Properties

Label 416.2.ba.c.17.6
Level $416$
Weight $2$
Character 416.17
Analytic conductor $3.322$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,2,Mod(17,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.ba (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.8607891481591137382656.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 5 x^{14} - 6 x^{13} + 6 x^{12} - 20 x^{10} + 48 x^{9} - 76 x^{8} + 96 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.6
Root \(-0.741068 - 1.20450i\) of defining polynomial
Character \(\chi\) \(=\) 416.17
Dual form 416.2.ba.c.49.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.779193 + 0.449867i) q^{3} -0.893415 q^{5} +(-3.65473 + 2.11006i) q^{7} +(-1.09524 - 1.89701i) q^{9} +(-3.01779 + 5.22697i) q^{11} +(0.579883 + 3.55861i) q^{13} +(-0.696143 - 0.401918i) q^{15} +(1.00567 + 1.74186i) q^{17} +(1.59258 + 2.75843i) q^{19} -3.79699 q^{21} +(2.65473 - 4.59813i) q^{23} -4.20181 q^{25} -4.67005i q^{27} +(4.50378 + 2.60026i) q^{29} -2.51626i q^{31} +(-4.70289 + 2.71521i) q^{33} +(3.26519 - 1.88516i) q^{35} +(1.00002 - 1.73208i) q^{37} +(-1.14906 + 3.03372i) q^{39} +(-0.0169974 - 0.00981345i) q^{41} +(-3.45944 + 1.99731i) q^{43} +(0.978503 + 1.69482i) q^{45} +3.22446i q^{47} +(5.40470 - 9.36121i) q^{49} +1.80966i q^{51} +3.34691i q^{53} +(2.69614 - 4.66986i) q^{55} +2.86580i q^{57} +(-3.15097 - 5.45764i) q^{59} +(-6.79553 + 3.92340i) q^{61} +(8.00560 + 4.62204i) q^{63} +(-0.518077 - 3.17932i) q^{65} +(1.53943 - 2.66638i) q^{67} +(4.13709 - 2.38855i) q^{69} +(-2.22056 + 1.28204i) q^{71} +12.1386i q^{73} +(-3.27402 - 1.89026i) q^{75} -25.4709i q^{77} -3.01133 q^{79} +(-1.18481 + 2.05215i) q^{81} +8.90367 q^{83} +(-0.898477 - 1.55621i) q^{85} +(2.33954 + 4.05220i) q^{87} +(7.52934 + 4.34707i) q^{89} +(-9.62820 - 11.7822i) q^{91} +(1.13198 - 1.96065i) q^{93} +(-1.42284 - 2.46443i) q^{95} +(9.79132 - 5.65302i) q^{97} +13.2208 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 18 q^{7} + 2 q^{9} + 36 q^{15} + 8 q^{17} + 2 q^{23} - 12 q^{25} - 30 q^{33} + 14 q^{39} + 24 q^{41} - 14 q^{49} - 4 q^{55} + 6 q^{65} - 6 q^{71} - 32 q^{79} + 12 q^{81} - 34 q^{87} - 30 q^{89} - 28 q^{95}+ \cdots - 30 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.779193 + 0.449867i 0.449867 + 0.259731i 0.707774 0.706439i \(-0.249699\pi\)
−0.257907 + 0.966170i \(0.583033\pi\)
\(4\) 0 0
\(5\) −0.893415 −0.399548 −0.199774 0.979842i \(-0.564021\pi\)
−0.199774 + 0.979842i \(0.564021\pi\)
\(6\) 0 0
\(7\) −3.65473 + 2.11006i −1.38136 + 0.797527i −0.992320 0.123695i \(-0.960526\pi\)
−0.389037 + 0.921222i \(0.627192\pi\)
\(8\) 0 0
\(9\) −1.09524 1.89701i −0.365080 0.632336i
\(10\) 0 0
\(11\) −3.01779 + 5.22697i −0.909899 + 1.57599i −0.0956963 + 0.995411i \(0.530508\pi\)
−0.814203 + 0.580581i \(0.802826\pi\)
\(12\) 0 0
\(13\) 0.579883 + 3.55861i 0.160831 + 0.986982i
\(14\) 0 0
\(15\) −0.696143 0.401918i −0.179743 0.103775i
\(16\) 0 0
\(17\) 1.00567 + 1.74186i 0.243910 + 0.422464i 0.961825 0.273667i \(-0.0882366\pi\)
−0.717915 + 0.696131i \(0.754903\pi\)
\(18\) 0 0
\(19\) 1.59258 + 2.75843i 0.365364 + 0.632828i 0.988834 0.149018i \(-0.0476113\pi\)
−0.623471 + 0.781847i \(0.714278\pi\)
\(20\) 0 0
\(21\) −3.79699 −0.828570
\(22\) 0 0
\(23\) 2.65473 4.59813i 0.553549 0.958776i −0.444466 0.895796i \(-0.646606\pi\)
0.998015 0.0629796i \(-0.0200603\pi\)
\(24\) 0 0
\(25\) −4.20181 −0.840362
\(26\) 0 0
\(27\) 4.67005i 0.898752i
\(28\) 0 0
\(29\) 4.50378 + 2.60026i 0.836330 + 0.482855i 0.856015 0.516951i \(-0.172933\pi\)
−0.0196850 + 0.999806i \(0.506266\pi\)
\(30\) 0 0
\(31\) 2.51626i 0.451934i −0.974135 0.225967i \(-0.927446\pi\)
0.974135 0.225967i \(-0.0725541\pi\)
\(32\) 0 0
\(33\) −4.70289 + 2.71521i −0.818668 + 0.472658i
\(34\) 0 0
\(35\) 3.26519 1.88516i 0.551918 0.318650i
\(36\) 0 0
\(37\) 1.00002 1.73208i 0.164402 0.284752i −0.772041 0.635573i \(-0.780764\pi\)
0.936443 + 0.350821i \(0.114097\pi\)
\(38\) 0 0
\(39\) −1.14906 + 3.03372i −0.183997 + 0.485784i
\(40\) 0 0
\(41\) −0.0169974 0.00981345i −0.00265455 0.00153260i 0.498672 0.866791i \(-0.333821\pi\)
−0.501327 + 0.865258i \(0.667155\pi\)
\(42\) 0 0
\(43\) −3.45944 + 1.99731i −0.527560 + 0.304587i −0.740022 0.672583i \(-0.765185\pi\)
0.212463 + 0.977169i \(0.431852\pi\)
\(44\) 0 0
\(45\) 0.978503 + 1.69482i 0.145867 + 0.252648i
\(46\) 0 0
\(47\) 3.22446i 0.470335i 0.971955 + 0.235168i \(0.0755639\pi\)
−0.971955 + 0.235168i \(0.924436\pi\)
\(48\) 0 0
\(49\) 5.40470 9.36121i 0.772100 1.33732i
\(50\) 0 0
\(51\) 1.80966i 0.253404i
\(52\) 0 0
\(53\) 3.34691i 0.459733i 0.973222 + 0.229867i \(0.0738290\pi\)
−0.973222 + 0.229867i \(0.926171\pi\)
\(54\) 0 0
\(55\) 2.69614 4.66986i 0.363548 0.629683i
\(56\) 0 0
\(57\) 2.86580i 0.379585i
\(58\) 0 0
\(59\) −3.15097 5.45764i −0.410221 0.710524i 0.584692 0.811255i \(-0.301215\pi\)
−0.994914 + 0.100731i \(0.967882\pi\)
\(60\) 0 0
\(61\) −6.79553 + 3.92340i −0.870078 + 0.502340i −0.867374 0.497657i \(-0.834194\pi\)
−0.00270378 + 0.999996i \(0.500861\pi\)
\(62\) 0 0
\(63\) 8.00560 + 4.62204i 1.00861 + 0.582322i
\(64\) 0 0
\(65\) −0.518077 3.17932i −0.0642595 0.394346i
\(66\) 0 0
\(67\) 1.53943 2.66638i 0.188072 0.325750i −0.756536 0.653952i \(-0.773110\pi\)
0.944607 + 0.328203i \(0.106443\pi\)
\(68\) 0 0
