Properties

Label 12-3822e6-1.1-c1e6-0-1
Degree $12$
Conductor $3.117\times 10^{21}$
Sign $1$
Analytic cond. $8.07991\times 10^{8}$
Root an. cond. $5.52438$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·3-s − 3·4-s + 21·9-s − 18·12-s + 6·13-s + 6·16-s − 18·17-s + 18·25-s + 56·27-s + 6·29-s − 63·36-s + 36·39-s + 12·43-s + 36·48-s − 108·51-s − 18·52-s + 18·53-s − 6·61-s − 10·64-s + 54·68-s + 108·75-s − 24·79-s + 126·81-s + 36·87-s − 54·100-s + 36·101-s + 48·103-s + ⋯
L(s)  = 1  + 3.46·3-s − 3/2·4-s + 7·9-s − 5.19·12-s + 1.66·13-s + 3/2·16-s − 4.36·17-s + 18/5·25-s + 10.7·27-s + 1.11·29-s − 10.5·36-s + 5.76·39-s + 1.82·43-s + 5.19·48-s − 15.1·51-s − 2.49·52-s + 2.47·53-s − 0.768·61-s − 5/4·64-s + 6.54·68-s + 12.4·75-s − 2.70·79-s + 14·81-s + 3.85·87-s − 5.39·100-s + 3.58·101-s + 4.72·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 3^{6} \cdot 7^{12} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 3^{6} \cdot 7^{12} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{6} \cdot 3^{6} \cdot 7^{12} \cdot 13^{6}\)
Sign: $1$
Analytic conductor: \(8.07991\times 10^{8}\)
Root analytic conductor: \(5.52438\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{6} \cdot 3^{6} \cdot 7^{12} \cdot 13^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(19.75852314\)
\(L(\frac12)\) \(\approx\) \(19.75852314\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + T^{2} )^{3} \)
3 \( ( 1 - T )^{6} \)
7 \( 1 \)
13 \( 1 - 6 T + 27 T^{2} - 132 T^{3} + 27 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
good5 \( 1 - 18 T^{2} + 171 T^{4} - 1056 T^{6} + 171 p^{2} T^{8} - 18 p^{4} T^{10} + p^{6} T^{12} \)
11 \( 1 - 51 T^{2} + 1182 T^{4} - 16315 T^{6} + 1182 p^{2} T^{8} - 51 p^{4} T^{10} + p^{6} T^{12} \)
17 \( ( 1 + 9 T + 66 T^{2} + 299 T^{3} + 66 p T^{4} + 9 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
19 \( 1 - 15 T^{2} + 294 T^{4} - 10091 T^{6} + 294 p^{2} T^{8} - 15 p^{4} T^{10} + p^{6} T^{12} \)
23 \( ( 1 + 27 T^{2} + 98 T^{3} + 27 p T^{4} + p^{3} T^{6} )^{2} \)
29 \( ( 1 - 3 T + 42 T^{2} - 251 T^{3} + 42 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
31 \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{3} \)
37 \( 1 - 198 T^{2} + 17127 T^{4} - 826576 T^{6} + 17127 p^{2} T^{8} - 198 p^{4} T^{10} + p^{6} T^{12} \)
41 \( 1 - 138 T^{2} + 207 p T^{4} - 369144 T^{6} + 207 p^{3} T^{8} - 138 p^{4} T^{10} + p^{6} T^{12} \)
43 \( ( 1 - 6 T + 93 T^{2} - 412 T^{3} + 93 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
47 \( 1 - 87 T^{2} + 6942 T^{4} - 384019 T^{6} + 6942 p^{2} T^{8} - 87 p^{4} T^{10} + p^{6} T^{12} \)
53 \( ( 1 - 3 T + p T^{2} )^{6} \)
59 \( 1 - 183 T^{2} + 17154 T^{4} - 1116363 T^{6} + 17154 p^{2} T^{8} - 183 p^{4} T^{10} + p^{6} T^{12} \)
61 \( ( 1 + 3 T + 138 T^{2} + 433 T^{3} + 138 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( 1 - 207 T^{2} + 23046 T^{4} - 1818475 T^{6} + 23046 p^{2} T^{8} - 207 p^{4} T^{10} + p^{6} T^{12} \)
71 \( 1 - 375 T^{2} + 61734 T^{4} - 5700859 T^{6} + 61734 p^{2} T^{8} - 375 p^{4} T^{10} + p^{6} T^{12} \)
73 \( 1 - 114 T^{2} + 19875 T^{4} - 1250368 T^{6} + 19875 p^{2} T^{8} - 114 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 + 12 T + 189 T^{2} + 1368 T^{3} + 189 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 - 126 T^{2} + 10791 T^{4} - 486516 T^{6} + 10791 p^{2} T^{8} - 126 p^{4} T^{10} + p^{6} T^{12} \)
89 \( 1 - 318 T^{2} + 54447 T^{4} - 5892352 T^{6} + 54447 p^{2} T^{8} - 318 p^{4} T^{10} + p^{6} T^{12} \)
97 \( 1 - 258 T^{2} + 32163 T^{4} - 3209600 T^{6} + 32163 p^{2} T^{8} - 258 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.28199857800729156904164054905, −4.25331121433082607665052151700, −4.13002818986707835171419699312, −3.94839230540273969561276907570, −3.69200207706962225841818586844, −3.57110411770750429731181970302, −3.53573228931598763207853081305, −3.39576659042695160522484741526, −3.22806789228018772982611396017, −3.06158194969221604971613049908, −2.95323755104187274266227755803, −2.63119354034317188321171290113, −2.53616617856832637946742459849, −2.53490003680896979205702843015, −2.32358284802627463460168596012, −2.28308034938824237941834987359, −1.88504143856976079789902527145, −1.87044353664246547875098029223, −1.71826143142107740108311918509, −1.35845661465048565093303830234, −1.09309159503768249338593532093, −0.994312977097586606561374156076, −0.846682846037226602180884380396, −0.63736043820575761040223639318, −0.23121871138840340927849525644, 0.23121871138840340927849525644, 0.63736043820575761040223639318, 0.846682846037226602180884380396, 0.994312977097586606561374156076, 1.09309159503768249338593532093, 1.35845661465048565093303830234, 1.71826143142107740108311918509, 1.87044353664246547875098029223, 1.88504143856976079789902527145, 2.28308034938824237941834987359, 2.32358284802627463460168596012, 2.53490003680896979205702843015, 2.53616617856832637946742459849, 2.63119354034317188321171290113, 2.95323755104187274266227755803, 3.06158194969221604971613049908, 3.22806789228018772982611396017, 3.39576659042695160522484741526, 3.53573228931598763207853081305, 3.57110411770750429731181970302, 3.69200207706962225841818586844, 3.94839230540273969561276907570, 4.13002818986707835171419699312, 4.25331121433082607665052151700, 4.28199857800729156904164054905

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.