Properties

Label 3971.1.c.b.362.2
Level $3971$
Weight $1$
Character 3971.362
Analytic conductor $1.982$
Analytic rank $0$
Dimension $2$
Projective image $A_{4}$
CM/RM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3971,1,Mod(362,3971)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3971.362"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3971, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3971 = 11 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3971.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.98178716517\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.43681.1

Embedding invariants

Embedding label 362.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3971.362
Dual form 3971.1.c.b.362.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{3} +1.00000 q^{5} -1.00000i q^{6} +1.00000i q^{8} +1.00000i q^{10} -1.00000i q^{11} -1.00000i q^{13} -1.00000 q^{15} -1.00000 q^{16} +1.00000i q^{17} +1.00000 q^{22} +1.00000 q^{23} -1.00000i q^{24} +1.00000 q^{26} +1.00000 q^{27} +1.00000i q^{29} -1.00000i q^{30} +1.00000i q^{33} -1.00000 q^{34} +1.00000i q^{39} +1.00000i q^{40} +1.00000i q^{41} +1.00000i q^{43} +1.00000i q^{46} +1.00000 q^{47} +1.00000 q^{48} +1.00000 q^{49} -1.00000i q^{51} +1.00000 q^{53} +1.00000i q^{54} -1.00000i q^{55} -1.00000 q^{58} -1.00000 q^{59} -1.00000i q^{61} -1.00000 q^{64} -1.00000i q^{65} -1.00000 q^{66} +1.00000 q^{67} -1.00000 q^{69} +1.00000 q^{71} +1.00000i q^{73} -1.00000 q^{78} -1.00000i q^{79} -1.00000 q^{80} -1.00000 q^{81} -1.00000 q^{82} +1.00000i q^{85} -1.00000 q^{86} -1.00000i q^{87} +1.00000 q^{88} +1.00000 q^{89} +1.00000i q^{94} +1.00000 q^{97} +1.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{5} - 2 q^{15} - 2 q^{16} + 2 q^{22} + 2 q^{23} + 2 q^{26} + 2 q^{27} - 2 q^{34} + 2 q^{47} + 2 q^{48} + 2 q^{49} + 2 q^{53} - 2 q^{58} - 2 q^{59} - 2 q^{64} - 2 q^{66} + 2 q^{67} - 2 q^{69}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3971\mathbb{Z}\right)^\times\).

\(n\) \(1806\) \(2168\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(3\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) 0 0
\(5\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) − 1.00000i − 1.00000i
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 1.00000i 1.00000i
\(9\) 0 0
\(10\) 1.00000i 1.00000i
\(11\) − 1.00000i − 1.00000i
\(12\) 0 0
\(13\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(14\) 0 0
\(15\) −1.00000 −1.00000
\(16\) −1.00000 −1.00000
\(17\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 0 0
\(22\) 1.00000 1.00000
\(23\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) − 1.00000i − 1.00000i
\(25\) 0 0
\(26\) 1.00000 1.00000
\(27\) 1.00000 1.00000
\(28\) 0 0
\(29\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) − 1.00000i − 1.00000i
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 1.00000i 1.00000i
\(34\) −1.00000 −1.00000
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 1.00000i 1.00000i
\(40\) 1.00000i 1.00000i
\(41\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(42\) 0 0
\(43\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 1.00000i 1.00000i
\(47\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(48\) 1.00000 1.00000
\(49\) 1.00000 1.00000
\(50\) 0 0
\(51\) − 1.00000i − 1.00000i
\(52\) 0 0
\(53\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(54\) 1.00000i 1.00000i
