Properties

Label 5041.2.a.c.1.3
Level $5041$
Weight $2$
Character 5041.1
Self dual yes
Analytic conductor $40.253$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5041,2,Mod(1,5041)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5041.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5041, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5041 = 71^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5041.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,4,0,12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.2525876589\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.93185\) of defining polynomial
Character \(\chi\) \(=\) 5041.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205 q^{2} +0.732051 q^{3} +1.00000 q^{4} +1.73205 q^{5} +1.26795 q^{6} -1.41421 q^{7} -1.73205 q^{8} -2.46410 q^{9} +3.00000 q^{10} +2.44949 q^{11} +0.732051 q^{12} -0.378937 q^{13} -2.44949 q^{14} +1.26795 q^{15} -5.00000 q^{16} -0.896575 q^{17} -4.26795 q^{18} -6.92820 q^{19} +1.73205 q^{20} -1.03528 q^{21} +4.24264 q^{22} +1.79315 q^{23} -1.26795 q^{24} -2.00000 q^{25} -0.656339 q^{26} -4.00000 q^{27} -1.41421 q^{28} -2.53590 q^{29} +2.19615 q^{30} +6.31319 q^{31} -5.19615 q^{32} +1.79315 q^{33} -1.55291 q^{34} -2.44949 q^{35} -2.46410 q^{36} -9.19615 q^{37} -12.0000 q^{38} -0.277401 q^{39} -3.00000 q^{40} +4.00240 q^{41} -1.79315 q^{42} +6.19615 q^{43} +2.44949 q^{44} -4.26795 q^{45} +3.10583 q^{46} -2.44949 q^{47} -3.66025 q^{48} -5.00000 q^{49} -3.46410 q^{50} -0.656339 q^{51} -0.378937 q^{52} -13.1440 q^{53} -6.92820 q^{54} +4.24264 q^{55} +2.44949 q^{56} -5.07180 q^{57} -4.39230 q^{58} -11.5911 q^{59} +1.26795 q^{60} +13.7632 q^{61} +10.9348 q^{62} +3.48477 q^{63} +1.00000 q^{64} -0.656339 q^{65} +3.10583 q^{66} -14.7985 q^{67} -0.896575 q^{68} +1.31268 q^{69} -4.24264 q^{70} +4.26795 q^{72} +5.53590 q^{73} -15.9282 q^{74} -1.46410 q^{75} -6.92820 q^{76} -3.46410 q^{77} -0.480473 q^{78} +2.19615 q^{79} -8.66025 q^{80} +4.46410 q^{81} +6.93237 q^{82} -14.1962 q^{83} -1.03528 q^{84} -1.55291 q^{85} +10.7321 q^{86} -1.85641 q^{87} -4.24264 q^{88} +12.9282 q^{89} -7.39230 q^{90} +0.535898 q^{91} +1.79315 q^{92} +4.62158 q^{93} -4.24264 q^{94} -12.0000 q^{95} -3.80385 q^{96} +6.17449 q^{97} -8.66025 q^{98} -6.03579 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{4} + 12 q^{6} + 4 q^{9} + 12 q^{10} - 4 q^{12} + 12 q^{15} - 20 q^{16} - 24 q^{18} - 12 q^{24} - 8 q^{25} - 16 q^{27} - 24 q^{29} - 12 q^{30} + 4 q^{36} - 16 q^{37} - 48 q^{38} - 12 q^{40}+ \cdots - 36 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.22474 0.612372 0.790569i \(-0.290215\pi\)
0.612372 + 0.790569i \(0.290215\pi\)
\(3\) 0.732051 0.422650 0.211325 0.977416i \(-0.432222\pi\)
0.211325 + 0.977416i \(0.432222\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.73205 0.774597 0.387298 0.921954i \(-0.373408\pi\)
0.387298 + 0.921954i \(0.373408\pi\)
\(6\) 1.26795 0.517638
\(7\) −1.41421 −0.534522 −0.267261 0.963624i \(-0.586119\pi\)
−0.267261 + 0.963624i \(0.586119\pi\)
\(8\) −1.73205 −0.612372
\(9\) −2.46410 −0.821367
\(10\) 3.00000 0.948683
\(11\) 2.44949 0.738549 0.369274 0.929320i \(-0.379606\pi\)
0.369274 + 0.929320i \(0.379606\pi\)
\(12\) 0.732051 0.211325
\(13\) −0.378937 −0.105098 −0.0525492 0.998618i \(-0.516735\pi\)
−0.0525492 + 0.998618i \(0.516735\pi\)
\(14\) −2.44949 −0.654654
\(15\) 1.26795 0.327383
\(16\) −5.00000 −1.25000
\(17\) −0.896575 −0.217451 −0.108726 0.994072i \(-0.534677\pi\)
−0.108726 + 0.994072i \(0.534677\pi\)
\(18\) −4.26795 −1.00597
\(19\) −6.92820 −1.58944 −0.794719 0.606977i \(-0.792382\pi\)
−0.794719 + 0.606977i \(0.792382\pi\)
\(20\) 1.73205 0.387298
\(21\) −1.03528 −0.225916
\(22\) 4.24264 0.904534
\(23\) 1.79315 0.373898 0.186949 0.982370i \(-0.440140\pi\)
0.186949 + 0.982370i \(0.440140\pi\)
\(24\) −1.26795 −0.258819
\(25\) −2.00000 −0.400000
\(26\) −0.656339 −0.128719
\(27\) −4.00000 −0.769800
\(28\) −1.41421 −0.267261
\(29\) −2.53590 −0.470905 −0.235452 0.971886i \(-0.575657\pi\)
−0.235452 + 0.971886i \(0.575657\pi\)
\(30\) 2.19615 0.400961
\(31\) 6.31319 1.13388 0.566941 0.823758i \(-0.308127\pi\)
0.566941 + 0.823758i \(0.308127\pi\)
\(32\) −5.19615 −0.918559
\(33\) 1.79315 0.312148
\(34\) −1.55291 −0.266323
\(35\) −2.44949 −0.414039
\(36\) −2.46410 −0.410684
\(37\) −9.19615 −1.51184 −0.755919 0.654665i \(-0.772810\pi\)
−0.755919 + 0.654665i \(0.772810\pi\)
\(38\) −12.0000 −1.94666
\(39\) −0.277401 −0.0444198
\(40\) −3.00000 −0.474342
\(41\) 4.00240 0.625070 0.312535 0.949906i \(-0.398822\pi\)
0.312535 + 0.949906i \(0.398822\pi\)
\(42\) −1.79315 −0.276689
\(43\) 6.19615 0.944904 0.472452 0.881356i \(-0.343369\pi\)
0.472452 + 0.881356i \(0.343369\pi\)
\(44\) 2.44949 0.369274
\(45\) −4.26795 −0.636228
\(46\) 3.10583 0.457929
\(47\) −2.44949 −0.357295 −0.178647 0.983913i \(-0.557172\pi\)
−0.178647 + 0.983913i \(0.557172\pi\)
\(48\) −3.66025 −0.528312
\(49\) −5.00000 −0.714286
\(50\) −3.46410 −0.489898
\(51\) −0.656339 −0.0919058
\(52\) −0.378937 −0.0525492
\(53\) −13.1440 −1.80547 −0.902735 0.430196i \(-0.858444\pi\)
−0.902735 + 0.430196i \(0.858444\pi\)
\(54\) −6.92820 −0.942809
