L(s) = 1 | + (−1 + i)2-s − 3.84·3-s − 2i·4-s + (−3.77 + 3.77i)5-s + (3.84 − 3.84i)6-s + (−7.25 − 7.25i)7-s + (2 + 2i)8-s + 5.80·9-s − 7.54i·10-s + (−7.40 − 7.40i)11-s + 7.69i·12-s + 14.5·14-s + (14.5 − 14.5i)15-s − 4·16-s − 4.88i·17-s + (−5.80 + 5.80i)18-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s − 1.28·3-s − 0.5i·4-s + (−0.754 + 0.754i)5-s + (0.641 − 0.641i)6-s + (−1.03 − 1.03i)7-s + (0.250 + 0.250i)8-s + 0.644·9-s − 0.754i·10-s + (−0.673 − 0.673i)11-s + 0.641i·12-s + 1.03·14-s + (0.967 − 0.967i)15-s − 0.250·16-s − 0.287i·17-s + (−0.322 + 0.322i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.697 - 0.716i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.697 - 0.716i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.280395 + 0.118279i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.280395 + 0.118279i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + 3.84T + 9T^{2} \) |
| 5 | \( 1 + (3.77 - 3.77i)T - 25iT^{2} \) |
| 7 | \( 1 + (7.25 + 7.25i)T + 49iT^{2} \) |
| 11 | \( 1 + (7.40 + 7.40i)T + 121iT^{2} \) |
| 17 | \( 1 + 4.88iT - 289T^{2} \) |
| 19 | \( 1 + (18.6 - 18.6i)T - 361iT^{2} \) |
| 23 | \( 1 + 19.9iT - 529T^{2} \) |
| 29 | \( 1 - 14.3T + 841T^{2} \) |
| 31 | \( 1 + (19.0 - 19.0i)T - 961iT^{2} \) |
| 37 | \( 1 + (-42.9 - 42.9i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + (3.54 - 3.54i)T - 1.68e3iT^{2} \) |
| 43 | \( 1 - 11.9iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (-7.59 - 7.59i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 - 77.0T + 2.80e3T^{2} \) |
| 59 | \( 1 + (44.4 + 44.4i)T + 3.48e3iT^{2} \) |
| 61 | \( 1 + 56.2T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-4.32 + 4.32i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + (-40.4 + 40.4i)T - 5.04e3iT^{2} \) |
| 73 | \( 1 + (12.7 + 12.7i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 7.98T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-35.8 + 35.8i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + (57.2 + 57.2i)T + 7.92e3iT^{2} \) |
| 97 | \( 1 + (-38.7 + 38.7i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.06930904820075471458524998819, −10.63046085914713538602938772195, −9.953506708031994650517324038375, −8.423310388586333715026756022296, −7.40508944725798534002878998251, −6.58014728622117955306393774176, −5.96715174904956560732823706228, −4.55060151144800266118931414659, −3.22100230225897114873029116215, −0.53548207358783768230381120645,
0.42413464395360098063713175503, 2.49584005566626208371210000692, 4.16388648253354861265056838083, 5.27555263517603360644157999479, 6.25014087271511344730230906897, 7.42158127388600240154389675818, 8.619148828203288789282966842145, 9.391846024462618135033455428004, 10.43965957554198032779636734580, 11.30176114683832253698559033822