\(55\) − 1.00000i − 1.00000i
\(56\) 0 0
\(57\) 0 0
\(58\) −1.00000 −1.00000
\(59\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(60\) 0 0
\(61\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −1.00000 −1.00000
\(65\) − 1.00000i − 1.00000i
\(66\) −1.00000 −1.00000
\(67\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 0 0
\(69\) −1.00000 −1.00000
\(70\) 0 0
\(71\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(72\) 0 0
\(73\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) −1.00000 −1.00000
\(79\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(80\) −1.00000 −1.00000
\(81\) −1.00000 −1.00000
\(82\) −1.00000 −1.00000
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 1.00000i 1.00000i
\(86\) −1.00000 −1.00000
\(87\) − 1.00000i − 1.00000i
\(88\) 1.00000 1.00000
\(89\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 1.00000i 1.00000i
\(95\) 0 0
\(96\) 0 0
\(97\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(98\) 1.00000i 1.00000i
\(99\) 0 0
\(100\) 0 0
\(101\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 1.00000 1.00000
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 1.00000 1.00000
\(105\) 0 0
\(106\) 1.00000i 1.00000i
\(107\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(108\) 0 0
\(109\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(110\) 1.00000 1.00000
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 1.00000 1.00000
\(116\) 0 0
\(117\) 0 0
\(118\) − 1.00000i − 1.00000i
\(119\) 0 0
\(120\) − 1.00000i − 1.00000i
\(121\) −1.00000 −1.00000
\(122\) 1.00000 1.00000
\(123\) − 1.00000i − 1.00000i
\(124\) 0 0
\(125\) −1.00000 −1.00000
\(126\) 0 0
\(127\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(128\) − 1.00000i − 1.00000i
\(129\) − 1.00000i − 1.00000i
\(130\) 1.00000 1.00000
\(131\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1.00000i 1.00000i
\(135\) 1.00000 1.00000
\(136\) −1.00000 −1.00000
\(137\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(138\) − 1.00000i − 1.00000i
\(139\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(140\) 0 0
\(141\) −1.00000 −1.00000
\(142\) 1.00000i 1.00000i
\(143\) −1.00000 −1.00000
\(144\) 0 0
\(145\) 1.00000i 1.00000i
\(146\) −1.00000 −1.00000
\(147\) −1.00000 −1.00000
\(148\) 0 0
\(149\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(158\) 1.00000 1.00000
\(159\) −1.00000 −1.00000
\(160\) 0 0
\(161\) 0 0
\(162\) − 1.00000i − 1.00000i
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 1.00000i 1.00000i
\(166\) 0 0
\(167\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −1.00000 −1.00000
\(171\) 0 0
\(172\) 0 0
\(173\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(174\) 1.00000 1.00000
\(175\) 0 0
\(176\) 1.00000i 1.00000i
\(177\) 1.00000 1.00000
\(178\) 1.00000i 1.00000i
\(179\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(182\) 0 0
\(183\) 1.00000i 1.00000i
\(184\) 1.00000i 1.00000i
\(185\) 0 0
\(186\) 0 0
\(187\) 1.00000 1.00000
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 1.00000 1.00000
\(193\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(194\) 1.00000i 1.00000i
\(195\) 1.00000i 1.00000i
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 0 0
\(201\) −1.00000 −1.00000
\(202\) −1.00000 −1.00000
\(203\) 0 0
\(204\) 0 0
\(205\) 1.00000i 1.00000i
\(206\) 0 0
\(207\) 0 0
\(208\) 1.00000i 1.00000i
\(209\) 0 0
\(210\) 0 0