\(69\) 4.13709 2.38855i 0.498048 0.287548i
\(70\) 0 0
\(71\) −2.22056 + 1.28204i −0.263532 + 0.152150i −0.625945 0.779867i \(-0.715286\pi\)
0.362413 + 0.932018i \(0.381953\pi\)
\(72\) 0 0
\(73\) 12.1386i 1.42072i 0.703840 + 0.710359i \(0.251467\pi\)
−0.703840 + 0.710359i \(0.748533\pi\)
\(74\) 0 0
\(75\) −3.27402 1.89026i −0.378051 0.218268i
\(76\) 0 0
\(77\) 25.4709i 2.90268i
\(78\) 0 0
\(79\) −3.01133 −0.338801 −0.169401 0.985547i \(-0.554183\pi\)
−0.169401 + 0.985547i \(0.554183\pi\)
\(80\) 0 0
\(81\) −1.18481 + 2.05215i −0.131646 + 0.228017i
\(82\) 0 0
\(83\) 8.90367 0.977304 0.488652 0.872479i \(-0.337489\pi\)
0.488652 + 0.872479i \(0.337489\pi\)
\(84\) 0 0
\(85\) −0.898477 1.55621i −0.0974535 0.168794i
\(86\) 0 0
\(87\) 2.33954 + 4.05220i 0.250825 + 0.434442i
\(88\) 0 0
\(89\) 7.52934 + 4.34707i 0.798109 + 0.460788i 0.842809 0.538212i \(-0.180900\pi\)
−0.0447006 + 0.999000i \(0.514233\pi\)
\(90\) 0 0
\(91\) −9.62820 11.7822i −1.00931 1.23511i
\(92\) 0 0
\(93\) 1.13198 1.96065i 0.117381 0.203310i
\(94\) 0 0
\(95\) −1.42284 2.46443i −0.145980 0.252845i
\(96\) 0 0
\(97\) 9.79132 5.65302i 0.994158 0.573977i 0.0876432 0.996152i \(-0.472066\pi\)
0.906514 + 0.422175i \(0.138733\pi\)
\(98\) 0 0
\(99\) 13.2208 1.32874
\(100\) 0 0
\(101\) 11.0712 + 6.39194i 1.10162 + 0.636021i 0.936646 0.350276i \(-0.113912\pi\)
0.164975 + 0.986298i \(0.447246\pi\)
\(102\) 0 0
\(103\) 6.35829 0.626501 0.313251 0.949671i \(-0.398582\pi\)
0.313251 + 0.949671i \(0.398582\pi\)
\(104\) 0 0
\(105\) 3.39229 0.331053
\(106\) 0 0
\(107\) 3.64486 + 2.10436i 0.352362 + 0.203436i 0.665725 0.746197i \(-0.268122\pi\)
−0.313363 + 0.949633i \(0.601456\pi\)
\(108\) 0 0
\(109\) −15.3480 −1.47007 −0.735036 0.678028i \(-0.762835\pi\)
−0.735036 + 0.678028i \(0.762835\pi\)
\(110\) 0 0
\(111\) 1.55841 0.899749i 0.147918 0.0854004i
\(112\) 0 0
\(113\) 5.31512 + 9.20607i 0.500005 + 0.866034i 1.00000 5.57645e-6i \(1.77504e-6\pi\)
−0.499995 + 0.866028i \(0.666665\pi\)
\(114\) 0 0
\(115\) −2.37178 + 4.10804i −0.221169 + 0.383076i
\(116\) 0 0
\(117\) 6.11561 4.99758i 0.565389 0.462026i
\(118\) 0 0
\(119\) −7.35087 4.24403i −0.673853 0.389049i
\(120\) 0 0
\(121\) −12.7142 22.0216i −1.15583 2.00196i
\(122\) 0 0
\(123\) −0.00882951 0.0152932i −0.000796130 0.00137894i
\(124\) 0 0
\(125\) 8.22104 0.735312
\(126\) 0 0
\(127\) 1.26804 2.19632i 0.112521 0.194892i −0.804265 0.594271i \(-0.797441\pi\)
0.916786 + 0.399379i \(0.130774\pi\)
\(128\) 0 0
\(129\) −3.59410 −0.316442
\(130\) 0 0
\(131\) 2.01357i 0.175927i −0.996124 0.0879633i \(-0.971964\pi\)
0.996124 0.0879633i \(-0.0280358\pi\)
\(132\) 0 0
\(133\) −11.6409 6.72089i −1.00940 0.582775i
\(134\) 0 0
\(135\) 4.17230i 0.359094i
\(136\) 0 0
\(137\) 11.8095 6.81819i 1.00895 0.582518i 0.0980660 0.995180i \(-0.468734\pi\)
0.910884 + 0.412662i \(0.135401\pi\)
\(138\) 0 0
\(139\) −15.6208 + 9.01865i −1.32494 + 0.764952i −0.984512 0.175320i \(-0.943904\pi\)
−0.340424 + 0.940272i \(0.610571\pi\)
\(140\) 0 0
\(141\) −1.45058 + 2.51247i −0.122161 + 0.211589i
\(142\) 0 0
\(143\) −20.3507 7.70813i −1.70181 0.644586i
\(144\) 0 0
\(145\) −4.02374 2.32311i −0.334154 0.192924i
\(146\) 0 0
\(147\) 8.42261 4.86279i 0.694685 0.401076i
\(148\) 0 0
\(149\) 0.706789 + 1.22419i 0.0579024 + 0.100290i 0.893524 0.449016i \(-0.148225\pi\)
−0.835621 + 0.549306i \(0.814892\pi\)
\(150\) 0 0
\(151\) 5.82833i 0.474303i 0.971473 + 0.237152i \(0.0762138\pi\)
−0.971473 + 0.237152i \(0.923786\pi\)
\(152\) 0 0
\(153\) 2.20289 3.81551i 0.178093 0.308466i
\(154\) 0 0
\(155\) 2.24807i 0.180569i
\(156\) 0 0
\(157\) 3.13281i 0.250025i 0.992155 + 0.125013i \(0.0398971\pi\)
−0.992155 + 0.125013i \(0.960103\pi\)
\(158\) 0 0
\(159\) −1.50567 + 2.60789i −0.119407 + 0.206819i
\(160\) 0 0
\(161\) 22.4065i 1.76588i
\(162\) 0 0
\(163\) 1.93896 + 3.35838i 0.151871 + 0.263048i 0.931915 0.362676i \(-0.118137\pi\)
−0.780044 + 0.625724i \(0.784803\pi\)
\(164\) 0 0
\(165\) 4.20163 2.42581i 0.327097 0.188849i
\(166\) 0 0
\(167\) 13.6659 + 7.89003i 1.05750 + 0.610549i 0.924740 0.380599i \(-0.124282\pi\)
0.132761 + 0.991148i \(0.457616\pi\)
\(168\) 0 0
\(169\) −12.3275 + 4.12716i −0.948267 + 0.317474i
\(170\) 0 0
\(171\) 3.48852 6.04229i 0.266774 0.462065i
\(172\) 0 0
\(173\) 0.538065 0.310652i 0.0409083 0.0236184i −0.479406 0.877593i \(-0.659148\pi\)
0.520315 + 0.853975i \(0.325815\pi\)
\(174\) 0 0
\(175\) 15.3565 8.86606i 1.16084 0.670211i
\(176\) 0 0
\(177\) 5.67007i 0.426189i
\(178\) 0 0
\(179\) 9.39825 + 5.42608i 0.702458 + 0.405564i 0.808262 0.588823i \(-0.200408\pi\)
−0.105804 + 0.994387i \(0.533742\pi\)
\(180\) 0 0
\(181\) 16.0515i 1.19310i 0.802577 + 0.596548i \(0.203461\pi\)
−0.802577 + 0.596548i \(0.796539\pi\)
\(182\) 0 0
\(183\) −7.06004 −0.521893
\(184\) 0 0
\(185\) −0.893430 + 1.54747i −0.0656863 + 0.113772i
\(186\) 0 0
\(187\) −12.1396 −0.887733
\(188\) 0 0
\(189\) 9.85409 + 17.0678i 0.716779 + 1.24150i
\(190\) 0 0
\(191\) 10.9755 + 19.0102i 0.794161 + 1.37553i 0.923371 + 0.383909i \(0.125423\pi\)
−0.129210 + 0.991617i \(0.541244\pi\)
\(192\) 0 0
\(193\) −7.45812 4.30595i −0.536847 0.309949i 0.206953 0.978351i \(-0.433645\pi\)
−0.743800 + 0.668402i \(0.766979\pi\)
\(194\) 0 0
\(195\) 1.02659 2.71037i 0.0735157 0.194094i
\(196\) 0 0
\(197\) −4.57874 + 7.93061i −0.326222 + 0.565033i −0.981759 0.190130i \(-0.939109\pi\)
