L(s) = 1 | + (0.779 − 0.449i)3-s − 0.893·5-s + (−3.65 − 2.11i)7-s + (−1.09 + 1.89i)9-s + (−3.01 − 5.22i)11-s + (0.579 − 3.55i)13-s + (−0.696 + 0.401i)15-s + (1.00 − 1.74i)17-s + (1.59 − 2.75i)19-s − 3.79·21-s + (2.65 + 4.59i)23-s − 4.20·25-s + 4.67i·27-s + (4.50 − 2.60i)29-s + 2.51i·31-s + ⋯ |
L(s) = 1 | + (0.449 − 0.259i)3-s − 0.399·5-s + (−1.38 − 0.797i)7-s + (−0.365 + 0.632i)9-s + (−0.909 − 1.57i)11-s + (0.160 − 0.986i)13-s + (−0.179 + 0.103i)15-s + (0.243 − 0.422i)17-s + (0.365 − 0.632i)19-s − 0.828·21-s + (0.553 + 0.958i)23-s − 0.840·25-s + 0.898i·27-s + (0.836 − 0.482i)29-s + 0.451i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.620 + 0.783i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.620 + 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.354578 - 0.733283i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.354578 - 0.733283i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-0.579 + 3.55i)T \) |
good | 3 | \( 1 + (-0.779 + 0.449i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 0.893T + 5T^{2} \) |
| 7 | \( 1 + (3.65 + 2.11i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (3.01 + 5.22i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.00 + 1.74i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.59 + 2.75i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.65 - 4.59i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.50 + 2.60i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 2.51iT - 31T^{2} \) |
| 37 | \( 1 + (-1.00 - 1.73i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.0169 - 0.00981i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.45 + 1.99i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 3.22iT - 47T^{2} \) |
| 53 | \( 1 + 3.34iT - 53T^{2} \) |
| 59 | \( 1 + (3.15 - 5.45i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.79 + 3.92i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.53 - 2.66i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.22 + 1.28i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 12.1iT - 73T^{2} \) |
| 79 | \( 1 + 3.01T + 79T^{2} \) |
| 83 | \( 1 - 8.90T + 83T^{2} \) |
| 89 | \( 1 + (-7.52 + 4.34i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-9.79 - 5.65i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.78761653541608902147137883931, −10.11260405783182062798447658734, −8.964434716697229848924250013547, −7.998224460413094117934432235240, −7.39784126664568382834352843685, −6.14991723879539093768222123245, −5.16546772865901776016950273648, −3.37817411775867392814330440015, −2.98187787225891020165728441290, −0.47310308810520303004795712342,
2.37431332647631412317228241440, 3.43067652870412120143261809614, 4.55631771499019239213764270252, 5.97039710871862438747089688119, 6.80662101497242933302525199710, 7.935544145587798106863788915537, 9.006747113741043216269477264292, 9.632239618029485530169079011476, 10.34452261332002889854952725355, 11.79826956943794500771944001575