\(211\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(212\) 0 0
\(213\) −1.00000 −1.00000
\(214\) 2.00000 2.00000
\(215\) 1.00000i 1.00000i
\(216\) 1.00000i 1.00000i
\(217\) 0 0
\(218\) −1.00000 −1.00000
\(219\) − 1.00000i − 1.00000i
\(220\) 0 0
\(221\) 1.00000 1.00000
\(222\) 0 0
\(223\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(230\) 1.00000i 1.00000i
\(231\) 0 0
\(232\) −1.00000 −1.00000
\(233\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(234\) 0 0
\(235\) 1.00000 1.00000
\(236\) 0 0
\(237\) 1.00000i 1.00000i
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 1.00000 1.00000
\(241\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(242\) − 1.00000i − 1.00000i
\(243\) 0 0
\(244\) 0 0
\(245\) 1.00000 1.00000
\(246\) 1.00000 1.00000
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) − 1.00000i − 1.00000i
\(251\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(252\) 0 0
\(253\) − 1.00000i − 1.00000i
\(254\) 1.00000 1.00000
\(255\) − 1.00000i − 1.00000i
\(256\) 0 0
\(257\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(258\) 1.00000 1.00000
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 1.00000 1.00000
\(263\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(264\) −1.00000 −1.00000
\(265\) 1.00000 1.00000
\(266\) 0 0
\(267\) −1.00000 −1.00000
\(268\) 0 0
\(269\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(270\) 1.00000i 1.00000i
\(271\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(272\) − 1.00000i − 1.00000i
\(273\) 0 0
\(274\) 1.00000i 1.00000i
\(275\) 0 0
\(276\) 0 0
\(277\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) −1.00000 −1.00000
\(279\) 0 0
\(280\) 0 0
\(281\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(282\) − 1.00000i − 1.00000i
\(283\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) − 1.00000i − 1.00000i
\(287\) 0 0
\(288\) 0 0
\(289\) 0 0
\(290\) −1.00000 −1.00000
\(291\) −1.00000 −1.00000
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) − 1.00000i − 1.00000i
\(295\) −1.00000 −1.00000
\(296\) 0 0
\(297\) − 1.00000i − 1.00000i
\(298\) −1.00000 −1.00000
\(299\) − 1.00000i − 1.00000i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) − 1.00000i − 1.00000i
\(304\) 0 0
\(305\) − 1.00000i − 1.00000i
\(306\) 0 0
\(307\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) −1.00000 −1.00000
\(313\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) − 1.00000i − 1.00000i
\(315\) 0 0
\(316\) 0 0
\(317\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) − 1.00000i − 1.00000i
\(319\) 1.00000 1.00000
\(320\) −1.00000 −1.00000
\(321\) 2.00000i 2.00000i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 1.00000i − 1.00000i
\(328\) −1.00000 −1.00000
\(329\) 0 0
\(330\) −1.00000 −1.00000
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −1.00000 −1.00000
\(335\) 1.00000 1.00000
\(336\) 0 0
\(337\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −1.00000 −1.00000
\(345\) −1.00000 −1.00000
\(346\) 1.00000 1.00000
\(347\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) 0 0
\(349\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(350\) 0 0
\(351\) − 1.00000i − 1.00000i
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 1.00000i 1.00000i
\(355\) 1.00000 1.00000
\(356\) 0 0
\(357\) 0 0
\(358\) − 2.00000i − 2.00000i
\(359\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) − 1.00000i − 1.00000i