0.655537 + 0.755163i \(0.272442\pi\)
\(198\) 0 0
\(199\) −7.83948 13.5784i −0.555726 0.962545i −0.997847 0.0655898i \(-0.979107\pi\)
0.442121 0.896955i \(-0.354226\pi\)
\(200\) 0 0
\(201\) 2.39903 1.38508i 0.169215 0.0976961i
\(202\) 0 0
\(203\) −21.9468 −1.54036
\(204\) 0 0
\(205\) 0.0151857 + 0.00876749i 0.00106062 + 0.000612348i
\(206\) 0 0
\(207\) −11.6302 −0.808358
\(208\) 0 0
\(209\) −19.2243 −1.32978
\(210\) 0 0
\(211\) 14.2765 + 8.24253i 0.982834 + 0.567439i 0.903124 0.429379i \(-0.141267\pi\)
0.0797093 + 0.996818i \(0.474601\pi\)
\(212\) 0 0
\(213\) −2.30699 −0.158073
\(214\) 0 0
\(215\) 3.09072 1.78443i 0.210785 0.121697i
\(216\) 0 0
\(217\) 5.30946 + 9.19625i 0.360430 + 0.624282i
\(218\) 0 0
\(219\) −5.46077 + 9.45832i −0.369004 + 0.639134i
\(220\) 0 0
\(221\) −5.61545 + 4.58885i −0.377736 + 0.308680i
\(222\) 0 0
\(223\) −4.14333 2.39215i −0.277458 0.160191i 0.354814 0.934937i \(-0.384544\pi\)
−0.632272 + 0.774746i \(0.717878\pi\)
\(224\) 0 0
\(225\) 4.60198 + 7.97087i 0.306799 + 0.531391i
\(226\) 0 0
\(227\) 2.20440 + 3.81814i 0.146311 + 0.253419i 0.929861 0.367910i \(-0.119927\pi\)
−0.783550 + 0.621329i \(0.786593\pi\)
\(228\) 0 0
\(229\) −18.9724 −1.25373 −0.626866 0.779127i \(-0.715662\pi\)
−0.626866 + 0.779127i \(0.715662\pi\)
\(230\) 0 0
\(231\) 11.4585 19.8467i 0.753915 1.30582i
\(232\) 0 0
\(233\) −16.2038 −1.06155 −0.530774 0.847513i \(-0.678099\pi\)
−0.530774 + 0.847513i \(0.678099\pi\)
\(234\) 0 0
\(235\) 2.88078i 0.187921i
\(236\) 0 0
\(237\) −2.34641 1.35470i −0.152416 0.0879972i
\(238\) 0 0
\(239\) 3.65538i 0.236447i −0.992987 0.118224i \(-0.962280\pi\)
0.992987 0.118224i \(-0.0377200\pi\)
\(240\) 0 0
\(241\) −19.7662 + 11.4120i −1.27325 + 0.735114i −0.975599 0.219559i \(-0.929538\pi\)
−0.297655 + 0.954673i \(0.596205\pi\)
\(242\) 0 0
\(243\) −13.9795 + 8.07110i −0.896788 + 0.517761i
\(244\) 0 0
\(245\) −4.82864 + 8.36345i −0.308490 + 0.534321i
\(246\) 0 0
\(247\) −8.89269 + 7.26696i −0.565828 + 0.462385i
\(248\) 0 0
\(249\) 6.93768 + 4.00547i 0.439657 + 0.253836i
\(250\) 0 0
\(251\) −5.22090 + 3.01429i −0.329540 + 0.190260i −0.655637 0.755076i \(-0.727600\pi\)
0.326097 + 0.945336i \(0.394267\pi\)
\(252\) 0 0
\(253\) 16.0228 + 27.7524i 1.00735 + 1.74478i
\(254\) 0 0
\(255\) 1.61678i 0.101247i
\(256\) 0 0
\(257\) 11.6246 20.1344i 0.725122 1.25595i −0.233802 0.972284i \(-0.575117\pi\)
0.958924 0.283663i \(-0.0915498\pi\)
\(258\) 0 0
\(259\) 8.44037i 0.524459i
\(260\) 0 0
\(261\) 11.3916i 0.705123i
\(262\) 0 0
\(263\) −1.34527 + 2.33008i −0.0829529 + 0.143679i −0.904517 0.426437i \(-0.859768\pi\)
0.821564 + 0.570116i \(0.193102\pi\)
\(264\) 0 0
\(265\) 2.99018i 0.183685i
\(266\) 0 0
\(267\) 3.91121 + 6.77441i 0.239362 + 0.414587i
\(268\) 0 0
\(269\) 10.8816 6.28249i 0.663462 0.383050i −0.130133 0.991497i \(-0.541540\pi\)
0.793595 + 0.608447i \(0.208207\pi\)
\(270\) 0 0
\(271\) −0.248953 0.143733i −0.0151228 0.00873116i 0.492420 0.870358i \(-0.336113\pi\)
−0.507542 + 0.861627i \(0.669446\pi\)
\(272\) 0 0
\(273\) −2.20181 13.5120i −0.133260 0.817784i
\(274\) 0 0
\(275\) 12.6802 21.9627i 0.764644 1.32440i
\(276\) 0 0
\(277\) 11.9899 6.92240i 0.720406 0.415926i −0.0944963 0.995525i \(-0.530124\pi\)
0.814902 + 0.579599i \(0.196791\pi\)
\(278\) 0 0
\(279\) −4.77337 + 2.75591i −0.285774 + 0.164992i
\(280\) 0 0
\(281\) 2.18634i 0.130426i −0.997871 0.0652132i \(-0.979227\pi\)
0.997871 0.0652132i \(-0.0207727\pi\)
\(282\) 0 0
\(283\) 12.2639 + 7.08057i 0.729014 + 0.420896i 0.818061 0.575131i \(-0.195049\pi\)
−0.0890474 + 0.996027i \(0.528382\pi\)
\(284\) 0 0
\(285\) 2.56035i 0.151662i
\(286\) 0 0
\(287\) 0.0828279 0.00488917
\(288\) 0 0
\(289\) 6.47727 11.2190i 0.381016 0.659939i
\(290\) 0 0
\(291\) 10.1724 0.596319
\(292\) 0 0
\(293\) −12.5394 21.7189i −0.732559 1.26883i −0.955786 0.294063i \(-0.904992\pi\)
0.223227 0.974767i \(-0.428341\pi\)
\(294\) 0 0
\(295\) 2.81512 + 4.87594i 0.163903 + 0.283888i
\(296\) 0 0
\(297\) 24.4102 + 14.0933i 1.41643 + 0.817774i
\(298\) 0 0
\(299\) 17.9024 + 6.78078i 1.03532 + 0.392143i
\(300\) 0 0
\(301\) 8.42888 14.5992i 0.485832 0.841486i
\(302\) 0 0
\(303\) 5.75105 + 9.96111i 0.330389 + 0.572251i
\(304\) 0 0
\(305\) 6.07123 3.50522i 0.347637 0.200709i
\(306\) 0 0
\(307\) −15.7714 −0.900120 −0.450060 0.892998i \(-0.648597\pi\)
−0.450060 + 0.892998i \(0.648597\pi\)
\(308\) 0 0
\(309\) 4.95434 + 2.86039i 0.281842 + 0.162722i
\(310\) 0 0
\(311\) −12.8116 −0.726477 −0.363238 0.931696i \(-0.618329\pi\)
−0.363238 + 0.931696i \(0.618329\pi\)
\(312\) 0 0
\(313\) 21.9885 1.24287 0.621433 0.783467i \(-0.286551\pi\)
0.621433 + 0.783467i \(0.286551\pi\)
\(314\) 0 0
\(315\) −7.15233 4.12940i −0.402988 0.232665i
\(316\) 0 0
\(317\) −17.7840 −0.998846 −0.499423 0.866358i \(-0.666455\pi\)
−0.499423 + 0.866358i \(0.666455\pi\)
\(318\) 0 0
\(319\) −27.1829 + 15.6941i −1.52195 + 0.878699i
\(320\) 0 0
\(321\) 1.89337 + 3.27941i 0.105677 + 0.183039i
\(322\) 0 0
\(323\) −3.20321 + 5.54813i −0.178231 + 0.308706i
\(324\) 0 0
\(325\) −2.43656 14.9526i −0.135156 0.829422i
\(326\) 0 0
\(327\) −11.9591 6.90456i −0.661337 0.381823i
\(328\) 0 0
\(329\) −6.80379 11.7845i −0.375105 0.649701i
\(330\) 0 0
\(331\) −14.2386 24.6619i −0.782623 1.35554i −0.930409 0.366523i \(-0.880548\pi\)
