L(s) = 1 | + 2·2-s − 2·3-s + 3·4-s − 2·5-s − 4·6-s + 4·8-s + 3·9-s − 4·10-s + 4·11-s − 6·12-s − 5·13-s + 4·15-s + 5·16-s − 2·17-s + 6·18-s − 5·19-s − 6·20-s + 8·22-s + 3·23-s − 8·24-s − 7·25-s − 10·26-s − 4·27-s + 29-s + 8·30-s + 5·31-s + 6·32-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1.15·3-s + 3/2·4-s − 0.894·5-s − 1.63·6-s + 1.41·8-s + 9-s − 1.26·10-s + 1.20·11-s − 1.73·12-s − 1.38·13-s + 1.03·15-s + 5/4·16-s − 0.485·17-s + 1.41·18-s − 1.14·19-s − 1.34·20-s + 1.70·22-s + 0.625·23-s − 1.63·24-s − 7/5·25-s − 1.96·26-s − 0.769·27-s + 0.185·29-s + 1.46·30-s + 0.898·31-s + 1.06·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 24980004 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24980004 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.80553731221092161736101038784, −7.65124005659471905068652585207, −6.96141060981355009594076664449, −6.94767360174576603170829651775, −6.56665513803449115755386033022, −6.25737915981208275894897080588, −5.85824373761924750365317519153, −5.50861034608516998560593206065, −4.89504495972828683496442849321, −4.80545669962910999952070042008, −4.36402789892407703298504213406, −4.16222613775652327310506642982, −3.63964127537337705721429215041, −3.39279503661334156866489762140, −2.55841475188646522550125605043, −2.42484832377762571397778137287, −1.46466726180295791510570889793, −1.41480436658942971360118706920, 0, 0,
1.41480436658942971360118706920, 1.46466726180295791510570889793, 2.42484832377762571397778137287, 2.55841475188646522550125605043, 3.39279503661334156866489762140, 3.63964127537337705721429215041, 4.16222613775652327310506642982, 4.36402789892407703298504213406, 4.80545669962910999952070042008, 4.89504495972828683496442849321, 5.50861034608516998560593206065, 5.85824373761924750365317519153, 6.25737915981208275894897080588, 6.56665513803449115755386033022, 6.94767360174576603170829651775, 6.96141060981355009594076664449, 7.65124005659471905068652585207, 7.80553731221092161736101038784