\(55\) 4.24264 0.572078
\(56\) 2.44949 0.327327
\(57\) −5.07180 −0.671776
\(58\) −4.39230 −0.576738
\(59\) −11.5911 −1.50903 −0.754517 0.656281i \(-0.772129\pi\)
−0.754517 + 0.656281i \(0.772129\pi\)
\(60\) 1.26795 0.163692
\(61\) 13.7632 1.76220 0.881098 0.472933i \(-0.156805\pi\)
0.881098 + 0.472933i \(0.156805\pi\)
\(62\) 10.9348 1.38872
\(63\) 3.48477 0.439039
\(64\) 1.00000 0.125000
\(65\) −0.656339 −0.0814088
\(66\) 3.10583 0.382301
\(67\) −14.7985 −1.80792 −0.903961 0.427616i \(-0.859354\pi\)
−0.903961 + 0.427616i \(0.859354\pi\)
\(68\) −0.896575 −0.108726
\(69\) 1.31268 0.158028
\(70\) −4.24264 −0.507093
\(71\) 0 0
\(72\) 4.26795 0.502983
\(73\) 5.53590 0.647928 0.323964 0.946069i \(-0.394984\pi\)
0.323964 + 0.946069i \(0.394984\pi\)
\(74\) −15.9282 −1.85162
\(75\) −1.46410 −0.169060
\(76\) −6.92820 −0.794719
\(77\) −3.46410 −0.394771
\(78\) −0.480473 −0.0544029
\(79\) 2.19615 0.247086 0.123543 0.992339i \(-0.460574\pi\)
0.123543 + 0.992339i \(0.460574\pi\)
\(80\) −8.66025 −0.968246
\(81\) 4.46410 0.496011
\(82\) 6.93237 0.765552
\(83\) −14.1962 −1.55823 −0.779115 0.626881i \(-0.784331\pi\)
−0.779115 + 0.626881i \(0.784331\pi\)
\(84\) −1.03528 −0.112958
\(85\) −1.55291 −0.168437
\(86\) 10.7321 1.15727
\(87\) −1.85641 −0.199028
\(88\) −4.24264 −0.452267
\(89\) 12.9282 1.37039 0.685193 0.728361i \(-0.259718\pi\)
0.685193 + 0.728361i \(0.259718\pi\)
\(90\) −7.39230 −0.779217
\(91\) 0.535898 0.0561774
\(92\) 1.79315 0.186949
\(93\) 4.62158 0.479235
\(94\) −4.24264 −0.437595
\(95\) −12.0000 −1.23117
\(96\) −3.80385 −0.388229
\(97\) 6.17449 0.626925 0.313462 0.949601i \(-0.398511\pi\)
0.313462 + 0.949601i \(0.398511\pi\)
\(98\) −8.66025 −0.874818
\(99\) −6.03579 −0.606620
\(100\) −2.00000 −0.200000
\(101\) 5.19615 0.517036 0.258518 0.966006i \(-0.416766\pi\)
0.258518 + 0.966006i \(0.416766\pi\)
\(102\) −1.13681 −0.112561
\(103\) −6.19615 −0.610525 −0.305263 0.952268i \(-0.598744\pi\)
−0.305263 + 0.952268i \(0.598744\pi\)
\(104\) 0.656339 0.0643593
\(105\) −1.79315 −0.174994
\(106\) −22.7661 −2.21124
\(107\) 14.1962 1.37239 0.686197 0.727416i \(-0.259279\pi\)
0.686197 + 0.727416i \(0.259279\pi\)
\(108\) −4.00000 −0.384900
\(109\) −13.3923 −1.28275 −0.641375 0.767227i \(-0.721636\pi\)
−0.641375 + 0.767227i \(0.721636\pi\)
\(110\) 7.34847 0.700649
\(111\) −6.73205 −0.638978
\(112\) 7.07107 0.668153
\(113\) −14.9372 −1.40517 −0.702586 0.711599i \(-0.747971\pi\)
−0.702586 + 0.711599i \(0.747971\pi\)
\(114\) −8.78461 −0.822754
\(115\) 3.10583 0.289620
\(116\) −2.53590 −0.235452
\(117\) 0.933740 0.0863243
\(118\) −20.0764 −1.84818
\(119\) 1.26795 0.116233
\(120\) −2.19615 −0.200480
\(121\) −5.00000 −0.454545
\(122\) 23.8386 2.15824
\(123\) 2.92996 0.264186
\(124\) 6.31319 0.566941
\(125\) −12.1244 −1.08444
\(126\) 6.03579 0.537711
\(127\) 7.45001 0.661081 0.330541 0.943792i \(-0.392769\pi\)
0.330541 + 0.943792i \(0.392769\pi\)
\(128\) 12.1244 1.07165
\(129\) 4.53590 0.399364
\(130\) −1.13681 −0.0997050
\(131\) 2.53590 0.221562 0.110781 0.993845i \(-0.464665\pi\)
0.110781 + 0.993845i \(0.464665\pi\)
\(132\) 1.79315 0.156074
\(133\) 9.79796 0.849591
\(134\) −25.6317 −2.21424
\(135\) −6.92820 −0.596285
\(136\) 1.55291 0.133161
\(137\) 2.68973 0.229799 0.114899 0.993377i \(-0.463345\pi\)
0.114899 + 0.993377i \(0.463345\pi\)
\(138\) 2.27362 0.193544
\(139\) 1.51575 0.128564 0.0642821 0.997932i \(-0.479524\pi\)
0.0642821 + 0.997932i \(0.479524\pi\)
\(140\) −2.44949 −0.207020
\(141\) −1.79315 −0.151011
\(142\) 0 0
\(143\) −0.928203 −0.0776203
\(144\) 12.3205 1.02671
\(145\) −4.39230 −0.364761
\(146\) 9.58846 0.793546
\(147\) −3.66025 −0.301893
\(148\) −9.19615 −0.755919
\(149\) −6.45189 −0.528560 −0.264280 0.964446i \(-0.585134\pi\)
−0.264280 + 0.964446i \(0.585134\pi\)
\(150\) −2.53590 −0.207055
\(151\) −14.3923 −1.17123 −0.585615 0.810590i \(-0.699147\pi\)
−0.585615 + 0.810590i \(0.699147\pi\)
\(152\) 12.0000 0.973329
\(153\) 2.20925 0.178608
\(154\) −6.00000 −0.483494
\(155\) 10.9348 0.878302
\(156\) −0.277401 −0.0222099
\(157\) 4.80385 0.383389 0.191694 0.981455i \(-0.438602\pi\)
0.191694 + 0.981455i \(0.438602\pi\)
\(158\) 3.80385 0.302618
\(159\) −9.62209 −0.763082
\(160\) −9.00000 −0.711512
\(161\) −2.53590 −0.199857
\(162\) 7.73205 0.607487
\(163\) 9.52056 0.745708 0.372854 0.927890i \(-0.378379\pi\)
0.372854 + 0.927890i \(0.378379\pi\)
\(164\) 4.00240 0.312535
\(165\) 3.10583 0.241788
\(166\) −24.5885 −1.90843
\(167\) 13.8564 1.07224 0.536120 0.844141i \(-0.319889\pi\)
0.536120 + 0.844141i \(0.319889\pi\)
\(168\) 1.79315 0.138345
\(169\) −12.8564 −0.988954
\(170\) −2.68973 −0.206293
\(171\) 17.0718 1.30551
\(172\) 6.19615 0.472452
\(173\) 13.6245 1.03585 0.517926 0.855426i \(-0.326704\pi\)
0.517926 + 0.855426i \(0.326704\pi\)
\(174\) −3.21539 −0.243758
\(175\) 2.82843 0.213809
\(176\) −12.2474 −0.923186
\(177\) −8.48528 −0.637793
\(178\) 22.3923 1.67837
\(179\) −6.00000 −0.448461 −0.224231 0.974536i \(-0.571987\pi\)
−0.224231 + 0.974536i \(0.571987\pi\)
\(180\) −4.26795 −0.318114
\(181\) −12.8666 −0.956369 −0.478184 0.878260i \(-0.658705\pi\)
−0.478184 + 0.878260i \(0.658705\pi\)