0.147786 0.989019i \(-0.452785\pi\)
\(332\) 0 0
\(333\) −4.38103 −0.240079
\(334\) 0 0
\(335\) −1.37535 + 2.38218i −0.0751436 + 0.130152i
\(336\) 0 0
\(337\) 8.23580 0.448633 0.224316 0.974516i \(-0.427985\pi\)
0.224316 + 0.974516i \(0.427985\pi\)
\(338\) 0 0
\(339\) 9.56440i 0.519467i
\(340\) 0 0
\(341\) 13.1524 + 7.59356i 0.712244 + 0.411214i
\(342\) 0 0
\(343\) 16.0761i 0.868027i
\(344\) 0 0
\(345\) −3.69614 + 2.13397i −0.198994 + 0.114889i
\(346\) 0 0
\(347\) 16.9827 9.80497i 0.911679 0.526358i 0.0307081 0.999528i \(-0.490224\pi\)
0.880971 + 0.473170i \(0.156890\pi\)
\(348\) 0 0
\(349\) −2.31326 + 4.00669i −0.123826 + 0.214473i −0.921273 0.388915i \(-0.872850\pi\)
0.797447 + 0.603389i \(0.206183\pi\)
\(350\) 0 0
\(351\) 16.6189 2.70809i 0.887052 0.144547i
\(352\) 0 0
\(353\) −17.4284 10.0623i −0.927619 0.535561i −0.0415611 0.999136i \(-0.513233\pi\)
−0.886058 + 0.463575i \(0.846566\pi\)
\(354\) 0 0
\(355\) 1.98388 1.14539i 0.105294 0.0607912i
\(356\) 0 0
\(357\) −3.81850 6.61384i −0.202096 0.350041i
\(358\) 0 0
\(359\) 0.0956414i 0.00504776i 0.999997 + 0.00252388i \(0.000803377\pi\)
−0.999997 + 0.00252388i \(0.999197\pi\)
\(360\) 0 0
\(361\) 4.42736 7.66841i 0.233019 0.403601i
\(362\) 0 0
\(363\) 22.8787i 1.20082i
\(364\) 0 0
\(365\) 10.8448i 0.567644i
\(366\) 0 0
\(367\) 15.7850 27.3405i 0.823972 1.42716i −0.0787296 0.996896i \(-0.525086\pi\)
0.902702 0.430266i \(-0.141580\pi\)
\(368\) 0 0
\(369\) 0.0429923i 0.00223809i
\(370\) 0 0
\(371\) −7.06218 12.2321i −0.366650 0.635056i
\(372\) 0 0
\(373\) −9.14193 + 5.27810i −0.473351 + 0.273290i −0.717642 0.696413i \(-0.754778\pi\)
0.244290 + 0.969702i \(0.421445\pi\)
\(374\) 0 0
\(375\) 6.40578 + 3.69838i 0.330793 + 0.190983i
\(376\) 0 0
\(377\) −6.64164 + 17.5350i −0.342062 + 0.903101i
\(378\) 0 0
\(379\) −14.1854 + 24.5699i −0.728657 + 1.26207i 0.228795 + 0.973475i \(0.426522\pi\)
−0.957451 + 0.288595i \(0.906812\pi\)
\(380\) 0 0
\(381\) 1.97610 1.14090i 0.101239 0.0584503i
\(382\) 0 0
\(383\) 21.8939 12.6405i 1.11873 0.645897i 0.177651 0.984094i \(-0.443150\pi\)
0.941076 + 0.338196i \(0.109817\pi\)
\(384\) 0 0
\(385\) 22.7561i 1.15976i
\(386\) 0 0
\(387\) 7.57782 + 4.37506i 0.385202 + 0.222397i
\(388\) 0 0
\(389\) 15.2123i 0.771294i 0.922646 + 0.385647i \(0.126022\pi\)
−0.922646 + 0.385647i \(0.873978\pi\)
\(390\) 0 0
\(391\) 10.6791 0.540064
\(392\) 0 0
\(393\) 0.905841 1.56896i 0.0456936 0.0791437i
\(394\) 0 0
\(395\) 2.69037 0.135367
\(396\) 0 0
\(397\) −18.8616 32.6693i −0.946638 1.63963i −0.752437 0.658664i \(-0.771122\pi\)
−0.194202 0.980962i \(-0.562212\pi\)
\(398\) 0 0
\(399\) −6.04702 10.4737i −0.302729 0.524343i
\(400\) 0 0
\(401\) 28.2674 + 16.3202i 1.41161 + 0.814991i 0.995540 0.0943435i \(-0.0300752\pi\)
0.416066 + 0.909334i \(0.363409\pi\)
\(402\) 0 0
\(403\) 8.95440 1.45914i 0.446051 0.0726848i
\(404\) 0 0
\(405\) 1.05853 1.83343i 0.0525987 0.0911037i
\(406\) 0 0
\(407\) 6.03568 + 10.4541i 0.299178 + 0.518191i
\(408\) 0 0
\(409\) 3.01700 1.74186i 0.149181 0.0861296i −0.423552 0.905872i \(-0.639217\pi\)
0.572732 + 0.819742i \(0.305883\pi\)
\(410\) 0 0
\(411\) 12.2691 0.605192
\(412\) 0 0
\(413\) 23.0319 + 13.2975i 1.13332 + 0.654325i
\(414\) 0 0
\(415\) −7.95467 −0.390480
\(416\) 0 0
\(417\) −16.2288 −0.794727
\(418\) 0 0
\(419\) −27.5293 15.8940i −1.34489 0.776475i −0.357373 0.933962i \(-0.616328\pi\)
−0.987521 + 0.157487i \(0.949661\pi\)
\(420\) 0 0
\(421\) 38.9188 1.89679 0.948394 0.317093i \(-0.102707\pi\)
0.948394 + 0.317093i \(0.102707\pi\)
\(422\) 0 0
\(423\) 6.11682 3.53155i 0.297410 0.171710i
\(424\) 0 0
\(425\) −4.22562 7.31898i −0.204972 0.355023i
\(426\) 0 0
\(427\) 16.5572 28.6779i 0.801259 1.38782i
\(428\) 0 0
\(429\) −12.3895 15.1613i −0.598172 0.731992i
\(430\) 0 0
\(431\) 21.0414 + 12.1483i 1.01353 + 0.585161i 0.912223 0.409694i \(-0.134364\pi\)
0.101306 + 0.994855i \(0.467698\pi\)
\(432\) 0 0
\(433\) 11.5771 + 20.0521i 0.556360 + 0.963643i 0.997796 + 0.0663510i \(0.0211357\pi\)
−0.441437 + 0.897292i \(0.645531\pi\)
\(434\) 0 0
\(435\) −2.09018 3.62030i −0.100217 0.173580i
\(436\) 0 0
\(437\) 16.9115 0.808987
\(438\) 0 0
\(439\) 14.7545 25.5555i 0.704193 1.21970i −0.262788 0.964853i \(-0.584642\pi\)
0.966982 0.254845i \(-0.0820245\pi\)
\(440\) 0 0
\(441\) −23.6777 −1.12751
\(442\) 0 0
\(443\) 8.91190i 0.423417i 0.977333 + 0.211709i \(0.0679028\pi\)
−0.977333 + 0.211709i \(0.932097\pi\)
\(444\) 0 0
\(445\) −6.72683 3.88374i −0.318882 0.184107i
\(446\) 0 0
\(447\) 1.27185i 0.0601562i
\(448\) 0 0
\(449\) −8.35715 + 4.82500i −0.394398 + 0.227706i −0.684064 0.729422i \(-0.739789\pi\)
0.289666 + 0.957128i \(0.406456\pi\)
\(450\) 0 0
\(451\) 0.102589 0.0592300i 0.00483074 0.00278903i
\(452\) 0 0
\(453\) −2.62198 + 4.54140i −0.123191 + 0.213373i
\(454\) 0 0
\(455\) 8.60198 + 10.5264i 0.403267 + 0.493485i
\(456\) 0 0
\(457\) −6.30736 3.64156i −0.295046 0.170345i 0.345169 0.938540i \(-0.387822\pi\)
−0.640215 + 0.768196i \(0.721155\pi\)
\(458\) 0 0
\(459\) 8.13460 4.69651i 0.379691 0.219214i
\(460\) 0 0
\(461\) −14.1677 24.5391i −0.659855 1.14290i −0.980653 0.195754i \(-0.937284\pi\)
0.320798 0.947148i \(-0.396049\pi\)
\(462\) 0 0
\(463\) 34.4600i 1.60149i 0.599003 + 0.800747i \(0.295564\pi\)
−0.599003 + 0.800747i \(0.704436\pi\)
\(464\) 0 0