\(363\) 1.00000 1.00000
\(364\) 0 0
\(365\) 1.00000i 1.00000i
\(366\) −1.00000 −1.00000
\(367\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) −1.00000 −1.00000
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 1.00000i 1.00000i
\(375\) 1.00000 1.00000
\(376\) 1.00000i 1.00000i
\(377\) 1.00000 1.00000
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 1.00000i 1.00000i
\(382\) 0 0
\(383\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(384\) 1.00000i 1.00000i
\(385\) 0 0
\(386\) −1.00000 −1.00000
\(387\) 0 0
\(388\) 0 0
\(389\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(390\) −1.00000 −1.00000
\(391\) 1.00000i 1.00000i
\(392\) 1.00000i 1.00000i
\(393\) 1.00000i 1.00000i
\(394\) 0 0
\(395\) − 1.00000i − 1.00000i
\(396\) 0 0
\(397\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) − 1.00000i − 1.00000i
\(399\) 0 0
\(400\) 0 0
\(401\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(402\) − 1.00000i − 1.00000i
\(403\) 0 0
\(404\) 0 0
\(405\) −1.00000 −1.00000
\(406\) 0 0
\(407\) 0 0
\(408\) 1.00000 1.00000
\(409\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(410\) −1.00000 −1.00000
\(411\) −1.00000 −1.00000
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 1.00000i − 1.00000i
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) 1.00000 1.00000
\(423\) 0 0
\(424\) 1.00000i 1.00000i
\(425\) 0 0
\(426\) − 1.00000i − 1.00000i
\(427\) 0 0
\(428\) 0 0
\(429\) 1.00000 1.00000
\(430\) −1.00000 −1.00000
\(431\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(432\) −1.00000 −1.00000
\(433\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(434\) 0 0
\(435\) − 1.00000i − 1.00000i
\(436\) 0 0
\(437\) 0 0
\(438\) 1.00000 1.00000
\(439\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(440\) 1.00000 1.00000
\(441\) 0 0
\(442\) 1.00000i 1.00000i
\(443\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(444\) 0 0
\(445\) 1.00000 1.00000
\(446\) − 1.00000i − 1.00000i
\(447\) − 1.00000i − 1.00000i
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 1.00000 1.00000
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(458\) − 2.00000i − 2.00000i
\(459\) 1.00000i 1.00000i
\(460\) 0 0
\(461\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) − 1.00000i − 1.00000i
\(465\) 0 0
\(466\) 1.00000 1.00000
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 1.00000i 1.00000i
\(471\) 1.00000 1.00000
\(472\) − 1.00000i − 1.00000i
\(473\) 1.00000 1.00000
\(474\) −1.00000 −1.00000
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −1.00000 −1.00000
\(483\) 0 0
\(484\) 0 0
\(485\) 1.00000 1.00000
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 1.00000 1.00000
\(489\) 0 0
\(490\) 1.00000i 1.00000i
\(491\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(492\) 0 0
\(493\) −1.00000 −1.00000
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) 0 0
\(501\) − 1.00000i − 1.00000i
\(502\) − 1.00000i − 1.00000i
\(503\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(504\) 0 0
\(505\) 1.00000i 1.00000i
\(506\) 1.00000 1.00000
\(507\) 0 0
\(508\) 0 0
\(509\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(510\) 1.00000 1.00000
\(511\) 0 0
\(512\) − 1.00000i − 1.00000i
\(513\) 0 0
\(514\) 1.00000i 1.00000i
\(515\) 0 0
\(516\) 0 0
\(517\) − 1.00000i − 1.00000i
\(518\) 0 0
\(519\) 1.00000i 1.00000i
\(520\) 1.00000 1.00000
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 1.00000 1.00000
