L(s) = 1 | + 3·2-s + 4·4-s + 3·8-s + 9·11-s − 5·13-s + 3·16-s + 6·17-s − 6·19-s + 27·22-s + 3·23-s − 2·25-s − 15·26-s − 6·29-s + 6·32-s + 18·34-s − 12·37-s − 18·38-s + 10·43-s + 36·44-s + 9·46-s − 7·49-s − 6·50-s − 20·52-s + 24·53-s − 18·58-s − 3·59-s − 10·61-s + ⋯ |
L(s) = 1 | + 2.12·2-s + 2·4-s + 1.06·8-s + 2.71·11-s − 1.38·13-s + 3/4·16-s + 1.45·17-s − 1.37·19-s + 5.75·22-s + 0.625·23-s − 2/5·25-s − 2.94·26-s − 1.11·29-s + 1.06·32-s + 3.08·34-s − 1.97·37-s − 2.91·38-s + 1.52·43-s + 5.42·44-s + 1.32·46-s − 49-s − 0.848·50-s − 2.77·52-s + 3.29·53-s − 2.36·58-s − 0.390·59-s − 1.28·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 123201 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123201 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(5.058864021\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.058864021\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.09678756008043903637374763031, −11.60876117752883010327366511031, −11.03929085083311150265487833390, −10.43450287917992193094796599668, −9.938986447567854229470602265735, −9.462445153213793659913022894046, −8.889901466523473173770970565234, −8.622579749543130120769543866343, −7.48596435643296082035869539211, −7.41838295389149176088128981064, −6.61152506784275796473559066203, −6.34727400554280995103918128230, −5.54930880361252748381352228643, −5.39306561661393449706957910324, −4.58091036402556046820590555862, −4.15096721305221661392689289843, −3.74515644327608918992984510229, −3.29764155144046298713531474638, −2.28728294708634059698859480543, −1.37551966031695442040981340406,
1.37551966031695442040981340406, 2.28728294708634059698859480543, 3.29764155144046298713531474638, 3.74515644327608918992984510229, 4.15096721305221661392689289843, 4.58091036402556046820590555862, 5.39306561661393449706957910324, 5.54930880361252748381352228643, 6.34727400554280995103918128230, 6.61152506784275796473559066203, 7.41838295389149176088128981064, 7.48596435643296082035869539211, 8.622579749543130120769543866343, 8.889901466523473173770970565234, 9.462445153213793659913022894046, 9.938986447567854229470602265735, 10.43450287917992193094796599668, 11.03929085083311150265487833390, 11.60876117752883010327366511031, 12.09678756008043903637374763031