\(465\) −1.01133 + 1.75168i −0.0468994 + 0.0812321i
\(466\) 0 0
\(467\) 33.2473i 1.53850i −0.638946 0.769252i \(-0.720629\pi\)
0.638946 0.769252i \(-0.279371\pi\)
\(468\) 0 0
\(469\) 12.9932i 0.599969i
\(470\) 0 0
\(471\) −1.40935 + 2.44106i −0.0649393 + 0.112478i
\(472\) 0 0
\(473\) 24.1099i 1.10857i
\(474\) 0 0
\(475\) −6.69173 11.5904i −0.307038 0.531805i
\(476\) 0 0
\(477\) 6.34912 3.66567i 0.290706 0.167839i
\(478\) 0 0
\(479\) 18.3155 + 10.5745i 0.836858 + 0.483160i 0.856195 0.516653i \(-0.172822\pi\)
−0.0193371 + 0.999813i \(0.506156\pi\)
\(480\) 0 0
\(481\) 6.74369 + 2.55427i 0.307486 + 0.116465i
\(482\) 0 0
\(483\) −10.0800 + 17.4590i −0.458655 + 0.794413i
\(484\) 0 0
\(485\) −8.74771 + 5.05049i −0.397213 + 0.229331i
\(486\) 0 0
\(487\) −15.5640 + 8.98589i −0.705273 + 0.407189i −0.809308 0.587384i \(-0.800158\pi\)
0.104035 + 0.994574i \(0.466824\pi\)
\(488\) 0 0
\(489\) 3.48910i 0.157783i
\(490\) 0 0
\(491\) 4.43288 + 2.55932i 0.200053 + 0.115501i 0.596680 0.802479i \(-0.296486\pi\)
−0.396627 + 0.917980i \(0.629819\pi\)
\(492\) 0 0
\(493\) 10.4600i 0.471093i
\(494\) 0 0
\(495\) −11.8117 −0.530896
\(496\) 0 0
\(497\) 5.41036 9.37102i 0.242688 0.420348i
\(498\) 0 0
\(499\) −19.2741 −0.862826 −0.431413 0.902155i \(-0.641985\pi\)
−0.431413 + 0.902155i \(0.641985\pi\)
\(500\) 0 0
\(501\) 7.09893 + 12.2957i 0.317157 + 0.549332i
\(502\) 0 0
\(503\) −12.0244 20.8268i −0.536139 0.928621i −0.999107 0.0422456i \(-0.986549\pi\)
0.462968 0.886375i \(-0.346785\pi\)
\(504\) 0 0
\(505\) −9.89114 5.71065i −0.440150 0.254121i
\(506\) 0 0
\(507\) −11.4622 2.32987i −0.509052 0.103473i
\(508\) 0 0
\(509\) −18.5759 + 32.1744i −0.823362 + 1.42610i 0.0798031 + 0.996811i \(0.474571\pi\)
−0.903165 + 0.429294i \(0.858762\pi\)
\(510\) 0 0
\(511\) −25.6132 44.3633i −1.13306 1.96252i
\(512\) 0 0
\(513\) 12.8820 7.43745i 0.568756 0.328371i
\(514\) 0 0
\(515\) −5.68060 −0.250317
\(516\) 0 0
\(517\) −16.8541 9.73074i −0.741244 0.427958i
\(518\) 0 0
\(519\) 0.559009 0.0245378
\(520\) 0 0
\(521\) −9.09538 −0.398476 −0.199238 0.979951i \(-0.563847\pi\)
−0.199238 + 0.979951i \(0.563847\pi\)
\(522\) 0 0
\(523\) 21.3438 + 12.3228i 0.933298 + 0.538840i 0.887853 0.460127i \(-0.152196\pi\)
0.0454452 + 0.998967i \(0.485529\pi\)
\(524\) 0 0
\(525\) 15.9542 0.696299
\(526\) 0 0
\(527\) 4.38298 2.53052i 0.190926 0.110231i
\(528\) 0 0
\(529\) −2.59517 4.49497i −0.112834 0.195434i
\(530\) 0 0
\(531\) −6.90213 + 11.9548i −0.299527 + 0.518796i
\(532\) 0 0
\(533\) 0.0250658 0.0661779i 0.00108572 0.00286648i
\(534\) 0 0
\(535\) −3.25637 1.88007i −0.140785 0.0812824i
\(536\) 0 0
\(537\) 4.88203 + 8.45593i 0.210675 + 0.364900i
\(538\) 0 0
\(539\) 32.6205 + 56.5004i 1.40507 + 2.43364i
\(540\) 0 0
\(541\) −5.07378 −0.218139 −0.109069 0.994034i \(-0.534787\pi\)
−0.109069 + 0.994034i \(0.534787\pi\)
\(542\) 0 0
\(543\) −7.22103 + 12.5072i −0.309884 + 0.536735i
\(544\) 0 0
\(545\) 13.7121 0.587363
\(546\) 0 0
\(547\) 0.158642i 0.00678304i 0.999994 + 0.00339152i \(0.00107956\pi\)
−0.999994 + 0.00339152i \(0.998920\pi\)
\(548\) 0 0
\(549\) 14.8854 + 8.59412i 0.635295 + 0.366788i
\(550\) 0 0
\(551\) 16.5645i 0.705671i
\(552\) 0 0
\(553\) 11.0056 6.35409i 0.468006 0.270203i
\(554\) 0 0
\(555\) −1.39231 + 0.803850i −0.0591002 + 0.0341215i
\(556\) 0 0
\(557\) 2.30308 3.98905i 0.0975847 0.169022i −0.813100 0.582124i \(-0.802222\pi\)
0.910684 + 0.413103i \(0.135555\pi\)
\(558\) 0 0
\(559\) −9.11372 11.1526i −0.385469 0.471705i
\(560\) 0 0
\(561\) −9.45907 5.46120i −0.399362 0.230572i
\(562\) 0 0
\(563\) 1.29014 0.744862i 0.0543729 0.0313922i −0.472567 0.881295i \(-0.656673\pi\)
0.526940 + 0.849902i \(0.323339\pi\)
\(564\) 0 0
\(565\) −4.74861 8.22484i −0.199776 0.346022i
\(566\) 0 0
\(567\) 10.0001i 0.419964i
\(568\) 0 0
\(569\) −8.32754 + 14.4237i −0.349108 + 0.604674i −0.986091 0.166204i \(-0.946849\pi\)
0.636983 + 0.770878i \(0.280182\pi\)
\(570\) 0 0
\(571\) 21.2857i 0.890779i 0.895337 + 0.445390i \(0.146935\pi\)
−0.895337 + 0.445390i \(0.853065\pi\)
\(572\) 0 0
\(573\) 19.7501i 0.825073i
\(574\) 0 0
\(575\) −11.1547 + 19.3204i −0.465182 + 0.805718i
\(576\) 0 0
\(577\) 7.02758i 0.292562i −0.989243 0.146281i \(-0.953270\pi\)
0.989243 0.146281i \(-0.0467304\pi\)
\(578\) 0 0
\(579\) −3.87421 6.71033i −0.161007 0.278872i
\(580\) 0 0
\(581\) −32.5405 + 18.7873i −1.35001 + 0.779427i
\(582\) 0 0
\(583\) −17.4942 10.1003i −0.724536 0.418311i
\(584\) 0 0
\(585\) −5.46378 + 4.46491i −0.225900 + 0.184601i
\(586\) 0 0
\(587\) 3.96345 6.86490i 0.163589 0.283345i −0.772564 0.634937i \(-0.781026\pi\)
0.936153 + 0.351592i \(0.114360\pi\)
\(588\) 0 0
\(589\) 6.94094 4.00735i 0.285996 0.165120i
\(590\) 0 0
\(591\) −7.13545 + 4.11965i −0.293513 + 0.169460i
\(592\) 0 0
\(593\) 22.9984i 0.944430i −0.881483 0.472215i \(-0.843455\pi\)
0.881483 0.472215i \(-0.156545\pi\)
\(594\) 0 0
\(595\) 6.56738 + 3.79168i 0.269236 + 0.155444i
\(596\) 0 0
\(597\) 14.1069i 0.577357i
\(598\) 0 0
\(599\) 9.32430 0.380980 0.190490 0.981689i \(-0.438992\pi\)
0.190490 + 0.981689i \(0.438992\pi\)
\(600\) 0 0
\(601\) −4.24363 + 7.35018i −0.173101 + 0.299820i −0.939503 0.342542i \(-0.888712\pi\)
0.766401 + 0.642362i \(0.222045\pi\)
\(602\) 0 0
\(603\) −6.74419 −0.274644
\(604\) 0 0
\(605\) 11.3590 + 19.6744i 0.461810 + 0.799878i