\(527\) 0 0
\(528\) − 1.00000i − 1.00000i
\(529\) 0 0
\(530\) 1.00000i 1.00000i
\(531\) 0 0
\(532\) 0 0
\(533\) 1.00000 1.00000
\(534\) − 1.00000i − 1.00000i
\(535\) − 2.00000i − 2.00000i
\(536\) 1.00000i 1.00000i
\(537\) 2.00000 2.00000
\(538\) 1.00000i 1.00000i
\(539\) − 1.00000i − 1.00000i
\(540\) 0 0
\(541\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(542\) 1.00000 1.00000
\(543\) 1.00000 1.00000
\(544\) 0 0
\(545\) 1.00000i 1.00000i
\(546\) 0 0
\(547\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) − 1.00000i − 1.00000i
\(553\) 0 0
\(554\) −2.00000 −2.00000
\(555\) 0 0
\(556\) 0 0
\(557\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(558\) 0 0
\(559\) 1.00000 1.00000
\(560\) 0 0
\(561\) −1.00000 −1.00000
\(562\) 1.00000 1.00000
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.00000 1.00000
\(567\) 0 0
\(568\) 1.00000i 1.00000i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 0 0
\(579\) − 1.00000i − 1.00000i
\(580\) 0 0
\(581\) 0 0
\(582\) − 1.00000i − 1.00000i
\(583\) − 1.00000i − 1.00000i
\(584\) −1.00000 −1.00000
\(585\) 0 0
\(586\) 0 0
\(587\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) − 1.00000i − 1.00000i
\(591\) 0 0
\(592\) 0 0
\(593\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(594\) 1.00000 1.00000
\(595\) 0 0
\(596\) 0 0
\(597\) 1.00000 1.00000
\(598\) 1.00000 1.00000
\(599\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.00000 −1.00000
\(606\) 1.00000 1.00000
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 1.00000 1.00000
\(611\) − 1.00000i − 1.00000i
\(612\) 0 0
\(613\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(614\) 1.00000 1.00000
\(615\) − 1.00000i − 1.00000i
\(616\) 0 0
\(617\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 1.00000 1.00000
\(622\) 0 0
\(623\) 0 0
\(624\) − 1.00000i − 1.00000i
\(625\) −1.00000 −1.00000
\(626\) − 1.00000i − 1.00000i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(632\) 1.00000 1.00000
\(633\) 1.00000i 1.00000i
\(634\) − 1.00000i − 1.00000i
\(635\) − 1.00000i − 1.00000i
\(636\) 0 0
\(637\) − 1.00000i − 1.00000i
\(638\) 1.00000i 1.00000i
\(639\) 0 0
\(640\) − 1.00000i − 1.00000i
\(641\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(642\) −2.00000 −2.00000
\(643\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(644\) 0 0
\(645\) − 1.00000i − 1.00000i
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) − 1.00000i − 1.00000i
\(649\) 1.00000i 1.00000i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(654\) 1.00000 1.00000
\(655\) − 1.00000i − 1.00000i
\(656\) − 1.00000i − 1.00000i
\(657\) 0 0
\(658\) 0 0
\(659\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(660\) 0 0
\(661\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(662\) 0 0
\(663\) −1.00000 −1.00000
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.00000i 1.00000i
\(668\) 0 0
\(669\) 1.00000 1.00000
\(670\) 1.00000i 1.00000i
\(671\) −1.00000 −1.00000
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) −1.00000 −1.00000
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.00000 −1.00000
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 1.00000 1.00000
\(686\) 0 0
\(687\) 2.00000 2.00000
\(688\) − 1.00000i − 1.00000i
\(689\) − 1.00000i − 1.00000i
\(690\) − 1.00000i − 1.00000i
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −1.00000 −1.00000
\(695\) 1.00000i 1.00000i