\(182\) 0.928203 0.0688030
\(183\) 10.0754 0.744792
\(184\) −3.10583 −0.228965
\(185\) −15.9282 −1.17106
\(186\) 8.00481 0.586941
\(187\) −2.19615 −0.160599
\(188\) −2.44949 −0.178647
\(189\) 5.65685 0.411476
\(190\) −20.7846 −1.50787
\(191\) 20.7846 1.50392 0.751961 0.659208i \(-0.229108\pi\)
0.751961 + 0.659208i \(0.229108\pi\)
\(192\) 0.732051 0.0528312
\(193\) −19.0783 −1.37328 −0.686642 0.726995i \(-0.740916\pi\)
−0.686642 + 0.726995i \(0.740916\pi\)
\(194\) 10.6945 0.767823
\(195\) −0.480473 −0.0344074
\(196\) −5.00000 −0.357143
\(197\) 15.8338 1.12811 0.564054 0.825738i \(-0.309241\pi\)
0.564054 + 0.825738i \(0.309241\pi\)
\(198\) −10.4543 −0.742955
\(199\) −6.92820 −0.491127 −0.245564 0.969380i \(-0.578973\pi\)
−0.245564 + 0.969380i \(0.578973\pi\)
\(200\) 3.46410 0.244949
\(201\) −10.8332 −0.764117
\(202\) 9.00000 0.633238
\(203\) 3.58630 0.251709
\(204\) −0.656339 −0.0459529
\(205\) 6.93237 0.484178
\(206\) −10.7321 −0.747737
\(207\) −4.41851 −0.307107
\(208\) 1.89469 0.131373
\(209\) −16.9706 −1.17388
\(210\) −3.10583 −0.214323
\(211\) 14.1421 0.973585 0.486792 0.873518i \(-0.338167\pi\)
0.486792 + 0.873518i \(0.338167\pi\)
\(212\) −13.1440 −0.902735
\(213\) 0 0
\(214\) 24.5885 1.68083
\(215\) 10.7321 0.731920
\(216\) 6.92820 0.471405
\(217\) −8.92820 −0.606086
\(218\) −23.1962 −1.57104
\(219\) 4.05256 0.273847
\(220\) 4.24264 0.286039
\(221\) 0.339746 0.0228538
\(222\) −11.6603 −0.782585
\(223\) −3.46410 −0.231973 −0.115987 0.993251i \(-0.537003\pi\)
−0.115987 + 0.993251i \(0.537003\pi\)
\(224\) 7.34847 0.490990
\(225\) 4.92820 0.328547
\(226\) −25.8719 −1.72098
\(227\) 28.0812 1.86381 0.931907 0.362696i \(-0.118144\pi\)
0.931907 + 0.362696i \(0.118144\pi\)
\(228\) −5.07180 −0.335888
\(229\) 8.00000 0.528655 0.264327 0.964433i \(-0.414850\pi\)
0.264327 + 0.964433i \(0.414850\pi\)
\(230\) 5.37945 0.354711
\(231\) −2.53590 −0.166850
\(232\) 4.39230 0.288369
\(233\) −1.39230 −0.0912129 −0.0456065 0.998959i \(-0.514522\pi\)
−0.0456065 + 0.998959i \(0.514522\pi\)
\(234\) 1.61729 0.105725
\(235\) −4.24264 −0.276759
\(236\) −11.5911 −0.754517
\(237\) 1.60770 0.104431
\(238\) 2.19615 0.142355
\(239\) 5.37945 0.347968 0.173984 0.984748i \(-0.444336\pi\)
0.173984 + 0.984748i \(0.444336\pi\)
\(240\) −6.33975 −0.409229
\(241\) −20.1779 −1.29977 −0.649887 0.760031i \(-0.725184\pi\)
−0.649887 + 0.760031i \(0.725184\pi\)
\(242\) −8.66025 −0.556702
\(243\) 15.2679 0.979439
\(244\) 13.7632 0.881098
\(245\) −8.66025 −0.553283
\(246\) 5.07484 0.323560
\(247\) 2.62536 0.167047
\(248\) −10.9348 −0.694359
\(249\) −10.3923 −0.658586
\(250\) −21.0000 −1.32816
\(251\) −11.6603 −0.735989 −0.367994 0.929828i \(-0.619955\pi\)
−0.367994 + 0.929828i \(0.619955\pi\)
\(252\) 3.48477 0.219520
\(253\) 4.39230 0.276142
\(254\) 12.9038 0.809656
\(255\) −1.13681 −0.0711899
\(256\) 19.0000 1.18750
\(257\) 14.2808 0.890814 0.445407 0.895328i \(-0.353059\pi\)
0.445407 + 0.895328i \(0.353059\pi\)
\(258\) 7.85641 0.489119
\(259\) 13.0053 0.808111
\(260\) −0.656339 −0.0407044
\(261\) 6.24871 0.386786
\(262\) 4.39230 0.271357
\(263\) −19.8564 −1.22440 −0.612199 0.790704i \(-0.709715\pi\)
−0.612199 + 0.790704i \(0.709715\pi\)
\(264\) −3.10583 −0.191151
\(265\) −22.7661 −1.39851
\(266\) 16.9706 1.04053
\(267\) 9.46410 0.579194
\(268\) −14.7985 −0.903961
\(269\) −20.3166 −1.23873 −0.619363 0.785104i \(-0.712609\pi\)
−0.619363 + 0.785104i \(0.712609\pi\)
\(270\) −12.0000 −0.730297
\(271\) −21.4641 −1.30385 −0.651926 0.758283i \(-0.726039\pi\)
−0.651926 + 0.758283i \(0.726039\pi\)
\(272\) 4.48288 0.271814
\(273\) 0.392305 0.0237434
\(274\) 4.65874 0.281445
\(275\) −4.89898 −0.295420
\(276\) 1.31268 0.0790139
\(277\) 15.4641 0.929148 0.464574 0.885534i \(-0.346208\pi\)
0.464574 + 0.885534i \(0.346208\pi\)
\(278\) 2.62536 0.157458
\(279\) −15.5563 −0.931334
\(280\) 4.24264 0.253546
\(281\) −4.72311 −0.281757 −0.140879 0.990027i \(-0.544993\pi\)
−0.140879 + 0.990027i \(0.544993\pi\)
\(282\) −3.10583 −0.184949
\(283\) 14.1421 0.840663 0.420331 0.907371i \(-0.361914\pi\)
0.420331 + 0.907371i \(0.361914\pi\)
\(284\) 0 0
\(285\) −8.78461 −0.520355
\(286\) −1.60770 −0.0950650
\(287\) −5.66025 −0.334114
\(288\) 12.8038 0.754474
\(289\) −16.1962 −0.952715
\(290\) −7.60770 −0.446739
\(291\) 4.52004 0.264970
\(292\) 5.53590 0.323964
\(293\) 9.92820 0.580012 0.290006 0.957025i \(-0.406343\pi\)
0.290006 + 0.957025i \(0.406343\pi\)
\(294\) −6.33975 −0.369741
\(295\) −20.0764 −1.16889
\(296\) 15.9282 0.925808
\(297\) −9.79796 −0.568535
\(298\) −11.1750 −0.647351
\(299\) −0.679492 −0.0392960
\(300\) −1.46410 −0.0845299
\(301\) −8.76268 −0.505073
\(302\) −24.9282 −1.43446
\(303\) 3.80385 0.218525
\(304\) 34.6410 1.98680
\(305\) 23.8386 1.36499
\(306\) 3.82654 0.218749
\(307\) −28.9406 −1.65173 −0.825864 0.563869i \(-0.809312\pi\)
−0.825864 + 0.563869i \(0.809312\pi\)
\(308\) −3.46410 −0.197386
\(309\) −4.53590 −0.258038
\(310\) 18.9396 1.07570
\(311\) −6.33975 −0.359494 −0.179747 0.983713i \(-0.557528\pi\)
−0.179747 + 0.983713i \(0.557528\pi\)
\(312\) 0.480473 0.0272014
\(313\) −12.8038 −0.723716 −0.361858 0.932233i \(-0.617858\pi\)
−0.361858 + 0.932233i \(0.617858\pi\)