\(606\) 0 0
\(607\) 10.3169 + 17.8694i 0.418749 + 0.725295i 0.995814 0.0914036i \(-0.0291353\pi\)
−0.577065 + 0.816698i \(0.695802\pi\)
\(608\) 0 0
\(609\) −17.1008 9.87314i −0.692958 0.400080i
\(610\) 0 0
\(611\) −11.4746 + 1.86981i −0.464212 + 0.0756443i
\(612\) 0 0
\(613\) 18.0557 31.2734i 0.729264 1.26312i −0.227931 0.973677i \(-0.573196\pi\)
0.957195 0.289445i \(-0.0934707\pi\)
\(614\) 0 0
\(615\) 0.00788842 + 0.0136631i 0.000318092 + 0.000550951i
\(616\) 0 0
\(617\) −29.2958 + 16.9139i −1.17940 + 0.680929i −0.955877 0.293769i \(-0.905090\pi\)
−0.223527 + 0.974698i \(0.571757\pi\)
\(618\) 0 0
\(619\) −3.06121 −0.123040 −0.0615201 0.998106i \(-0.519595\pi\)
−0.0615201 + 0.998106i \(0.519595\pi\)
\(620\) 0 0
\(621\) −21.4735 12.3977i −0.861702 0.497504i
\(622\) 0 0
\(623\) −36.6903 −1.46997
\(624\) 0 0
\(625\) 13.6642 0.546570
\(626\) 0 0
\(627\) −14.9795 8.64841i −0.598223 0.345384i
\(628\) 0 0
\(629\) 4.02273 0.160397
\(630\) 0 0
\(631\) 23.9926 13.8521i 0.955130 0.551444i 0.0604589 0.998171i \(-0.480744\pi\)
0.894671 + 0.446726i \(0.147410\pi\)
\(632\) 0 0
\(633\) 7.41609 + 12.8450i 0.294763 + 0.510545i
\(634\) 0 0
\(635\) −1.13289 + 1.96222i −0.0449574 + 0.0778685i
\(636\) 0 0
\(637\) 36.4470 + 13.8048i 1.44408 + 0.546967i
\(638\) 0 0
\(639\) 4.86409 + 2.80828i 0.192420 + 0.111094i
\(640\) 0 0
\(641\) −11.8526 20.5292i −0.468148 0.810856i 0.531189 0.847253i \(-0.321745\pi\)
−0.999337 + 0.0363969i \(0.988412\pi\)
\(642\) 0 0
\(643\) 10.3454 + 17.9188i 0.407983 + 0.706648i 0.994664 0.103171i \(-0.0328988\pi\)
−0.586680 + 0.809819i \(0.699565\pi\)
\(644\) 0 0
\(645\) 3.21102 0.126434
\(646\) 0 0
\(647\) −0.671662 + 1.16335i −0.0264058 + 0.0457361i −0.878926 0.476958i \(-0.841740\pi\)
0.852521 + 0.522694i \(0.175073\pi\)
\(648\) 0 0
\(649\) 38.0359 1.49304
\(650\) 0 0
\(651\) 9.55421i 0.374459i
\(652\) 0 0
\(653\) −5.18453 2.99329i −0.202887 0.117137i 0.395115 0.918632i \(-0.370705\pi\)
−0.598001 + 0.801495i \(0.704038\pi\)
\(654\) 0 0
\(655\) 1.79896i 0.0702910i
\(656\) 0 0
\(657\) 23.0271 13.2947i 0.898371 0.518675i
\(658\) 0 0
\(659\) −4.31253 + 2.48984i −0.167992 + 0.0969905i −0.581639 0.813447i \(-0.697588\pi\)
0.413646 + 0.910438i \(0.364255\pi\)
\(660\) 0 0
\(661\) −14.1524 + 24.5127i −0.550466 + 0.953435i 0.447775 + 0.894146i \(0.352217\pi\)
−0.998241 + 0.0592889i \(0.981117\pi\)
\(662\) 0 0
\(663\) −6.43990 + 1.04939i −0.250105 + 0.0407551i
\(664\) 0 0
\(665\) 10.4002 + 6.00454i 0.403301 + 0.232846i
\(666\) 0 0
\(667\) 23.9126 13.8060i 0.925900 0.534569i
\(668\) 0 0
\(669\) −2.15230 3.72790i −0.0832129 0.144129i
\(670\) 0 0
\(671\) 47.3600i 1.82831i
\(672\) 0 0
\(673\) −11.3696 + 19.6927i −0.438264 + 0.759096i −0.997556 0.0698751i \(-0.977740\pi\)
0.559291 + 0.828971i \(0.311073\pi\)
\(674\) 0 0
\(675\) 19.6227i 0.755277i
\(676\) 0 0
\(677\) 35.0768i 1.34811i −0.738681 0.674056i \(-0.764551\pi\)
0.738681 0.674056i \(-0.235449\pi\)
\(678\) 0 0
\(679\) −23.8564 + 41.3205i −0.915525 + 1.58574i
\(680\) 0 0
\(681\) 3.96676i 0.152006i
\(682\) 0 0
\(683\) 24.6307 + 42.6617i 0.942469 + 1.63240i 0.760742 + 0.649055i \(0.224835\pi\)
0.181727 + 0.983349i \(0.441831\pi\)
\(684\) 0 0
\(685\) −10.5508 + 6.09148i −0.403124 + 0.232743i
\(686\) 0 0
\(687\) −14.7832 8.53506i −0.564013 0.325633i
\(688\) 0 0
\(689\) −11.9104 + 1.94082i −0.453749 + 0.0739392i
\(690\) 0 0
\(691\) −12.6649 + 21.9363i −0.481797 + 0.834498i −0.999782 0.0208926i \(-0.993349\pi\)
0.517984 + 0.855390i \(0.326683\pi\)
\(692\) 0 0
\(693\) −48.3185 + 27.8967i −1.83547 + 1.05971i
\(694\) 0 0
\(695\) 13.9558 8.05740i 0.529375 0.305635i
\(696\) 0 0
\(697\) 0.0394762i 0.00149527i
\(698\) 0 0
\(699\) −12.6259 7.28958i −0.477556 0.275717i
\(700\) 0 0
\(701\) 37.7963i 1.42755i 0.700377 + 0.713773i \(0.253015\pi\)
−0.700377 + 0.713773i \(0.746985\pi\)
\(702\) 0 0
\(703\) 6.37043 0.240265
\(704\) 0 0
\(705\) 1.29597 2.24468i 0.0488090 0.0845397i
\(706\) 0 0
\(707\) −53.9494 −2.02898
\(708\) 0 0
\(709\) 14.8681 + 25.7524i 0.558385 + 0.967151i 0.997632 + 0.0687845i \(0.0219121\pi\)
−0.439247 + 0.898367i \(0.644755\pi\)
\(710\) 0 0
\(711\) 3.29813 + 5.71252i 0.123689 + 0.214236i
\(712\) 0 0
\(713\) −11.5701 6.67999i −0.433303 0.250168i
\(714\) 0 0
\(715\) 18.1817 + 6.88656i 0.679956 + 0.257543i
\(716\) 0 0
\(717\) 1.64444 2.84825i 0.0614127 0.106370i
\(718\) 0 0
\(719\) 12.2000 + 21.1310i 0.454983 + 0.788054i 0.998687 0.0512233i \(-0.0163120\pi\)
−0.543704 + 0.839277i \(0.682979\pi\)
\(720\) 0 0
\(721\) −23.2378 + 13.4164i −0.865422 + 0.499652i
\(722\) 0 0
\(723\) −20.5356 −0.763728
\(724\) 0 0
\(725\) −18.9240 10.9258i −0.702820 0.405773i
\(726\) 0 0
\(727\) 44.0720 1.63454 0.817271 0.576254i \(-0.195486\pi\)
0.817271 + 0.576254i \(0.195486\pi\)
\(728\) 0 0
\(729\) −7.41482 −0.274623
\(730\) 0 0
\(731\) −6.95808 4.01725i −0.257354 0.148583i
\(732\) 0 0
\(733\) 28.9063 1.06768 0.533839 0.845586i \(-0.320749\pi\)
0.533839 + 0.845586i \(0.320749\pi\)
\(734\) 0 0
\(735\) −7.52489 + 4.34449i −0.277560 + 0.160249i
\(736\) 0 0
\(737\) 9.29138 + 16.0931i 0.342252 + 0.592799i
\(738\) 0 0
\(739\) 12.3818 21.4460i 0.455474 0.788903i −0.543242 0.839576i \(-0.682803\pi\)
0.998715 + 0.0506730i \(0.0161366\pi\)
\(740\) 0 0
\(741\) −10.1983 + 1.66183i −0.374644 + 0.0610489i
\(742\) 0 0