\(696\) 1.00000 1.00000
\(697\) −1.00000 −1.00000
\(698\) 2.00000 2.00000
\(699\) 1.00000i 1.00000i
\(700\) 0 0
\(701\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(702\) 1.00000 1.00000
\(703\) 0 0
\(704\) 1.00000i 1.00000i
\(705\) −1.00000 −1.00000
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(710\) 1.00000i 1.00000i
\(711\) 0 0
\(712\) 1.00000i 1.00000i
\(713\) 0 0
\(714\) 0 0
\(715\) −1.00000 −1.00000
\(716\) 0 0
\(717\) 0 0
\(718\) −1.00000 −1.00000
\(719\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) − 1.00000i − 1.00000i
\(724\) 0 0
\(725\) 0 0
\(726\) 1.00000i 1.00000i
\(727\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) −1.00000 −1.00000
\(731\) −1.00000 −1.00000
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 1.00000i 1.00000i
\(735\) −1.00000 −1.00000
\(736\) 0 0
\(737\) − 1.00000i − 1.00000i
\(738\) 0 0
\(739\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 0 0
\(745\) 1.00000i 1.00000i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 1.00000i 1.00000i
\(751\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) −1.00000 −1.00000
\(753\) 1.00000 1.00000
\(754\) 1.00000i 1.00000i
\(755\) 0 0
\(756\) 0 0
\(757\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(758\) 0 0
\(759\) 1.00000i 1.00000i
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) −1.00000 −1.00000
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 1.00000i 1.00000i
\(767\) 1.00000i 1.00000i
\(768\) 0 0
\(769\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(770\) 0 0
\(771\) −1.00000 −1.00000
\(772\) 0 0
\(773\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.00000i 1.00000i
\(777\) 0 0
\(778\) 1.00000i 1.00000i
\(779\) 0 0
\(780\) 0 0
\(781\) − 1.00000i − 1.00000i
\(782\) −1.00000 −1.00000
\(783\) 1.00000i 1.00000i
\(784\) −1.00000 −1.00000
\(785\) −1.00000 −1.00000
\(786\) −1.00000 −1.00000
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 1.00000i 1.00000i
\(790\) 1.00000 1.00000
\(791\) 0 0
\(792\) 0 0
\(793\) −1.00000 −1.00000
\(794\) − 1.00000i − 1.00000i
\(795\) −1.00000 −1.00000
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 1.00000i 1.00000i
\(800\) 0 0
\(801\) 0 0
\(802\) − 1.00000i − 1.00000i
\(803\) 1.00000 1.00000
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.00000 −1.00000
\(808\) −1.00000 −1.00000
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) − 1.00000i − 1.00000i
\(811\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(812\) 0 0
\(813\) 1.00000i 1.00000i
\(814\) 0 0
\(815\) 0 0
\(816\) 1.00000i 1.00000i
\(817\) 0 0
\(818\) −1.00000 −1.00000
\(819\) 0 0
\(820\) 0 0
\(821\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(822\) − 1.00000i − 1.00000i
\(823\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) − 2.00000i − 2.00000i
\(832\) 1.00000i 1.00000i
\(833\) 1.00000i 1.00000i
\(834\) 1.00000 1.00000
\(835\) 1.00000i 1.00000i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) − 1.00000i − 1.00000i
\(843\) 1.00000i 1.00000i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −1.00000 −1.00000
\(849\) 1.00000i 1.00000i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.00000 2.00000
\(857\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(858\) 1.00000i 1.00000i
\(859\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1.00000 1.00000
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) − 1.00000i − 1.00000i