\(314\) 8.32051 0.469553
\(315\) 6.03579 0.340078
\(316\) 2.19615 0.123543
\(317\) 19.1798 1.07725 0.538623 0.842547i \(-0.318945\pi\)
0.538623 + 0.842547i \(0.318945\pi\)
\(318\) −16.6660 −0.934580
\(319\) −6.21166 −0.347786
\(320\) 1.73205 0.0968246
\(321\) 10.3923 0.580042
\(322\) −4.39230 −0.244774
\(323\) 6.21166 0.345626
\(324\) 4.46410 0.248006
\(325\) 0.757875 0.0420393
\(326\) 16.4901 0.913302
\(327\) −9.80385 −0.542154
\(328\) −6.93237 −0.382776
\(329\) 3.46410 0.190982
\(330\) 5.37945 0.296129
\(331\) 8.58682 0.471974 0.235987 0.971756i \(-0.424168\pi\)
0.235987 + 0.971756i \(0.424168\pi\)
\(332\) −14.1962 −0.779115
\(333\) 22.6603 1.24177
\(334\) 24.0000 1.31322
\(335\) −25.6317 −1.40041
\(336\) 5.17638 0.282395
\(337\) 2.72689 0.148543 0.0742716 0.997238i \(-0.476337\pi\)
0.0742716 + 0.997238i \(0.476337\pi\)
\(338\) −22.2679 −1.21122
\(339\) −10.9348 −0.593895
\(340\) −1.55291 −0.0842186
\(341\) 15.4641 0.837428
\(342\) 29.5692 1.59892
\(343\) 16.9706 0.916324
\(344\) −10.7321 −0.578633
\(345\) 2.27362 0.122408
\(346\) 23.5983 1.26865
\(347\) −3.58630 −0.192523 −0.0962614 0.995356i \(-0.530688\pi\)
−0.0962614 + 0.995356i \(0.530688\pi\)
\(348\) −1.85641 −0.0995138
\(349\) 19.2814 1.03211 0.516054 0.856556i \(-0.327401\pi\)
0.516054 + 0.856556i \(0.327401\pi\)
\(350\) 4.89898 0.261861
\(351\) 1.51575 0.0809047
\(352\) −12.7279 −0.678401
\(353\) −2.44949 −0.130373 −0.0651866 0.997873i \(-0.520764\pi\)
−0.0651866 + 0.997873i \(0.520764\pi\)
\(354\) −14.6969 −0.781133
\(355\) 0 0
\(356\) 12.9282 0.685193
\(357\) 0.928203 0.0491257
\(358\) −10.3923 −0.549250
\(359\) −8.87564 −0.468439 −0.234219 0.972184i \(-0.575253\pi\)
−0.234219 + 0.972184i \(0.575253\pi\)
\(360\) 7.39230 0.389609
\(361\) 29.0000 1.52632
\(362\) −22.2856 −1.17131
\(363\) −3.66025 −0.192114
\(364\) 0.535898 0.0280887
\(365\) 9.58846 0.501883
\(366\) 17.4510 0.912180
\(367\) −4.73205 −0.247011 −0.123506 0.992344i \(-0.539414\pi\)
−0.123506 + 0.992344i \(0.539414\pi\)
\(368\) −8.96575 −0.467372
\(369\) −9.86233 −0.513412
\(370\) −27.5885 −1.43426
\(371\) 18.5885 0.965065
\(372\) 4.62158 0.239618
\(373\) 5.07180 0.262608 0.131304 0.991342i \(-0.458084\pi\)
0.131304 + 0.991342i \(0.458084\pi\)
\(374\) −3.80385 −0.196692
\(375\) −8.87564 −0.458336
\(376\) 4.24264 0.218797
\(377\) 0.960947 0.0494913
\(378\) 9.79796 0.503953
\(379\) 3.12436 0.160487 0.0802437 0.996775i \(-0.474430\pi\)
0.0802437 + 0.996775i \(0.474430\pi\)
\(380\) −12.0000 −0.615587
\(381\) 5.45378 0.279406
\(382\) 36.0000 1.84192
\(383\) 25.6317 1.30972 0.654860 0.755751i \(-0.272728\pi\)
0.654860 + 0.755751i \(0.272728\pi\)
\(384\) 8.87564 0.452933
\(385\) −6.00000 −0.305788
\(386\) −33.0446 −1.68192
\(387\) −15.2679 −0.776113
\(388\) 6.17449 0.313462
\(389\) 20.7327 1.05119 0.525596 0.850735i \(-0.323843\pi\)
0.525596 + 0.850735i \(0.323843\pi\)
\(390\) −0.832204 −0.0421403
\(391\) −1.60770 −0.0813046
\(392\) 8.66025 0.437409
\(393\) 1.85641 0.0936433
\(394\) 27.4249 1.38164
\(395\) 3.80385 0.191392
\(396\) −6.03579 −0.303310
\(397\) 6.07296 0.304793 0.152396 0.988319i \(-0.451301\pi\)
0.152396 + 0.988319i \(0.451301\pi\)
\(398\) −12.0000 −0.601506
\(399\) 7.17260 0.359079
\(400\) 10.0000 0.500000
\(401\) −38.1194 −1.90359 −0.951796 0.306732i \(-0.900764\pi\)
−0.951796 + 0.306732i \(0.900764\pi\)
\(402\) −18.7637 −0.935849
\(403\) −2.39230 −0.119169
\(404\) 5.19615 0.258518
\(405\) 7.73205 0.384209
\(406\) 6.21166 0.308279
\(407\) −22.5259 −1.11657
\(408\) 1.13681 0.0562806
\(409\) 21.7846 1.07718 0.538590 0.842568i \(-0.318957\pi\)
0.538590 + 0.842568i \(0.318957\pi\)
\(410\) 12.0072 0.592994
\(411\) 1.96902 0.0971244
\(412\) −6.19615 −0.305263
\(413\) 16.3923 0.806613
\(414\) −7.65308 −0.376128
\(415\) −24.5885 −1.20700
\(416\) 1.96902 0.0965390
\(417\) 1.10961 0.0543376
\(418\) −29.3939 −1.43770
\(419\) 0.588457 0.0287480 0.0143740 0.999897i \(-0.495424\pi\)
0.0143740 + 0.999897i \(0.495424\pi\)
\(420\) −1.79315 −0.0874968
\(421\) −27.4620 −1.33842 −0.669209 0.743075i \(-0.733367\pi\)
−0.669209 + 0.743075i \(0.733367\pi\)
\(422\) 24.4949 1.19239
\(423\) 6.03579 0.293470
\(424\) 22.7661 1.10562
\(425\) 1.79315 0.0869806
\(426\) 0 0
\(427\) −19.4641 −0.941934
\(428\) 14.1962 0.686197
\(429\) −0.679492 −0.0328062
\(430\) 18.5885 0.896415
\(431\) 19.5167 0.940084 0.470042 0.882644i \(-0.344239\pi\)
0.470042 + 0.882644i \(0.344239\pi\)
\(432\) 20.0000 0.962250
\(433\) −6.55343 −0.314938 −0.157469 0.987524i \(-0.550333\pi\)
−0.157469 + 0.987524i \(0.550333\pi\)
\(434\) −15.4641 −0.742301
\(435\) −3.21539 −0.154166
\(436\) −13.3923 −0.641375
\(437\) −12.4233 −0.594288
\(438\) 7.01924 0.335392
\(439\) −33.5622 −1.60184 −0.800918 0.598774i \(-0.795655\pi\)
−0.800918 + 0.598774i \(0.795655\pi\)
\(440\) −7.34847 −0.350325
\(441\) 12.3205 0.586691
\(442\) 0.588457 0.0279901
\(443\) 1.96902 0.0935508 0.0467754 0.998905i \(-0.485105\pi\)
0.0467754 + 0.998905i \(0.485105\pi\)
\(444\) −6.73205 −0.319489
\(445\) 22.3923 1.06150
\(446\) −6.00000 −0.284108
\(447\) −4.72311 −0.223396
\(448\) −1.41421 −0.0668153
\(449\) 27.9053 1.31693 0.658467 0.752610i \(-0.271205\pi\)