\(743\) −44.5277 25.7081i −1.63356 0.943139i −0.982982 0.183703i \(-0.941192\pi\)
−0.650582 0.759436i \(-0.725475\pi\)
\(744\) 0 0
\(745\) −0.631456 1.09371i −0.0231348 0.0400706i
\(746\) 0 0
\(747\) −9.75164 16.8903i −0.356794 0.617985i
\(748\) 0 0
\(749\) −17.7613 −0.648983
\(750\) 0 0
\(751\) −10.4756 + 18.1442i −0.382259 + 0.662093i −0.991385 0.130981i \(-0.958187\pi\)
0.609125 + 0.793074i \(0.291521\pi\)
\(752\) 0 0
\(753\) −5.42412 −0.197666
\(754\) 0 0
\(755\) 5.20712i 0.189507i
\(756\) 0 0
\(757\) 21.8620 + 12.6220i 0.794587 + 0.458755i 0.841575 0.540140i \(-0.181629\pi\)
−0.0469876 + 0.998895i \(0.514962\pi\)
\(758\) 0 0
\(759\) 28.8326i 1.04656i
\(760\) 0 0
\(761\) −5.11797 + 2.95486i −0.185526 + 0.107114i −0.589886 0.807486i \(-0.700828\pi\)
0.404360 + 0.914600i \(0.367494\pi\)
\(762\) 0 0
\(763\) 56.0928 32.3852i 2.03069 1.17242i
\(764\) 0 0
\(765\) −1.96809 + 3.40884i −0.0711566 + 0.123247i
\(766\) 0 0
\(767\) 17.5944 14.3779i 0.635298 0.519155i
\(768\) 0 0
\(769\) 15.8579 + 9.15556i 0.571850 + 0.330158i 0.757888 0.652385i \(-0.226231\pi\)
−0.186038 + 0.982543i \(0.559565\pi\)
\(770\) 0 0
\(771\) 18.1156 10.4590i 0.652417 0.376673i
\(772\) 0 0
\(773\) −9.59015 16.6106i −0.344934 0.597443i 0.640408 0.768035i \(-0.278765\pi\)
−0.985342 + 0.170592i \(0.945432\pi\)
\(774\) 0 0
\(775\) 10.5728i 0.379788i
\(776\) 0 0
\(777\) −3.79705 + 6.57668i −0.136218 + 0.235937i
\(778\) 0 0
\(779\) 0.0625150i 0.00223983i
\(780\) 0 0
\(781\) 15.4757i 0.553765i
\(782\) 0 0
\(783\) 12.1433 21.0329i 0.433967 0.751653i
\(784\) 0 0
\(785\) 2.79890i 0.0998970i
\(786\) 0 0
\(787\) −3.92375 6.79613i −0.139867 0.242256i 0.787579 0.616213i \(-0.211334\pi\)
−0.927446 + 0.373957i \(0.878001\pi\)
\(788\) 0 0
\(789\) −2.09645 + 1.21039i −0.0746357 + 0.0430909i
\(790\) 0 0
\(791\) −38.8507 22.4305i −1.38137 0.797535i
\(792\) 0 0
\(793\) −17.9025 21.9075i −0.635735 0.777960i
\(794\) 0 0
\(795\) 1.34518 2.32993i 0.0477088 0.0826341i
\(796\) 0 0
\(797\) 22.6302 13.0656i 0.801605 0.462807i −0.0424273 0.999100i \(-0.513509\pi\)
0.844032 + 0.536293i \(0.180176\pi\)
\(798\) 0 0
\(799\) −5.61657 + 3.24273i −0.198700 + 0.114719i
\(800\) 0 0
\(801\) 19.0443i 0.672898i
\(802\) 0 0
\(803\) −63.4482 36.6318i −2.23904 1.29271i
\(804\) 0 0
\(805\) 20.0183i 0.705554i
\(806\) 0 0
\(807\) 11.3051 0.397960
\(808\) 0 0
\(809\) 6.20747 10.7517i 0.218243 0.378008i −0.736028 0.676951i \(-0.763301\pi\)
0.954271 + 0.298943i \(0.0966341\pi\)
\(810\) 0 0
\(811\) 15.9619 0.560499 0.280249 0.959927i \(-0.409583\pi\)
0.280249 + 0.959927i \(0.409583\pi\)
\(812\) 0 0
\(813\) −0.129322 0.223992i −0.00453551 0.00785573i
\(814\) 0 0
\(815\) −1.73230 3.00043i −0.0606797 0.105100i
\(816\) 0 0
\(817\) −11.0189 6.36176i −0.385502 0.222570i
\(818\) 0 0
\(819\) −11.8057 + 31.1691i −0.412526 + 1.08914i
\(820\) 0 0
\(821\) 22.5254 39.0152i 0.786144 1.36164i −0.142170 0.989842i \(-0.545408\pi\)
0.928314 0.371798i \(-0.121259\pi\)
\(822\) 0 0
\(823\) 16.7658 + 29.0393i 0.584420 + 1.01224i 0.994947 + 0.100397i \(0.0320112\pi\)
−0.410528 + 0.911848i \(0.634655\pi\)
\(824\) 0 0
\(825\) 19.7606 11.4088i 0.687977 0.397204i
\(826\) 0 0
\(827\) 51.5687 1.79322 0.896610 0.442820i \(-0.146022\pi\)
0.896610 + 0.442820i \(0.146022\pi\)
\(828\) 0 0
\(829\) 18.8521 + 10.8842i 0.654759 + 0.378025i 0.790277 0.612750i \(-0.209937\pi\)
−0.135518 + 0.990775i \(0.543270\pi\)
\(830\) 0 0
\(831\) 12.4566 0.432116
\(832\) 0 0
\(833\) 21.7413 0.753291
\(834\) 0 0
\(835\) −12.2094 7.04907i −0.422522 0.243943i
\(836\) 0 0
\(837\) −11.7511 −0.406176
\(838\) 0 0
\(839\) 22.6729 13.0902i 0.782755 0.451924i −0.0546509 0.998506i \(-0.517405\pi\)
0.837406 + 0.546582i \(0.184071\pi\)
\(840\) 0 0
\(841\) −0.977337 1.69280i −0.0337013 0.0583723i
\(842\) 0 0
\(843\) 0.983565 1.70358i 0.0338758 0.0586746i
\(844\) 0 0
\(845\) 11.0136 3.68727i 0.378878 0.126846i
\(846\) 0 0
\(847\) 92.9336 + 53.6552i 3.19324 + 1.84362i
\(848\) 0 0
\(849\) 6.37064 + 11.0343i 0.218640 + 0.378695i
\(850\) 0 0
\(851\) −5.30954 9.19640i −0.182009 0.315249i
\(852\) 0 0
\(853\) 33.0664 1.13217 0.566086 0.824346i \(-0.308457\pi\)
0.566086 + 0.824346i \(0.308457\pi\)
\(854\) 0 0
\(855\) −3.11669 + 5.39827i −0.106589 + 0.184617i
\(856\) 0 0
\(857\) 27.7866 0.949172 0.474586 0.880209i \(-0.342598\pi\)
0.474586 + 0.880209i \(0.342598\pi\)
\(858\) 0 0
\(859\) 53.8754i 1.83820i −0.394020 0.919102i \(-0.628916\pi\)
0.394020 0.919102i \(-0.371084\pi\)
\(860\) 0 0
\(861\) 0.0645389 + 0.0372616i 0.00219948 + 0.00126987i
\(862\) 0 0
\(863\) 48.6608i 1.65643i −0.560408 0.828217i \(-0.689355\pi\)
0.560408 0.828217i \(-0.310645\pi\)
\(864\) 0 0
\(865\) −0.480716 + 0.277541i −0.0163448 + 0.00943669i
\(866\) 0 0
\(867\) 10.0941 5.82783i 0.342813 0.197923i
\(868\) 0 0
\(869\) 9.08758 15.7401i 0.308275 0.533948i
\(870\) 0 0
\(871\) 10.3813 + 3.93206i 0.351757 + 0.133233i
\(872\) 0 0
\(873\) −21.4477 12.3828i −0.725893 0.419095i
\(874\) 0 0
\(875\) −30.0457 + 17.3469i −1.01573 + 0.586431i
\(876\) 0 0
\(877\) −1.83365 3.17598i −0.0619181 0.107245i 0.833405 0.552663i \(-0.186388\pi\)
−0.895323 + 0.445418i \(0.853055\pi\)
\(878\) 0 0
\(879\) 22.5643i 0.761074i
\(880\) 0 0
\(881\) −0.624583 + 1.08181i −0.0210427 + 0.0364471i −0.876355 0.481666i \(-0.840032\pi\)
