Properties

Label 2-4320-1.1-c1-0-48
Degree $2$
Conductor $4320$
Sign $-1$
Analytic cond. $34.4953$
Root an. cond. $5.87327$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 7-s + 2·11-s − 3·13-s + 2·17-s − 19-s − 6·23-s + 25-s + 4·29-s − 8·31-s − 35-s − 37-s − 4·41-s + 4·43-s − 2·47-s − 6·49-s + 8·53-s − 2·55-s + 6·59-s − 13·61-s + 3·65-s + 3·67-s − 11·73-s + 2·77-s + 7·79-s + 8·83-s − 2·85-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.377·7-s + 0.603·11-s − 0.832·13-s + 0.485·17-s − 0.229·19-s − 1.25·23-s + 1/5·25-s + 0.742·29-s − 1.43·31-s − 0.169·35-s − 0.164·37-s − 0.624·41-s + 0.609·43-s − 0.291·47-s − 6/7·49-s + 1.09·53-s − 0.269·55-s + 0.781·59-s − 1.66·61-s + 0.372·65-s + 0.366·67-s − 1.28·73-s + 0.227·77-s + 0.787·79-s + 0.878·83-s − 0.216·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4320\)    =    \(2^{5} \cdot 3^{3} \cdot 5\)
Sign: $-1$
Analytic conductor: \(34.4953\)
Root analytic conductor: \(5.87327\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4320,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 11 T + p T^{2} \) 1.97.l
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.968596669935869582926883034978, −7.37127424619381903362920180287, −6.63645752510821096908932557129, −5.77648636467018822135102799842, −4.98444121205818135633036821947, −4.19746743118559710194353822518, −3.49264144556112768849490000135, −2.40803024641310212061115919423, −1.42534531461745386641514684394, 0, 1.42534531461745386641514684394, 2.40803024641310212061115919423, 3.49264144556112768849490000135, 4.19746743118559710194353822518, 4.98444121205818135633036821947, 5.77648636467018822135102799842, 6.63645752510821096908932557129, 7.37127424619381903362920180287, 7.968596669935869582926883034978

Graph of the $Z$-function along the critical line