0.658467 + 0.752610i \(0.271205\pi\)
\(450\) 8.53590 0.402386
\(451\) 9.80385 0.461645
\(452\) −14.9372 −0.702586
\(453\) −10.5359 −0.495020
\(454\) 48.6381 2.28270
\(455\) 0.928203 0.0435148
\(456\) 8.78461 0.411377
\(457\) −16.5916 −0.776123 −0.388062 0.921633i \(-0.626855\pi\)
−0.388062 + 0.921633i \(0.626855\pi\)
\(458\) 13.8564 0.647467
\(459\) 3.58630 0.167394
\(460\) 3.10583 0.144810
\(461\) 33.2204 1.54723 0.773615 0.633657i \(-0.218447\pi\)
0.773615 + 0.633657i \(0.218447\pi\)
\(462\) −4.39230 −0.204349
\(463\) 18.0000 0.836531 0.418265 0.908325i \(-0.362638\pi\)
0.418265 + 0.908325i \(0.362638\pi\)
\(464\) 12.6795 0.588631
\(465\) 8.00481 0.371214
\(466\) −2.41154 −0.111713
\(467\) 12.0716 0.558606 0.279303 0.960203i \(-0.409897\pi\)
0.279303 + 0.960203i \(0.409897\pi\)
\(468\) 0.933740 0.0431622
\(469\) 20.9282 0.966375
\(470\) −7.34847 −0.338960
\(471\) 3.51666 0.162039
\(472\) 20.0764 0.924091
\(473\) 15.1774 0.697858
\(474\) 2.78461 0.127901
\(475\) 13.8564 0.635776
\(476\) 1.26795 0.0581164
\(477\) 32.3882 1.48295
\(478\) 9.31749 0.426172
\(479\) 24.9754 1.14115 0.570577 0.821244i \(-0.306720\pi\)
0.570577 + 0.821244i \(0.306720\pi\)
\(480\) −6.58846 −0.300721
\(481\) 3.48477 0.158892
\(482\) −34.9492 −1.59189
\(483\) −1.85641 −0.0844694
\(484\) −5.00000 −0.227273
\(485\) 10.6945 0.485614
\(486\) 26.4449 1.19956
\(487\) 19.6975 0.892577 0.446288 0.894889i \(-0.352746\pi\)
0.446288 + 0.894889i \(0.352746\pi\)
\(488\) −23.8386 −1.07912
\(489\) 6.96953 0.315173
\(490\) −15.0000 −0.677631
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 2.92996 0.132093
\(493\) 2.27362 0.102399
\(494\) 4.54725 0.204590
\(495\) −10.4543 −0.469886
\(496\) −31.5660 −1.41735
\(497\) 0 0
\(498\) −18.0000 −0.806599
\(499\) −38.1051 −1.70582 −0.852910 0.522059i \(-0.825164\pi\)
−0.852910 + 0.522059i \(0.825164\pi\)
\(500\) −12.1244 −0.542218
\(501\) 10.1436 0.453182
\(502\) −20.1962 −0.901398
\(503\) −18.5885 −0.828818 −0.414409 0.910091i \(-0.636012\pi\)
−0.414409 + 0.910091i \(0.636012\pi\)
\(504\) −6.03579 −0.268856
\(505\) 9.00000 0.400495
\(506\) 7.60770 0.338203
\(507\) −9.41154 −0.417981
\(508\) 7.45001 0.330541
\(509\) −6.46410 −0.286516 −0.143258 0.989685i \(-0.545758\pi\)
−0.143258 + 0.989685i \(0.545758\pi\)
\(510\) −1.96902 −0.0871895
\(511\) −7.82894 −0.346332
\(512\) 8.66025 0.382733
\(513\) 27.7128 1.22355
\(514\) 24.7351 1.09102
\(515\) −10.7321 −0.472911
\(516\) 4.53590 0.199682
\(517\) −6.00000 −0.263880
\(518\) 22.5259 0.989730
\(519\) 9.97382 0.437802
\(520\) 1.13681 0.0498525
\(521\) 20.0718 0.879361 0.439681 0.898154i \(-0.355092\pi\)
0.439681 + 0.898154i \(0.355092\pi\)
\(522\) 10.8231 0.473714
\(523\) 35.7071 1.56136 0.780681 0.624930i \(-0.214873\pi\)
0.780681 + 0.624930i \(0.214873\pi\)
\(524\) 2.53590 0.110781
\(525\) 2.07055 0.0903663
\(526\) −34.3923 −1.49958
\(527\) −5.66025 −0.246565
\(528\) −8.96575 −0.390184
\(529\) −19.7846 −0.860200
\(530\) −39.4321 −1.71282
\(531\) 28.5617 1.23947
\(532\) 9.79796 0.424795
\(533\) −1.51666 −0.0656939
\(534\) 16.3923 0.709364
\(535\) 24.5885 1.06305
\(536\) 25.6317 1.10712
\(537\) −4.39230 −0.189542
\(538\) −35.1894 −1.51712
\(539\) −12.2474 −0.527535
\(540\) −6.92820 −0.298142
\(541\) 20.9358 0.900100 0.450050 0.893003i \(-0.351406\pi\)
0.450050 + 0.893003i \(0.351406\pi\)
\(542\) −37.1769 −1.59689
\(543\) −9.41902 −0.404209
\(544\) 4.65874 0.199742
\(545\) −23.1962 −0.993614
\(546\) 0.679492 0.0290796
\(547\) −24.9808 −1.06810 −0.534050 0.845453i \(-0.679331\pi\)
−0.534050 + 0.845453i \(0.679331\pi\)
\(548\) 2.68973 0.114899
\(549\) −33.9139 −1.44741
\(550\) −8.48528 −0.361814
\(551\) 17.5692 0.748474
\(552\) −2.27362 −0.0967719
\(553\) −3.10583 −0.132073
\(554\) 26.7846 1.13797
\(555\) −11.6603 −0.494950
\(556\) 1.51575 0.0642821
\(557\) −40.8564 −1.73114 −0.865571 0.500787i \(-0.833044\pi\)
−0.865571 + 0.500787i \(0.833044\pi\)
\(558\) −26.9444 −1.14065
\(559\) −2.34795 −0.0993079
\(560\) 12.2474 0.517549
\(561\) −1.60770 −0.0678769
\(562\) −8.18067 −0.345081
\(563\) −31.6675 −1.33463 −0.667313 0.744777i \(-0.732556\pi\)
−0.667313 + 0.744777i \(0.732556\pi\)
\(564\) −1.79315 −0.0755053
\(565\) −25.8719 −1.08844
\(566\) 24.4949 1.02960
\(567\) −6.31319 −0.265129
\(568\) 0 0
\(569\) −43.7321 −1.83334 −0.916671 0.399642i \(-0.869135\pi\)
−0.916671 + 0.399642i \(0.869135\pi\)
\(570\) −15.2154 −0.637303
\(571\) −7.26795 −0.304154 −0.152077 0.988369i \(-0.548596\pi\)
−0.152077 + 0.988369i \(0.548596\pi\)
\(572\) −0.928203 −0.0388101
\(573\) 15.2154 0.635632
\(574\) −9.80385 −0.409205
\(575\) −3.58630 −0.149559
\(576\) −2.46410 −0.102671
\(577\) 37.3923 1.55666 0.778331 0.627854i \(-0.216067\pi\)
0.778331 + 0.627854i \(0.216067\pi\)
\(578\) −28.0526 −1.16683
\(579\) −13.9663 −0.580418
\(580\) −4.39230 −0.182381
\(581\) 20.0764 0.832909
\(582\) 7.82894 0.324520
\(583\) −32.1962 −1.33343
\(584\) −9.58846 −0.396773
\(585\) 1.61729 0.0668665
\(586\) 17.1962 0.710367
\(587\) 0.928203 0.0383110 0.0191555 0.999817i \(-0.493902\pi\)
0.0191555 + 0.999817i \(0.493902\pi\)
\(588\) −3.66025 −0.150946
\(589\) −43.7391 −1.80224