0.855312 + 0.518113i \(0.173365\pi\)
\(882\) 0 0
\(883\) 4.46615i 0.150298i −0.997172 0.0751489i \(-0.976057\pi\)
0.997172 0.0751489i \(-0.0239432\pi\)
\(884\) 0 0
\(885\) 5.06573i 0.170283i
\(886\) 0 0
\(887\) 6.70566 11.6145i 0.225154 0.389978i −0.731212 0.682151i \(-0.761045\pi\)
0.956366 + 0.292173i \(0.0943782\pi\)
\(888\) 0 0
\(889\) 10.7026i 0.358953i
\(890\) 0 0
\(891\) −7.15103 12.3860i −0.239569 0.414945i
\(892\) 0 0
\(893\) −8.89445 + 5.13521i −0.297641 + 0.171843i
\(894\) 0 0
\(895\) −8.39654 4.84774i −0.280665 0.162042i
\(896\) 0 0
\(897\) 10.8990 + 13.3372i 0.363906 + 0.445317i
\(898\) 0 0
\(899\) 6.54292 11.3327i 0.218219 0.377966i
\(900\) 0 0
\(901\) −5.82986 + 3.36587i −0.194221 + 0.112133i
\(902\) 0 0
\(903\) 13.1354 7.58375i 0.437120 0.252371i
\(904\) 0 0
\(905\) 14.3406i 0.476698i
\(906\) 0 0
\(907\) 28.1142 + 16.2318i 0.933518 + 0.538967i 0.887923 0.459993i \(-0.152148\pi\)
0.0455956 + 0.998960i \(0.485481\pi\)
\(908\) 0 0
\(909\) 28.0028i 0.928794i
\(910\) 0 0
\(911\) −24.4263 −0.809279 −0.404639 0.914476i \(-0.632603\pi\)
−0.404639 + 0.914476i \(0.632603\pi\)
\(912\) 0 0
\(913\) −26.8694 + 46.5392i −0.889248 + 1.54022i
\(914\) 0 0
\(915\) 6.30754 0.208521
\(916\) 0 0
\(917\) 4.24876 + 7.35906i 0.140306 + 0.243018i
\(918\) 0 0
\(919\) −22.1908 38.4356i −0.732008 1.26787i −0.956024 0.293289i \(-0.905250\pi\)
0.224016 0.974585i \(-0.428083\pi\)
\(920\) 0 0
\(921\) −12.2890 7.09503i −0.404935 0.233789i
\(922\) 0 0
\(923\) −5.84995 7.15868i −0.192554 0.235631i
\(924\) 0 0
\(925\) −4.20188 + 7.27786i −0.138157 + 0.239295i
\(926\) 0 0
\(927\) −6.96385 12.0617i −0.228723 0.396159i
\(928\) 0 0
\(929\) −21.9114 + 12.6505i −0.718889 + 0.415051i −0.814344 0.580383i \(-0.802903\pi\)
0.0954546 + 0.995434i \(0.469570\pi\)
\(930\) 0 0
\(931\) 34.4297 1.12839
\(932\) 0 0
\(933\) −9.98267 5.76350i −0.326818 0.188689i
\(934\) 0 0
\(935\) 10.8457 0.354692
\(936\) 0 0
\(937\) −41.0474 −1.34096 −0.670479 0.741928i \(-0.733912\pi\)
−0.670479 + 0.741928i \(0.733912\pi\)
\(938\) 0 0
\(939\) 17.1333 + 9.89193i 0.559125 + 0.322811i
\(940\) 0 0
\(941\) −36.6752 −1.19558 −0.597789 0.801653i \(-0.703954\pi\)
−0.597789 + 0.801653i \(0.703954\pi\)
\(942\) 0 0
\(943\) −0.0902470 + 0.0521041i −0.00293885 + 0.00169674i
\(944\) 0 0
\(945\) −8.80379 15.2486i −0.286387 0.496038i
\(946\) 0 0
\(947\) 10.9465 18.9599i 0.355714 0.616114i −0.631526 0.775355i \(-0.717571\pi\)
0.987240 + 0.159240i \(0.0509045\pi\)
\(948\) 0 0
\(949\) −43.1966 + 7.03898i −1.40222 + 0.228495i
\(950\) 0 0
\(951\) −13.8571 8.00042i −0.449348 0.259431i
\(952\) 0 0
\(953\) 24.7900 + 42.9375i 0.803026 + 1.39088i 0.917616 + 0.397469i \(0.130111\pi\)
−0.114590 + 0.993413i \(0.536555\pi\)
\(954\) 0 0
\(955\) −9.80570 16.9840i −0.317305 0.549588i
\(956\) 0 0
\(957\) −28.2410 −0.912902
\(958\) 0 0
\(959\) −28.7736 + 49.8373i −0.929147 + 1.60933i
\(960\) 0 0
\(961\) 24.6684 0.795756
\(962\) 0 0
\(963\) 9.21910i 0.297081i
\(964\) 0 0
\(965\) 6.66320 + 3.84700i 0.214496 + 0.123839i
\(966\) 0 0
\(967\) 31.4252i 1.01057i −0.862953 0.505284i \(-0.831388\pi\)
0.862953 0.505284i \(-0.168612\pi\)
\(968\) 0 0
\(969\) −4.99184 + 2.88204i −0.160361 + 0.0925845i
\(970\) 0 0
\(971\) −42.8554 + 24.7426i −1.37530 + 0.794028i −0.991589 0.129427i \(-0.958686\pi\)
−0.383707 + 0.923455i \(0.625353\pi\)
\(972\) 0 0
\(973\) 38.0598 65.9215i 1.22014 2.11334i
\(974\) 0 0
\(975\) 4.82814 12.7471i 0.154624 0.408234i
\(976\) 0 0
\(977\) 34.7979 + 20.0906i 1.11328 + 0.642754i 0.939678 0.342061i \(-0.111125\pi\)
0.173605 + 0.984815i \(0.444458\pi\)
\(978\) 0 0
\(979\) −45.4440 + 26.2371i −1.45240 + 0.838542i
\(980\) 0 0
\(981\) 16.8097 + 29.1153i 0.536693 + 0.929580i
\(982\) 0 0
\(983\) 53.9410i 1.72045i 0.509913 + 0.860226i \(0.329677\pi\)
−0.509913 + 0.860226i \(0.670323\pi\)
\(984\) 0 0
\(985\) 4.09072 7.08533i 0.130341 0.225757i
\(986\) 0 0
\(987\) 12.2432i 0.389706i
\(988\) 0 0
\(989\) 21.2092i 0.674415i
\(990\) 0 0
\(991\) −21.4117 + 37.0862i −0.680166 + 1.17808i 0.294764 + 0.955570i \(0.404759\pi\)
−0.974930 + 0.222512i \(0.928575\pi\)
\(992\) 0 0
\(993\) 25.6219i 0.813086i
\(994\) 0 0
\(995\) 7.00391 + 12.1311i 0.222039 + 0.384583i
\(996\) 0 0
\(997\) 38.5110 22.2343i 1.21966 0.704168i 0.254811 0.966991i \(-0.417987\pi\)
0.964844 + 0.262822i \(0.0846533\pi\)
\(998\) 0 0
\(999\) −8.08890 4.67013i −0.255921 0.147756i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.ba.c.17.6 16
4.3 odd 2 104.2.s.c.69.1 16
8.3 odd 2 104.2.s.c.69.2 yes 16
8.5 even 2 inner 416.2.ba.c.17.3 16
12.11 even 2 936.2.dg.d.901.8 16
13.10 even 6 inner 416.2.ba.c.49.3 16
24.11 even 2 936.2.dg.d.901.7 16
52.23 odd 6 104.2.s.c.101.2 yes 16
104.75 odd 6 104.2.s.c.101.1 yes 16
104.101 even 6 inner 416.2.ba.c.49.6 16
156.23 even 6 936.2.dg.d.829.7 16
312.179 even 6 936.2.dg.d.829.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.s.c.69.1 16 4.3 odd 2
104.2.s.c.69.2 yes 16 8.3 odd 2
104.2.s.c.101.1 yes 16 104.75 odd 6
104.2.s.c.101.2 yes 16 52.23 odd 6
416.2.ba.c.17.3 16 8.5 even 2 inner
416.2.ba.c.17.6 16 1.1 even 1 trivial
416.2.ba.c.49.3 16 13.10 even 6 inner
416.2.ba.c.49.6 16 104.101 even 6 inner
936.2.dg.d.829.7 16 156.23 even 6
936.2.dg.d.829.8 16 312.179 even 6
936.2.dg.d.901.7 16 24.11 even 2
936.2.dg.d.901.8 16 12.11 even 2