\(866\) − 1.00000i − 1.00000i
\(867\) 0 0
\(868\) 0 0
\(869\) −1.00000 −1.00000
\(870\) 1.00000 1.00000
\(871\) − 1.00000i − 1.00000i
\(872\) −1.00000 −1.00000
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(878\) 1.00000 1.00000
\(879\) 0 0
\(880\) 1.00000i 1.00000i
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(884\) 0 0
\(885\) 1.00000 1.00000
\(886\) 1.00000i 1.00000i
\(887\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 1.00000i 1.00000i
\(891\) 1.00000i 1.00000i
\(892\) 0 0
\(893\) 0 0
\(894\) 1.00000 1.00000
\(895\) −2.00000 −2.00000
\(896\) 0 0
\(897\) 1.00000i 1.00000i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 1.00000i 1.00000i
\(902\) 1.00000i 1.00000i
\(903\) 0 0
\(904\) 0 0
\(905\) −1.00000 −1.00000
\(906\) 0 0
\(907\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 2.00000 2.00000
\(915\) 1.00000i 1.00000i
\(916\) 0 0
\(917\) 0 0
\(918\) −1.00000 −1.00000
\(919\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 1.00000i 1.00000i
\(921\) 1.00000i 1.00000i
\(922\) 1.00000 1.00000
\(923\) − 1.00000i − 1.00000i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.00000 1.00000
\(936\) 0 0
\(937\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(938\) 0 0
\(939\) 1.00000 1.00000
\(940\) 0 0
\(941\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(942\) 1.00000i 1.00000i
\(943\) 1.00000i 1.00000i
\(944\) 1.00000 1.00000
\(945\) 0 0
\(946\) 1.00000i 1.00000i
\(947\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(948\) 0 0
\(949\) 1.00000 1.00000
\(950\) 0 0
\(951\) 1.00000 1.00000
\(952\) 0 0
\(953\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −1.00000 −1.00000
\(958\) −1.00000 −1.00000
\(959\) 0 0
\(960\) 1.00000 1.00000
\(961\) −1.00000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.00000i 1.00000i
\(966\) 0 0
\(967\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(968\) − 1.00000i − 1.00000i
\(969\) 0 0
\(970\) 1.00000i 1.00000i
\(971\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 1.00000i 1.00000i
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) − 1.00000i − 1.00000i
\(980\) 0 0
\(981\) 0 0
\(982\) 1.00000 1.00000
\(983\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(984\) 1.00000 1.00000
\(985\) 0 0
\(986\) − 1.00000i − 1.00000i
\(987\) 0 0
\(988\) 0 0
\(989\) 1.00000i 1.00000i
\(990\) 0 0
\(991\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.00000 −1.00000
\(996\) 0 0
\(997\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(998\) − 1.00000i − 1.00000i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3971.1.c.b.362.2 2
11.10 odd 2 inner 3971.1.c.b.362.1 2
19.2 odd 18 3971.1.q.e.2265.1 12
19.3 odd 18 3971.1.q.e.3277.2 12
19.4 even 9 3971.1.q.d.54.1 12
19.5 even 9 3971.1.q.d.956.2 12
19.6 even 9 3971.1.q.d.967.2 12
19.7 even 3 3971.1.h.d.2595.1 4
19.8 odd 6 209.1.h.a.197.1 yes 4
19.9 even 9 3971.1.q.d.1506.1 12
19.10 odd 18 3971.1.q.e.1506.2 12
19.11 even 3 3971.1.h.d.3541.2 4
19.12 odd 6 209.1.h.a.87.2 yes 4
19.13 odd 18 3971.1.q.e.967.1 12
19.14 odd 18 3971.1.q.e.956.1 12
19.15 odd 18 3971.1.q.e.54.2 12
19.16 even 9 3971.1.q.d.3277.1 12
19.17 even 9 3971.1.q.d.2265.2 12
19.18 odd 2 3971.1.c.e.362.1 2
57.8 even 6 1881.1.bc.a.406.2 4
57.50 even 6 1881.1.bc.a.505.1 4
76.27 even 6 3344.1.bb.a.2705.2 4
76.31 even 6 3344.1.bb.a.2177.2 4
209.8 even 30 2299.1.w.a.596.1 16