\(590\) −34.7733 −1.43160
\(591\) 11.5911 0.476795
\(592\) 45.9808 1.88980
\(593\) −13.7321 −0.563908 −0.281954 0.959428i \(-0.590983\pi\)
−0.281954 + 0.959428i \(0.590983\pi\)
\(594\) −16.9706 −0.696311
\(595\) 2.19615 0.0900335
\(596\) −6.45189 −0.264280
\(597\) −5.07180 −0.207575
\(598\) −1.17691 −0.0481276
\(599\) 17.6269 0.720216 0.360108 0.932911i \(-0.382740\pi\)
0.360108 + 0.932911i \(0.382740\pi\)
\(600\) 2.53590 0.103528
\(601\) 35.1151 1.43237 0.716187 0.697908i \(-0.245886\pi\)
0.716187 + 0.697908i \(0.245886\pi\)
\(602\) −15.1774 −0.618585
\(603\) 36.4649 1.48497
\(604\) −14.3923 −0.585615
\(605\) −8.66025 −0.352089
\(606\) 6.58846 0.267638
\(607\) −30.6322 −1.24332 −0.621662 0.783286i \(-0.713542\pi\)
−0.621662 + 0.783286i \(0.713542\pi\)
\(608\) 36.0000 1.45999
\(609\) 2.62536 0.106385
\(610\) 41.2896 1.67177
\(611\) 0.928203 0.0375511
\(612\) 2.20925 0.0893038
\(613\) 7.00000 0.282727 0.141364 0.989958i \(-0.454851\pi\)
0.141364 + 0.989958i \(0.454851\pi\)
\(614\) −50.1266 −2.02295
\(615\) 5.07484 0.204637
\(616\) 6.00000 0.241747
\(617\) −15.0000 −0.603877 −0.301939 0.953327i \(-0.597634\pi\)
−0.301939 + 0.953327i \(0.597634\pi\)
\(618\) −7.85641 −0.316031
\(619\) −34.2185 −1.37536 −0.687679 0.726015i \(-0.741370\pi\)
−0.687679 + 0.726015i \(0.741370\pi\)
\(620\) 10.9348 0.439151
\(621\) −7.17260 −0.287827
\(622\) −10.9808 −0.440288
\(623\) −18.2832 −0.732503
\(624\) 1.38701 0.0555247
\(625\) −11.0000 −0.440000
\(626\) −22.1769 −0.886368
\(627\) −12.4233 −0.496139
\(628\) 4.80385 0.191694
\(629\) 8.24504 0.328751
\(630\) 10.4543 0.416509
\(631\) −9.69642 −0.386009 −0.193004 0.981198i \(-0.561823\pi\)
−0.193004 + 0.981198i \(0.561823\pi\)
\(632\) −3.80385 −0.151309
\(633\) 10.3528 0.411485
\(634\) 33.2204 1.31935
\(635\) 12.9038 0.512071
\(636\) −9.62209 −0.381541
\(637\) 1.89469 0.0750702
\(638\) −10.7589 −0.425949
\(639\) 0 0
\(640\) 21.0000 0.830098
\(641\) 20.0718 0.792788 0.396394 0.918080i \(-0.370261\pi\)
0.396394 + 0.918080i \(0.370261\pi\)
\(642\) 18.0000 0.710403
\(643\) −8.19615 −0.323225 −0.161612 0.986854i \(-0.551669\pi\)
−0.161612 + 0.986854i \(0.551669\pi\)
\(644\) −2.53590 −0.0999284
\(645\) 7.85641 0.309346
\(646\) 10.7589 0.423303
\(647\) −15.8038 −0.621313 −0.310657 0.950522i \(-0.600549\pi\)
−0.310657 + 0.950522i \(0.600549\pi\)
\(648\) −7.73205 −0.303744
\(649\) −28.3923 −1.11450
\(650\) 1.31268 0.0514875
\(651\) −6.53590 −0.256162
\(652\) 9.52056 0.372854
\(653\) 16.2499 0.635906 0.317953 0.948106i \(-0.397005\pi\)
0.317953 + 0.948106i \(0.397005\pi\)
\(654\) −16.9808 −0.664000
\(655\) 4.39230 0.171622
\(656\) −20.0120 −0.781338
\(657\) −13.6410 −0.532187
\(658\) 6.00000 0.233904
\(659\) −34.0526 −1.32650 −0.663250 0.748398i \(-0.730823\pi\)
−0.663250 + 0.748398i \(0.730823\pi\)
\(660\) 3.10583 0.120894
\(661\) −39.4593 −1.53479 −0.767394 0.641176i \(-0.778447\pi\)
−0.767394 + 0.641176i \(0.778447\pi\)
\(662\) 14.8728 0.578048
\(663\) 0.248711 0.00965915
\(664\) 24.5885 0.954217
\(665\) 16.9706 0.658090
\(666\) 39.2487 1.52086
\(667\) −4.54725 −0.176070
\(668\) 13.8564 0.536120
\(669\) −2.53590 −0.0980435
\(670\) −44.3954 −1.71514
\(671\) 33.7128 1.30147
\(672\) 5.37945 0.207517
\(673\) −0.693504 −0.0267326 −0.0133663 0.999911i \(-0.504255\pi\)
−0.0133663 + 0.999911i \(0.504255\pi\)
\(674\) 4.72311 0.181928
\(675\) 8.00000 0.307920
\(676\) −12.8564 −0.494477
\(677\) 28.6410 1.10076 0.550382 0.834913i \(-0.314482\pi\)
0.550382 + 0.834913i \(0.314482\pi\)
\(678\) −18.9396 −0.727370
\(679\) −8.73205 −0.335105
\(680\) 2.68973 0.103146
\(681\) 20.5569 0.787741
\(682\) 26.7846 1.02564
\(683\) −39.0160 −1.49290 −0.746452 0.665439i \(-0.768244\pi\)
−0.746452 + 0.665439i \(0.768244\pi\)
\(684\) 17.0718 0.652756
\(685\) 4.65874 0.178001
\(686\) 29.3939 1.12226
\(687\) 5.85641 0.223436
\(688\) −30.9808 −1.18113
\(689\) 4.98076 0.189752
\(690\) 3.93803 0.149918
\(691\) −14.1421 −0.537992 −0.268996 0.963141i \(-0.586692\pi\)
−0.268996 + 0.963141i \(0.586692\pi\)
\(692\) 13.6245 0.517926
\(693\) 8.53590 0.324252
\(694\) −6.21166 −0.235791
\(695\) 2.62536 0.0995854
\(696\) 3.21539 0.121879
\(697\) −3.58846 −0.135923
\(698\) 33.3963 1.26407
\(699\) −1.01924 −0.0385511
\(700\) 2.82843 0.106904
\(701\) −29.6341 −1.11927 −0.559633 0.828741i \(-0.689058\pi\)
−0.559633 + 0.828741i \(0.689058\pi\)
\(702\) 2.62536 0.0990876
\(703\) 63.7128 2.40297
\(704\) 2.44949 0.0923186
\(705\) −3.10583 −0.116972
\(706\) −4.24264 −0.159674
\(707\) −7.34847 −0.276368
\(708\) −8.48528 −0.318896
\(709\) 40.9478 1.53783 0.768914 0.639352i \(-0.220797\pi\)
0.768914 + 0.639352i \(0.220797\pi\)
\(710\) 0 0
\(711\) −5.41154 −0.202949
\(712\) −22.3923 −0.839187
\(713\) 11.3205 0.423956
\(714\) 1.60770 0.0601665
\(715\) −1.60770 −0.0601244
\(716\) −6.00000 −0.224231
\(717\) 3.93803 0.147069
\(718\) −15.3731 −0.573718
\(719\) 18.5885 0.693232 0.346616 0.938007i \(-0.387331\pi\)
0.346616 + 0.938007i \(0.387331\pi\)
\(720\) 21.3397 0.795285
\(721\) 8.76268 0.326339
\(722\) 50.2295 1.86935
\(723\) −14.7713 −0.549349
\(724\) −12.8666 −0.478184
\(725\) 5.07180 0.188362
\(726\) −6.33975 −0.235290
