Properties

Label 2-4050-1.1-c1-0-4
Degree $2$
Conductor $4050$
Sign $1$
Analytic cond. $32.3394$
Root an. cond. $5.68677$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 7-s − 8-s − 4·13-s + 14-s + 16-s − 3·17-s − 4·19-s + 4·26-s − 28-s + 6·29-s − 4·31-s − 32-s + 3·34-s − 4·37-s + 4·38-s + 9·41-s + 2·43-s + 3·47-s − 6·49-s − 4·52-s − 6·53-s + 56-s − 6·58-s + 14·61-s + 4·62-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.377·7-s − 0.353·8-s − 1.10·13-s + 0.267·14-s + 1/4·16-s − 0.727·17-s − 0.917·19-s + 0.784·26-s − 0.188·28-s + 1.11·29-s − 0.718·31-s − 0.176·32-s + 0.514·34-s − 0.657·37-s + 0.648·38-s + 1.40·41-s + 0.304·43-s + 0.437·47-s − 6/7·49-s − 0.554·52-s − 0.824·53-s + 0.133·56-s − 0.787·58-s + 1.79·61-s + 0.508·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4050\)    =    \(2 \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(32.3394\)
Root analytic conductor: \(5.68677\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4050,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8734857048\)
\(L(\frac12)\) \(\approx\) \(0.8734857048\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 - 18 T + p T^{2} \) 1.83.as
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.398800577476243321833055962044, −7.85406146058898438905526063811, −6.87084655478927532882563686211, −6.58395717502770172007587102871, −5.53984831485071354347351361589, −4.69220297031318818745509140462, −3.78314451123949742010402053025, −2.66680823999025742598609368482, −2.02736023469198575451261993286, −0.56776884864590562648620890187, 0.56776884864590562648620890187, 2.02736023469198575451261993286, 2.66680823999025742598609368482, 3.78314451123949742010402053025, 4.69220297031318818745509140462, 5.53984831485071354347351361589, 6.58395717502770172007587102871, 6.87084655478927532882563686211, 7.85406146058898438905526063811, 8.398800577476243321833055962044

Graph of the $Z$-function along the critical line