L(s) = 1 | + (0.779 + 0.449i)3-s − 0.893·5-s + (−3.65 + 2.11i)7-s + (−1.09 − 1.89i)9-s + (−3.01 + 5.22i)11-s + (0.579 + 3.55i)13-s + (−0.696 − 0.401i)15-s + (1.00 + 1.74i)17-s + (1.59 + 2.75i)19-s − 3.79·21-s + (2.65 − 4.59i)23-s − 4.20·25-s − 4.67i·27-s + (4.50 + 2.60i)29-s − 2.51i·31-s + ⋯ |
L(s) = 1 | + (0.449 + 0.259i)3-s − 0.399·5-s + (−1.38 + 0.797i)7-s + (−0.365 − 0.632i)9-s + (−0.909 + 1.57i)11-s + (0.160 + 0.986i)13-s + (−0.179 − 0.103i)15-s + (0.243 + 0.422i)17-s + (0.365 + 0.632i)19-s − 0.828·21-s + (0.553 − 0.958i)23-s − 0.840·25-s − 0.898i·27-s + (0.836 + 0.482i)29-s − 0.451i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.620 - 0.783i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.620 - 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.354578 + 0.733283i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.354578 + 0.733283i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-0.579 - 3.55i)T \) |
good | 3 | \( 1 + (-0.779 - 0.449i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + 0.893T + 5T^{2} \) |
| 7 | \( 1 + (3.65 - 2.11i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3.01 - 5.22i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.00 - 1.74i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.59 - 2.75i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.65 + 4.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.50 - 2.60i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2.51iT - 31T^{2} \) |
| 37 | \( 1 + (-1.00 + 1.73i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.0169 + 0.00981i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.45 - 1.99i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 3.22iT - 47T^{2} \) |
| 53 | \( 1 - 3.34iT - 53T^{2} \) |
| 59 | \( 1 + (3.15 + 5.45i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (6.79 - 3.92i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.53 + 2.66i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.22 - 1.28i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 12.1iT - 73T^{2} \) |
| 79 | \( 1 + 3.01T + 79T^{2} \) |
| 83 | \( 1 - 8.90T + 83T^{2} \) |
| 89 | \( 1 + (-7.52 - 4.34i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-9.79 + 5.65i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.79826956943794500771944001575, −10.34452261332002889854952725355, −9.632239618029485530169079011476, −9.006747113741043216269477264292, −7.935544145587798106863788915537, −6.80662101497242933302525199710, −5.97039710871862438747089688119, −4.55631771499019239213764270252, −3.43067652870412120143261809614, −2.37431332647631412317228241440,
0.47310308810520303004795712342, 2.98187787225891020165728441290, 3.37817411775867392814330440015, 5.16546772865901776016950273648, 6.14991723879539093768222123245, 7.39784126664568382834352843685, 7.998224460413094117934432235240, 8.964434716697229848924250013547, 10.11260405783182062798447658734, 10.78761653541608902147137883931