Properties

Label 2-3872-1.1-c1-0-32
Degree $2$
Conductor $3872$
Sign $1$
Analytic cond. $30.9180$
Root an. cond. $5.56040$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·5-s + 4·7-s − 2·9-s + 2·13-s − 3·15-s + 8·17-s − 6·19-s + 4·21-s + 5·23-s + 4·25-s − 5·27-s − 4·29-s + 31-s − 12·35-s + 3·37-s + 2·39-s + 6·41-s + 6·43-s + 6·45-s − 12·47-s + 9·49-s + 8·51-s − 6·53-s − 6·57-s + 3·59-s − 8·63-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.34·5-s + 1.51·7-s − 2/3·9-s + 0.554·13-s − 0.774·15-s + 1.94·17-s − 1.37·19-s + 0.872·21-s + 1.04·23-s + 4/5·25-s − 0.962·27-s − 0.742·29-s + 0.179·31-s − 2.02·35-s + 0.493·37-s + 0.320·39-s + 0.937·41-s + 0.914·43-s + 0.894·45-s − 1.75·47-s + 9/7·49-s + 1.12·51-s − 0.824·53-s − 0.794·57-s + 0.390·59-s − 1.00·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3872\)    =    \(2^{5} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(30.9180\)
Root analytic conductor: \(5.56040\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3872,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.105012857\)
\(L(\frac12)\) \(\approx\) \(2.105012857\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 5 T + p T^{2} \) 1.89.f
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.356091227631432112744147565352, −7.80600810663169791652738346727, −7.50198472674154373278179225694, −6.24541169109682856670095677012, −5.35473284436664335832114757918, −4.60055864279777275442227190873, −3.78378333009399584673787262577, −3.14981024706725465946793634323, −2.00046778372803770255204265095, −0.836282176392189959886657427424, 0.836282176392189959886657427424, 2.00046778372803770255204265095, 3.14981024706725465946793634323, 3.78378333009399584673787262577, 4.60055864279777275442227190873, 5.35473284436664335832114757918, 6.24541169109682856670095677012, 7.50198472674154373278179225694, 7.80600810663169791652738346727, 8.356091227631432112744147565352

Graph of the $Z$-function along the critical line