.18334896951715689448731671820, −4.12978609053251235091069924679, −4.07412443471595970815629955686, −3.55374923316788554573156023147, −3.46959854513726083154639482392, −3.35603075996931677896205658607, −3.26946421890960680072378971311, −2.65041482308950408914207860840, −2.39890676904683617662821549950, −2.00474164053669394757527680613, −1.98266035906666273753870420308, −1.83936349633638934290501543978, −1.58961222221748245419648393520, −1.07632222452990303290630401831, −0.65672565012218604415004526499, 0, 0, 0, 0, 0.65672565012218604415004526499, 1.07632222452990303290630401831, 1.58961222221748245419648393520, 1.83936349633638934290501543978, 1.98266035906666273753870420308, 2.00474164053669394757527680613, 2.39890676904683617662821549950, 2.65041482308950408914207860840, 3.26946421890960680072378971311, 3.35603075996931677896205658607, 3.46959854513726083154639482392, 3.55374923316788554573156023147, 4.07412443471595970815629955686, 4.12978609053251235091069924679, 4.18334896951715689448731671820, 4.39285418693747305986312580308, 4.87182080114437715324999657499, 5.06159381743958371629084528470, 5.10168965536269107894123163284, 5.15032151275469108525442841673, 5.53862741579005291989106481113, 5.54054880189030343166965754058, 5.75337993956611672363945406123, 5.87158815875206133737202797137, 6.09725944915774344596226430716

Graph of the $Z$-function along the critical line