\(727\) −10.1769 −0.377440 −0.188720 0.982031i \(-0.560434\pi\)
−0.188720 + 0.982031i \(0.560434\pi\)
\(728\) −0.928203 −0.0344015
\(729\) −2.21539 −0.0820515
\(730\) 16.6077 0.614678
\(731\) −5.55532 −0.205471
\(732\) 10.0754 0.372396
\(733\) −31.7047 −1.17104 −0.585519 0.810658i \(-0.699109\pi\)
−0.585519 + 0.810658i \(0.699109\pi\)
\(734\) −8.19615 −0.302526
\(735\) −6.33975 −0.233845
\(736\) −9.31749 −0.343447
\(737\) −36.2487 −1.33524
\(738\) −17.0821 −0.628799
\(739\) 3.60770 0.132711 0.0663556 0.997796i \(-0.478863\pi\)
0.0663556 + 0.997796i \(0.478863\pi\)
\(740\) −15.9282 −0.585532
\(741\) 1.92189 0.0706025
\(742\) 32.1962 1.18196
\(743\) 20.2523 0.742983 0.371492 0.928436i \(-0.378846\pi\)
0.371492 + 0.928436i \(0.378846\pi\)
\(744\) −8.00481 −0.293471
\(745\) −11.1750 −0.409421
\(746\) 8.78461 0.321627
\(747\) 34.9808 1.27988
\(748\) −2.19615 −0.0802993
\(749\) −20.0764 −0.733575
\(750\) −15.3731 −0.561345
\(751\) −50.0251 −1.82544 −0.912720 0.408585i \(-0.866022\pi\)
−0.912720 + 0.408585i \(0.866022\pi\)
\(752\) 12.2474 0.446619
\(753\) −8.53590 −0.311065
\(754\) 1.66441 0.0606142
\(755\) −24.9282 −0.907230
\(756\) 5.65685 0.205738
\(757\) −13.4858 −0.490150 −0.245075 0.969504i \(-0.578813\pi\)
−0.245075 + 0.969504i \(0.578813\pi\)
\(758\) 5.41154 0.196556
\(759\) 3.21539 0.116711
\(760\) 20.7846 0.753937
\(761\) 4.83461 0.175254 0.0876272 0.996153i \(-0.472072\pi\)
0.0876272 + 0.996153i \(0.472072\pi\)
\(762\) 9.44623 0.342201
\(763\) 18.9396 0.685659
\(764\) 20.7846 0.751961
\(765\) 3.82654 0.138349
\(766\) 44.3954 1.60407
\(767\) 4.39230 0.158597
\(768\) 13.9090 0.501897
\(769\) 25.7704 0.929305 0.464652 0.885493i \(-0.346179\pi\)
0.464652 + 0.885493i \(0.346179\pi\)
\(770\) −10.3923 −0.374513
\(771\) 10.4543 0.376502
\(772\) −19.0783 −0.686642
\(773\) 25.8719 0.930549 0.465275 0.885166i \(-0.345956\pi\)
0.465275 + 0.885166i \(0.345956\pi\)
\(774\) −26.4449 −0.950541
\(775\) −12.6264 −0.453553
\(776\) −10.6945 −0.383911
\(777\) 9.52056 0.341548
\(778\) 35.9101 1.28744
\(779\) −27.7295 −0.993511
\(780\) −0.480473 −0.0172037
\(781\) 0 0
\(782\) −2.78461 −0.0995774
\(783\) 10.1436 0.362502
\(784\) 25.0000 0.892857
\(785\) 8.32051 0.296972
\(786\) 3.21539 0.114689
\(787\) −18.0000 −0.641631 −0.320815 0.947142i \(-0.603957\pi\)
−0.320815 + 0.947142i \(0.603957\pi\)
\(788\) 15.8338 0.564054
\(789\) −14.5359 −0.517492
\(790\) 6.58846 0.234407
\(791\) 21.1244 0.751096
\(792\) 10.4543 0.371477
\(793\) −5.21539 −0.185204
\(794\) 10.5187 0.373294
\(795\) −16.6660 −0.591081
\(796\) −6.92820 −0.245564
\(797\) −33.9282 −1.20180 −0.600899 0.799325i \(-0.705191\pi\)
−0.600899 + 0.799325i \(0.705191\pi\)
\(798\) 12.4233 0.439781
\(799\) 2.19615 0.0776943
\(800\) 10.3923 0.367423
\(801\) −31.8564 −1.12559
\(802\) −66.0247 −2.33141
\(803\) 13.5601 0.478526
\(804\) −10.8332 −0.382059
\(805\) −4.39230 −0.154808
\(806\) −4.14359 −0.145952
\(807\) −14.8728 −0.523547
\(808\) −9.00000 −0.316619
\(809\) −0.175865 −0.00618310 −0.00309155 0.999995i \(-0.500984\pi\)
−0.00309155 + 0.999995i \(0.500984\pi\)
\(810\) 13.3923 0.470558
\(811\) −9.41154 −0.330484 −0.165242 0.986253i \(-0.552841\pi\)
−0.165242 + 0.986253i \(0.552841\pi\)
\(812\) 3.58630 0.125855
\(813\) −15.7128 −0.551072
\(814\) −39.0160 −1.36751
\(815\) 16.4901 0.577623
\(816\) 3.28169 0.114882
\(817\) −42.9282 −1.50187
\(818\) 37.7321 1.31927
\(819\) −1.32051 −0.0461423
\(820\) 6.93237 0.242089
\(821\) 45.2487 1.57919 0.789595 0.613628i \(-0.210290\pi\)
0.789595 + 0.613628i \(0.210290\pi\)
\(822\) 3.41044 0.118953
\(823\) −1.41421 −0.0492964 −0.0246482 0.999696i \(-0.507847\pi\)
−0.0246482 + 0.999696i \(0.507847\pi\)
\(824\) 10.7321 0.373869
\(825\) −3.58630 −0.124859
\(826\) 28.3923 0.987895
\(827\) 1.96902 0.0684694 0.0342347 0.999414i \(-0.489101\pi\)
0.0342347 + 0.999414i \(0.489101\pi\)
\(828\) −4.41851 −0.153554
\(829\) 38.3205 1.33093 0.665463 0.746431i \(-0.268234\pi\)
0.665463 + 0.746431i \(0.268234\pi\)
\(830\) −42.5885 −1.47827
\(831\) 11.3205 0.392704
\(832\) −0.378937 −0.0131373
\(833\) 4.48288 0.155322
\(834\) 1.92189 0.0665497
\(835\) 24.0000 0.830554
\(836\) −16.9706 −0.586939
\(837\) −25.2528 −0.872863
\(838\) 1.01924 0.0352090
\(839\) −5.07180 −0.175098 −0.0875489 0.996160i \(-0.527903\pi\)
−0.0875489 + 0.996160i \(0.527903\pi\)
\(840\) 3.10583 0.107161
\(841\) −22.5692 −0.778249
\(842\) −47.5656 −1.63922
\(843\) −3.45756 −0.119085
\(844\) 14.1421 0.486792
\(845\) −22.2679 −0.766041
\(846\) 10.4543 0.359426
\(847\) 7.07107 0.242965
\(848\) 65.7201 2.25684
\(849\) 10.3528 0.355306
\(850\) 3.10583 0.106529
\(851\) −16.4901 −0.565273
\(852\) 0 0
\(853\) 29.3923 1.00637 0.503187 0.864178i \(-0.332161\pi\)
0.503187 + 0.864178i \(0.332161\pi\)
\(854\) −33.7128 −1.15363
\(855\) 29.5692 1.01125
\(856\) −24.5885 −0.840416
\(857\) 14.0718 0.480683 0.240342 0.970688i \(-0.422741\pi\)
0.240342 + 0.970688i \(0.422741\pi\)
\(858\) −1.17691 −0.0401792
\(859\) 19.5216 0.666068 0.333034 0.942915i \(-0.391928\pi\)
0.333034 + 0.942915i \(0.391928\pi\)
\(860\) 10.7321 0.365960
\(861\) −4.14359 −0.141213
\(862\) 33.8038 1.15136
\(863\) −12.9038 −0.439250 −0.219625 0.975584i \(-0.570483\pi\)
