L(s) = 1 | + (−1 − i)2-s − 3.84·3-s + 2i·4-s + (−3.77 − 3.77i)5-s + (3.84 + 3.84i)6-s + (−7.25 + 7.25i)7-s + (2 − 2i)8-s + 5.80·9-s + 7.54i·10-s + (−7.40 + 7.40i)11-s − 7.69i·12-s + 14.5·14-s + (14.5 + 14.5i)15-s − 4·16-s + 4.88i·17-s + (−5.80 − 5.80i)18-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.5i)2-s − 1.28·3-s + 0.5i·4-s + (−0.754 − 0.754i)5-s + (0.641 + 0.641i)6-s + (−1.03 + 1.03i)7-s + (0.250 − 0.250i)8-s + 0.644·9-s + 0.754i·10-s + (−0.673 + 0.673i)11-s − 0.641i·12-s + 1.03·14-s + (0.967 + 0.967i)15-s − 0.250·16-s + 0.287i·17-s + (−0.322 − 0.322i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.697 + 0.716i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.697 + 0.716i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.280395 - 0.118279i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.280395 - 0.118279i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 + i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + 3.84T + 9T^{2} \) |
| 5 | \( 1 + (3.77 + 3.77i)T + 25iT^{2} \) |
| 7 | \( 1 + (7.25 - 7.25i)T - 49iT^{2} \) |
| 11 | \( 1 + (7.40 - 7.40i)T - 121iT^{2} \) |
| 17 | \( 1 - 4.88iT - 289T^{2} \) |
| 19 | \( 1 + (18.6 + 18.6i)T + 361iT^{2} \) |
| 23 | \( 1 - 19.9iT - 529T^{2} \) |
| 29 | \( 1 - 14.3T + 841T^{2} \) |
| 31 | \( 1 + (19.0 + 19.0i)T + 961iT^{2} \) |
| 37 | \( 1 + (-42.9 + 42.9i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (3.54 + 3.54i)T + 1.68e3iT^{2} \) |
| 43 | \( 1 + 11.9iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (-7.59 + 7.59i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 - 77.0T + 2.80e3T^{2} \) |
| 59 | \( 1 + (44.4 - 44.4i)T - 3.48e3iT^{2} \) |
| 61 | \( 1 + 56.2T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-4.32 - 4.32i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + (-40.4 - 40.4i)T + 5.04e3iT^{2} \) |
| 73 | \( 1 + (12.7 - 12.7i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 7.98T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-35.8 - 35.8i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (57.2 - 57.2i)T - 7.92e3iT^{2} \) |
| 97 | \( 1 + (-38.7 - 38.7i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.30176114683832253698559033822, −10.43965957554198032779636734580, −9.391846024462618135033455428004, −8.619148828203288789282966842145, −7.42158127388600240154389675818, −6.25014087271511344730230906897, −5.27555263517603360644157999479, −4.16388648253354861265056838083, −2.49584005566626208371210000692, −0.42413464395360098063713175503,
0.53548207358783768230381120645, 3.22100230225897114873029116215, 4.55060151144800266118931414659, 5.96715174904956560732823706228, 6.58014728622117955306393774176, 7.40508944725798534002878998251, 8.423310388586333715026756022296, 9.953506708031994650517324038375, 10.63046085914713538602938772195, 11.06930904820075471458524998819