| L(s) = 1 | + i·2-s − 3-s + 5-s − i·6-s + i·8-s + i·10-s − i·11-s − i·13-s − 15-s − 16-s + i·17-s + 22-s + 23-s − i·24-s + 26-s + 27-s + ⋯ |
| L(s) = 1 | + i·2-s − 3-s + 5-s − i·6-s + i·8-s + i·10-s − i·11-s − i·13-s − 15-s − 16-s + i·17-s + 22-s + 23-s − i·24-s + 26-s + 27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3971 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3971 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.206947764\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.206947764\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 11 | \( 1 + iT \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 - iT - T^{2} \) |
| 3 | \( 1 + T + T^{2} \) |
| 5 | \( 1 - T + T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 13 | \( 1 + iT - T^{2} \) |
| 17 | \( 1 - iT - T^{2} \) |
| 23 | \( 1 - T + T^{2} \) |
| 29 | \( 1 - iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - iT - T^{2} \) |
| 43 | \( 1 - iT - T^{2} \) |
| 47 | \( 1 - T + T^{2} \) |
| 53 | \( 1 - T + T^{2} \) |
| 59 | \( 1 + T + T^{2} \) |
| 61 | \( 1 + iT - T^{2} \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( 1 - T + T^{2} \) |
| 73 | \( 1 - iT - T^{2} \) |
| 79 | \( 1 + iT - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - T + T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.587976973266440405048342280491, −8.063380729416151463749921005821, −7.11772732657241524658167043488, −6.32846827567612275585897265566, −5.94313355791055669638086974363, −5.45400127415466043604631165168, −4.84878791354176291758034908040, −3.36400564658332679429846420329, −2.45157352409287811534396133688, −1.12964529689802170558547733747,
0.899859455520425706678539712851, 2.09484497331639200670216562841, 2.51808584642070507872985967415, 3.82675205510710825332624572545, 4.69597887753054413011126754000, 5.44145748455455180740676683229, 6.19503697452162891616855693371, 6.91762591003107852309266776539, 7.37284147705225461020858598986, 8.919594192766627244859070042293