−0.219625 + 0.975584i \(0.570483\pi\)
\(864\) 20.7846 0.707107
\(865\) 23.5983 0.802367
\(866\) −11.3509 −0.385718
\(867\) −11.8564 −0.402665
\(868\) −8.92820 −0.303043
\(869\) 5.37945 0.182485
\(870\) −5.56922 −0.188814
\(871\) 5.60770 0.190010
\(872\) 23.1962 0.785521
\(873\) −15.2146 −0.514935
\(874\) −21.5178 −0.727851
\(875\) 17.1464 0.579655
\(876\) 4.05256 0.136923
\(877\) −8.90897 −0.300834 −0.150417 0.988623i \(-0.548062\pi\)
−0.150417 + 0.988623i \(0.548062\pi\)
\(878\) −58.1314 −1.96184
\(879\) 7.26795 0.245142
\(880\) −21.2132 −0.715097
\(881\) 58.5167 1.97148 0.985738 0.168286i \(-0.0538233\pi\)
0.985738 + 0.168286i \(0.0538233\pi\)
\(882\) 21.3397 0.718547
\(883\) 7.62587 0.256631 0.128315 0.991733i \(-0.459043\pi\)
0.128315 + 0.991733i \(0.459043\pi\)
\(884\) 0.339746 0.0114269
\(885\) −14.6969 −0.494032
\(886\) 3.41044 0.114576
\(887\) −15.3533 −0.515513 −0.257756 0.966210i \(-0.582983\pi\)
−0.257756 + 0.966210i \(0.582983\pi\)
\(888\) 11.6603 0.391293
\(889\) −10.5359 −0.353363
\(890\) 38.7846 1.30006
\(891\) 10.9348 0.366329
\(892\) −3.46410 −0.115987
\(893\) 16.9706 0.567898
\(894\) −8.18067 −0.273603
\(895\) −10.3923 −0.347376
\(896\) −17.1464 −0.572822
\(897\) −0.497423 −0.0166085
\(898\) 48.3335 1.61291
\(899\) −16.0096 −0.533951
\(900\) 4.92820 0.164273
\(901\) 11.7846 0.392602
\(902\) 16.9808 0.565398
\(903\) −6.41473 −0.213469
\(904\) 25.8719 0.860488
\(905\) −22.2856 −0.740800
\(906\) −18.2487 −0.606273
\(907\) −24.3934 −0.809968 −0.404984 0.914324i \(-0.632723\pi\)
−0.404984 + 0.914324i \(0.632723\pi\)
\(908\) 28.0812 0.931907
\(909\) −12.8038 −0.424677
\(910\) 1.60770 0.0532946
\(911\) −56.1624 −1.86074 −0.930372 0.366618i \(-0.880516\pi\)
−0.930372 + 0.366618i \(0.880516\pi\)
\(912\) 25.3590 0.839720
\(913\) −34.7733 −1.15083
\(914\) −28.7375 −0.950553
\(915\) 17.4510 0.576913
\(916\) 8.00000 0.264327
\(917\) −3.58630 −0.118430
\(918\) 6.21166 0.205015
\(919\) −16.1112 −0.531458 −0.265729 0.964048i \(-0.585613\pi\)
−0.265729 + 0.964048i \(0.585613\pi\)
\(920\) −5.37945 −0.177355
\(921\) −21.1860 −0.698102
\(922\) 57.5394 1.89496
\(923\) 0 0
\(924\) −2.53590 −0.0834249
\(925\) 18.3923 0.604735
\(926\) 31.1769 1.02454
\(927\) 15.2679 0.501465
\(928\) 13.1769 0.432553
\(929\) −18.0000 −0.590561 −0.295280 0.955411i \(-0.595413\pi\)
−0.295280 + 0.955411i \(0.595413\pi\)
\(930\) 13.8647 0.454643
\(931\) 34.6410 1.13531
\(932\) −1.39230 −0.0456065
\(933\) −4.64102 −0.151940
\(934\) 20.9086 0.684150
\(935\) −3.80385 −0.124399
\(936\) −1.61729 −0.0528626
\(937\) 58.0571 1.89664 0.948321 0.317312i \(-0.102780\pi\)
0.948321 + 0.317312i \(0.102780\pi\)
\(938\) 36.2487 1.18356
\(939\) −9.37307 −0.305878
\(940\) −4.24264 −0.138380
\(941\) 31.9808 1.04254 0.521272 0.853391i \(-0.325458\pi\)
0.521272 + 0.853391i \(0.325458\pi\)
\(942\) 6.09103 0.198457
\(943\) 7.17691 0.233712
\(944\) 57.9555 1.88629
\(945\) 9.79796 0.318728
\(946\) 26.2880 0.854698
\(947\) 17.6603 0.573881 0.286941 0.957948i \(-0.407362\pi\)
0.286941 + 0.957948i \(0.407362\pi\)
\(948\) 1.60770 0.0522155
\(949\) −2.09776 −0.0680961
\(950\) 24.0000 0.778663
\(951\) 14.0406 0.455298
\(952\) −2.19615 −0.0711777
\(953\) −23.7846 −0.770459 −0.385230 0.922821i \(-0.625878\pi\)
−0.385230 + 0.922821i \(0.625878\pi\)
\(954\) 56.0980 1.81624
\(955\) 36.0000 1.16493
\(956\) 5.37945 0.173984
\(957\) −4.54725 −0.146992
\(958\) 43.2586 1.39762
\(959\) −3.80385 −0.122833
\(960\) 1.26795 0.0409229
\(961\) 8.85641 0.285691
\(962\) 6.03579 0.194602
\(963\) −34.9808 −1.12724
\(964\) −20.1779 −0.649887
\(965\) −33.0446 −1.06374
\(966\) −3.21539 −0.103453
\(967\) 3.38323 0.108797 0.0543987 0.998519i \(-0.482676\pi\)
0.0543987 + 0.998519i \(0.482676\pi\)
\(968\) 8.66025 0.278351
\(969\) 4.54725 0.146079
\(970\) 18.5235 0.594753
\(971\) 19.9474 0.640144 0.320072 0.947393i \(-0.396293\pi\)
0.320072 + 0.947393i \(0.396293\pi\)
\(972\) 15.2679 0.489720
\(973\) −2.14359 −0.0687205
\(974\) 34.1170 1.09318
\(975\) 0.554803 0.0177679
\(976\) −68.8160 −2.20275
\(977\) 20.6603 0.660980 0.330490 0.943809i \(-0.392786\pi\)
0.330490 + 0.943809i \(0.392786\pi\)
\(978\) 12.0716 0.386007
\(979\) 31.6675 1.01210
\(980\) −8.66025 −0.276642
\(981\) 33.0000 1.05361
\(982\) 0 0
\(983\) 41.2295 1.31502 0.657508 0.753448i \(-0.271611\pi\)
0.657508 + 0.753448i \(0.271611\pi\)
\(984\) −5.07484 −0.161780
\(985\) 27.4249 0.873829
\(986\) 3.93803 0.125413
\(987\) 2.53590 0.0807185
\(988\) 2.62536 0.0835237
\(989\) 11.1106 0.353298
\(990\) −18.1074 −0.575490
\(991\) 42.7038 1.35653 0.678266 0.734817i \(-0.262732\pi\)
0.678266 + 0.734817i \(0.262732\pi\)
\(992\) −32.8043 −1.04154
\(993\) 6.28599 0.199480
\(994\) 0 0
\(995\) −12.0000 −0.380426
\(996\) −10.3923 −0.329293
\(997\) −48.5692 −1.53820 −0.769101 0.639127i \(-0.779296\pi\)
−0.769101 + 0.639127i \(0.779296\pi\)
\(998\) −66.0000 −2.08919
\(999\) 36.7846 1.16381
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5041.2.a.c.1.3 4
71.70 odd 2 inner 5041.2.a.c.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5041.2.a.c.1.3 4 1.1 even 1 trivial
5041.2.a.c.1.4 yes 4 71.70 odd 2 inner