209.10 even 18 3971.1.q.e.1506.1 12
209.21 even 18 3971.1.q.e.2265.2 12
209.27 odd 30 2299.1.w.a.1812.2 16
209.31 odd 30 2299.1.w.a.524.1 16
209.32 even 18 3971.1.q.e.967.2 12
209.43 odd 18 3971.1.q.d.956.1 12
209.46 even 30 2299.1.w.a.2097.1 16
209.50 even 30 2299.1.w.a.239.2 16
209.54 odd 18 3971.1.q.d.3277.2 12
209.65 even 6 209.1.h.a.197.2 yes 4
209.69 odd 30 2299.1.w.a.1322.2 16
209.84 even 30 2299.1.w.a.1546.2 16
209.87 odd 6 3971.1.h.d.3541.1 4
209.98 even 18 3971.1.q.e.3277.1 12
209.103 odd 30 2299.1.w.a.1546.1 16
209.107 even 30 2299.1.w.a.1322.1 16
209.109 even 18 3971.1.q.e.956.2 12
209.120 odd 18 3971.1.q.d.967.1 12
209.126 odd 30 2299.1.w.a.239.1 16
209.131 odd 18 3971.1.q.d.2265.1 12
209.141 odd 30 2299.1.w.a.2097.2 16
209.142 odd 18 3971.1.q.d.1506.2 12
209.145 even 30 2299.1.w.a.524.2 16
209.160 even 30 2299.1.w.a.1812.1 16
209.164 even 6 209.1.h.a.87.1 4
209.175 odd 18 3971.1.q.d.54.2 12
209.179 odd 30 2299.1.w.a.596.2 16
209.183 even 30 2299.1.w.a.2272.2 16
209.186 even 18 3971.1.q.e.54.1 12
209.197 odd 6 3971.1.h.d.2595.2 4
209.202 odd 30 2299.1.w.a.2272.1 16
209.208 even 2 3971.1.c.e.362.2 2
627.65 odd 6 1881.1.bc.a.406.1 4
627.164 odd 6 1881.1.bc.a.505.2 4
836.483 odd 6 3344.1.bb.a.2705.1 4
836.791 odd 6 3344.1.bb.a.2177.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.1.h.a.87.1 4 209.164 even 6
209.1.h.a.87.2 yes 4 19.12 odd 6
209.1.h.a.197.1 yes 4 19.8 odd 6
209.1.h.a.197.2 yes 4 209.65 even 6
1881.1.bc.a.406.1 4 627.65 odd 6
1881.1.bc.a.406.2 4 57.8 even 6
1881.1.bc.a.505.1 4 57.50 even 6
1881.1.bc.a.505.2 4 627.164 odd 6
2299.1.w.a.239.1 16 209.126 odd 30
2299.1.w.a.239.2 16 209.50 even 30
2299.1.w.a.524.1 16 209.31 odd 30
2299.1.w.a.524.2 16 209.145 even 30
2299.1.w.a.596.1 16 209.8 even 30
2299.1.w.a.596.2 16 209.179 odd 30
2299.1.w.a.1322.1 16 209.107 even 30
2299.1.w.a.1322.2 16 209.69 odd 30
2299.1.w.a.1546.1 16 209.103 odd 30
2299.1.w.a.1546.2 16 209.84 even 30
2299.1.w.a.1812.1 16 209.160 even 30
2299.1.w.a.1812.2 16 209.27 odd 30
2299.1.w.a.2097.1 16 209.46 even 30
2299.1.w.a.2097.2 16 209.141 odd 30
2299.1.w.a.2272.1 16 209.202 odd 30
2299.1.w.a.2272.2 16 209.183 even 30
3344.1.bb.a.2177.1 4 836.791 odd 6
3344.1.bb.a.2177.2 4 76.31 even 6
3344.1.bb.a.2705.1 4 836.483 odd 6
3344.1.bb.a.2705.2 4 76.27 even 6
3971.1.c.b.362.1 2 11.10 odd 2 inner
3971.1.c.b.362.2 2 1.1 even 1 trivial
3971.1.c.e.362.1 2 19.18 odd 2
3971.1.c.e.362.2 2 209.208 even 2
3971.1.h.d.2595.1 4 19.7 even 3
3971.1.h.d.2595.2 4 209.197 odd 6
3971.1.h.d.3541.1 4 209.87 odd 6
3971.1.h.d.3541.2 4 19.11 even 3
3971.1.q.d.54.1 12 19.4 even 9
3971.1.q.d.54.2 12 209.175 odd 18
3971.1.q.d.956.1 12 209.43 odd 18
3971.1.q.d.956.2 12 19.5 even 9
3971.1.q.d.967.1 12 209.120 odd 18
3971.1.q.d.967.2 12 19.6 even 9
3971.1.q.d.1506.1 12 19.9 even 9
3971.1.q.d.1506.2 12 209.142 odd 18
3971.1.q.d.2265.1 12 209.131 odd 18
3971.1.q.d.2265.2 12 19.17 even 9
3971.1.q.d.3277.1 12 19.16 even 9
3971.1.q.d.3277.2 12 209.54 odd 18
3971.1.q.e.54.1 12 209.186 even 18
3971.1.q.e.54.2 12 19.15 odd 18
3971.1.q.e.956.1 12 19.14 odd 18
3971.1.q.e.956.2 12 209.109 even 18
3971.1.q.e.967.1 12 19.13 odd 18
3971.1.q.e.967.2 12 209.32 even 18
3971.1.q.e.1506.1 12 209.10 even 18
3971.1.q.e.1506.2 12 19.10 odd 18
3971.1.q.e.2265.1 12 19.2 odd 18
3971.1.q.e.2265.2 12 209.21 even 18
3971.1.q.e.3277.1 12 209.98 even 18
3971.1.q.e.3277.2 12 19.3 odd 18